删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

黄河三角洲自然保护区植被与土壤C、N、P化学计量特征

本站小编 Free考研考试/2022-01-01

刘兴华1,,
公彦庆2,
陈为峰3,,,
黄保华1,
朱荣生1
1.山东省农业科学院畜牧兽医研究所 济南 250100
2.山东省平邑县环境保护局 临沂 273300
3.山东农业大学 泰安 271018
基金项目: 国家自然科学基金项目31570522
山东省重点产业项目2016CYJS5A02
山东省重点产业项目2017CXGC0309

详细信息
作者简介:刘兴华, 主要研究方向为环境地球化学。E-mail:xhliu@yic.ac.cn
通讯作者:陈为峰, 主要研究方向为土壤生态与环境研究。E-mail:chwf@sdau.edu.cn
中图分类号:S153

计量

文章访问数:692
HTML全文浏览量:8
PDF下载量:563
被引次数:0
出版历程

收稿日期:2017-12-28
录用日期:2018-05-23
刊出日期:2018-11-01

C, N and P stoichiometry of typical plants and soils in the Yellow River Delta Natural Reserve

LIU Xinghua1,,
GONG Yanqing2,
CHEN Weifeng3,,,
HUANG Baohua1,
ZHU Rongsheng1
1. Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
2. Pingyi Environmental Protection Bureau, Linyi 273300, China
3. Shandong Agricultural University, Tai'an 271018, China
Funds: the National Natural Science Foundation31570522
the Key Industrial Project in Shandong Province2016CYJS5A02
the Key Industrial Project in Shandong Province2017CXGC0309

More Information
Corresponding author:CHEN Weifeng, E-mail:chwf@sdau.edu.cn


摘要
HTML全文
(4)(2)
参考文献(41)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为阐明黄河三角洲自然保护区生态系统的元素含量水平和化学计量特征并判断该区域植被生长的限制因子,选择保护区5种典型植物群落翅碱蓬、碱蓬、芦苇、柽柳和白茅为研究对象,测定植物不同器官和土壤剖面中有机碳、全氮、全磷含量,分析保护区植物群落与土壤的C、N、P化学计量特征。结果显示:5种群落中典型植物各器官C和P含量规律大体一致,除白茅和柽柳外,均表现为叶 > 根 > 茎,白茅茎的C和P含量高于根。不同植物器官N含量则表现出一致的变化规律,均为叶 > 茎 > 根。各植被类型叶片N:P值均小于12,且与根系的N:P值接近。土壤C、N含量的平均值分别为4.78 g·kg-1、0.32 g·kg-1,均低于全国水平。P含量的平均值为0.53 g·kg-1,略低于全国水平。不同土层之间土壤元素含量差异不显著。不同群落土壤C:N:P值不同,同一群落不同土层的土壤C:N:P值变异性较小。植物叶片C、N、P含量以及C:N、C:P与0~10 cm、10~20 cm、20~40 cm土层土壤C、N含量之间均存在显著的相关关系(P < 0.05)。以上结果表明,黄河三角洲自然保护区不同土层土壤C、N、P含量相对稳定,总体低于全国水平,土壤N的匮乏引起了C:N和C:P值的变化。植物叶片和根系的C:P值接近,说明生态系统元素循环相对稳定,同时叶片N:P值小于12,进一步说明土壤中N的匮乏使其成为植物生长的限制因子。
Abstract:The in-depth understanding of stoichiometry of plant and soil is beneficial for discovering convergence and divergence of ecosystem compositions, and forecasting response of ecosystem to environment change. The Yellow River Delta is an active and younger ecosystem, its' stoichiometry of plant and soil may impact ecosystem structure, function and stability. The aim of this study was to clarify the characteristics of carbon (C), nitrogen (N) and phosphorus (P) contents and stoichiometry of plants and soils in the Natural Reserve of Yellow River Delta. In the study, five vegetation communities from sea to inland were selected, which were Suaeda salsa, S. heteropter, Phragmites communis, Tamarix chinensis and Imperata cylindrical communities, to analyze contents of C, N and P of different organs of plants and soils. The results showed that C and P contents of plant leaf were higher than those of root, and those of stem were lowest for all the vegetation communities, except T. chinensis and I. cylindrica communitis. In I. cylindrica community, C and P contents were higher in plant stem than in root. N content of leaf was higher than of stem and that of root was lowest for all the vegetation communities. N:P ratio of leaf was lower than 12 and was not significantly different from that of root in all ecosystems. The average contents of soil organic C, total N and P were respectively 4.78 g·kg-1, 0.32 g·kg-1 and 0.53 g·kg-1, with all lower than the national average. The differences in contents of soil C, N and P in different soil layers were insignificant. Soil stoichiometry ratio was significantly affected by vegetation type, but the spatial variability was insignificant. There was a significant correlation between contents of leaf organic C, N and P and stoichiometry ratios of C:N and C:P and then the contents of soil C and N in the 0-10 cm, 10-20 cm and 20-40 cm soil layers (P < 0.05). In conclusion, the results showed that the contents of C, N and P were stable in soil profile and lower than the national level. The low content of N affected the variations of C:N and C:P ratios. Consistent with C:P ratio of plant leaf and root, the cycles of the elements were stable in the ecosystem. Then N:P ratio of plant leaf was lower than 12. The findings in this study demonstrated that N was the limiting nutrient element in ecosystems of the Yellow River Delta Natural Reserve.

HTML全文


图1研究区采样点分布图
Figure1.Location of the sampled plant communities in the study area
CJP: Suaeda salsa, JP: Suaeda heteropter; LW: Phragmites communis; CL: Tamarix chinensis; BM: Imperata cylindrical.


下载: 全尺寸图片幻灯片


图2研究区典型植被群落的地上部分生物量
CJP:翅碱蓬群落; JP:碱蓬群落; LW:芦苇群落; CL:柽柳群落; BM:白茅群落。图柱上不同小写字母表示不同植被群落间差异显著。
Figure2.Above-ground biomass of typical plant communities in the study area
CJP: Suaeda salsa; JP: Suaeda heteropter; LW: Phragmites communis; CL: Tamarix chinensis; BM: Imperata cylindrical. Different lowercase letters mean significant differences among different plant communities at 0.05 level.


下载: 全尺寸图片幻灯片


图3研究区典型植被群落优势种根、茎、叶的C、N、P含量及其化学计量比
CJP:翅碱蓬群落; JP:碱蓬群落; LW:芦苇群落; CL:柽柳群落; BM:白茅群落。数据为平均值±标准偏差。同一植被群落不同器官间不同小写字母表示在0.05水平差异显著。
Figure3.C, N, P contents and their stoichiometry ratios in root, stem and leaf of dominant species in different typical plant communities in the study area
CJP: Suaeda salsa, JP: Suaeda heteropter; LW: Phragmites communis; CL: Tamarix chinensis; BM: Imperata cylindrical. Data are mean ± SD. Different lowercase letters within the same plant community mean significant differences among different organs at 0.05 level.


下载: 全尺寸图片幻灯片


图4研究区典型植被群落不同土层土壤C、N、P含量及其化学计量比
CJP:翅碱蓬群落; JP:碱蓬群落; LW:芦苇群落; CL:柽柳群落; BM:白茅群落。数据为平均值±标准偏差。同一植被群落不同土层间不同小写字母表示在0.05水平差异显著。
Figure4.C, N, P contents and their stoichiometry ratios in different soil layers of different typical plant communities in the study area
CJP: Suaeda salsa; JP: Suaeda heteropter; LW: Phragmites communis; CL: Tamarix chinensis; BM: Imperata cylindrical. Data are mean ± SD. Different lowercase letters within the same plant community mean significant differences among different soil layers at 0.05 level.


下载: 全尺寸图片幻灯片

表1研究区典型植物群落采样点的基本概况
Table1.Basic information of sampled plant communities in the study area
样品编号
Sample code
典型植被
Typical vegetation
地理位置
Geographic location
优势种
Dominant species
伴生种
Accompanying species
分布频度
Frequency distribution (%)
面积
Area (hm2)
生活型
Life form
CJP 翅碱蓬群落Suaeda salsa community 37°43′52″N 119°13′43″E 翅碱蓬S. salsa 54.0 5.2 一年生草本Annual herb
JP 碱蓬群落Suaeda heteropter community 37°43′45″N 119°13′02″E 碱蓬S. heteropter 柽柳T. chinensis 78.0 33.9 一年生草本Annual herb
LW 芦苇群落Phragmites communis community 37°44′24″N 118°59′26″E 芦苇P. communis 罗布麻、香蒲Dogbane leaf, Typha orientalis 95.6 59.2 多年生草本Perennial herb
CL 柽柳群落Tamarix chinensis community 37°44′53″N 119°05′32″E 柽柳T. chinensis 二色补血草Limonium bicolor 80.2 6.7 多年生灌木Perennial shrubs
BM 白茅群落Imperata cylindrica community 37°45′23″N 119°00′05″E 白茅I. cylindrica 黄花草木樨、刺果甘草Melilotus officinalis, Glycyrrhiza pallidiflora 69.3 20.1 一年生草本Annual herb


下载: 导出CSV
表2研究区典型植被植物叶片化学计量学特征与不同土层土壤C、N、P含量的相关关系
Table2.Correlations between leaf stoichiometry characteristics of different typical plant communities and soil C, N and P contents in different layers
土层
Soil layer (cm)
叶片C
Leaf C
叶片N
Leaf N
叶片P
Leaf P
叶片C:N
Leaf C:N
叶片C:P
Leaf C:P
叶片N:P
Leaf N:P
土壤C Soil C 0~10 0.69* -0.61* -0.64** 0.70** 0.70** 0.80
10~20 0.62* -0.51* -0.40* 0.69** 0.70** 0.80
20~40 0.71* -0.75* -0.30* 0.30** 0.90* 0.40
40~60 0.70 -0.43 -0.71 0.30 0.90* 0.30
土壤N Soil N 0~10 0.52* -0.53* -0.80* 0.30** 0.50** 0.56
10~20 0.53* -0.54* -0.70** 0.00** 0.40** 0.60
20~40 0.61* -0.64* -0.90* 0.10** 0.30* 0.50
40~60 0.20 -0.43 -0.80 0.30 0.50 0.60
土壤P Soil P 0~10 0.72* -0.40 -0.90* 0.10 0.30* 0.50
10~20 0.64* -0.50 -0.60 0.10 0.30 0.30
20~40 0.65* -0.36 -0.70 -0.30 0.10 0.60
40~60 0.51 -0.39 -0.50 -0.60 -0.20 0.30
??***分别表示显著(P < 0.05)和极显著相关(P < 0.01)。* and ** mean significant correlation at 0.05 and 0.01 levels, respectively.


下载: 导出CSV

参考文献(41)
[1]曾冬萍, 蒋利玲, 曾从盛, 等.生态化学计量学特征及其应用研究进展[J].生态学报, 2013, 33(18):5484-5492 http://d.old.wanfangdata.com.cn/Periodical/stxb201318006
ZENG D P, JIANG L L, ZENG C S, et al. Reviews on the ecological stoichiometry characteristics and its applications[J]. Acta Ecologica Sinica, 2013, 33(18):5484-5492 http://d.old.wanfangdata.com.cn/Periodical/stxb201318006
[2]程滨, 赵永军, 张文广, 等.生态化学计量学研究进展[J].生态学报, 2010, 30(6):1628-1637 http://d.old.wanfangdata.com.cn/Periodical/stxb201006027
CHENG B, ZHAO Y J, ZHANG W G, et al. The research advances and prospect of ecological stoichiometry[J]. Acta Ecologica Sinica, 2010, 30(6):1628-1637 http://d.old.wanfangdata.com.cn/Periodical/stxb201006027
[3]王绍强, 于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报, 2008, 28(8):3937-3947 doi: 10.3321/j.issn:1000-0933.2008.08.054
WANG S Q, YU G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8):3937-3947 doi: 10.3321/j.issn:1000-0933.2008.08.054
[4]项文化, 黄志宏, 闫文德, 等.森林生态系统碳氮循环功能耦合研究综述[J].生态学报, 2006, 26(7):2365-2372 doi: 10.3321/j.issn:1000-0933.2006.07.040
XIANG W H, HUANG Z H, YAN W D, et al. Review on coupling of interactive functions between carbon and nitrogen cycles in forest ecosystems[J]. Acta Ecologica Sinica, 2006, 26(7):2365-2372 doi: 10.3321/j.issn:1000-0933.2006.07.040
[5]?GREN G I. The C:N:P stoichiometry of autotrophs-theory and observations[J]. Ecology Letters, 2004, 7(3):185-191 doi: 10.1111/ele.2004.7.issue-3
[6]刘万德, 苏建荣, 李帅锋, 等.云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征[J].生态学报, 2010, 30(23):6581-6590 http://d.old.wanfangdata.com.cn/Periodical/stxb201023031
LIU W D, SU J R, LI S F, et al. Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broad-leaved forest in Pu'er, Yunnan Province[J]. Acta Ecologica Sinica, 2010, 30(23):6581-6590 http://d.old.wanfangdata.com.cn/Periodical/stxb201023031
[7]杨雪, 李奇, 王绍美, 等.两种白刺叶片及沙堆土壤化学计量学特征的比较[J].中国沙漠, 2011, 31(5):1156-1161 http://d.old.wanfangdata.com.cn/Periodical/zgsm201105012
YANG X, LI Q, WANG S M, et al. Stoichiometric analysis of leaves of two types of Nitraria and the sited Nebkhas soil[J]. Journal of Desert Research, 2011, 31(5):1156-1161 http://d.old.wanfangdata.com.cn/Periodical/zgsm201105012
[8]王维奇, 徐玲琳, 曾从盛, 等.河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征[J].生态学报, 2011, 31(23):7119-7124 http://d.old.wanfangdata.com.cn/Periodical/stxb201123016
WANG W Q, XU L L, ZENG C S, et al. Carbon, nitrogen and phosphorus ecological stoichiometric ratios among live plant-litter-soil systems in estuarine wetland[J]. Acta Ecologica Sinica, 2011, 31(23):7119-7124 http://d.old.wanfangdata.com.cn/Periodical/stxb201123016
[9]任书杰, 于贵瑞, 陶波, 等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学, 2007, 28(12):2665-2673 doi: 10.3321/j.issn:0250-3301.2007.12.001
REN S J, YU G R, TAO B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science, 2007, 28(12):2665-2673 doi: 10.3321/j.issn:0250-3301.2007.12.001
[10]YU Q, CHEN Q S, ELSER J J, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability[J]. Ecology Letters, 2010, 13(11):1390-1399 doi: 10.1111/j.1461-0248.2010.01532.x
[11]DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7081):165-173 doi: 10.1038/nature04514
[12]SARDANS J, RIVAS-UBACH A, PE?UELAS J. The C:N:P stoichiometry of organisms and ecosystems in a changing world:A review and perspectives[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14(1):33-47 doi: 10.1016/j.ppees.2011.08.002
[13]VAN DE WAAL D B, VERSCHOOR A M, VERSPAGEN J M H, et al. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems[J]. Frontiers in Ecology and the Environment, 2010, 8(3):145-152 doi: 10.1890/080178
[14]ELSER J J, ANDERSEN T, BARON J S, et al. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition[J]. Science, 2009, 326(5954):835-837 doi: 10.1126/science.1176199
[15]ELSER J J, FAGAN W F, KERKHOFF A J, et al. Biological stoichiometry of plant production:Metabolism, scaling and ecological response to global change[J]. New Phytologist, 2010, 186(3):593-608 doi: 10.1111/j.1469-8137.2010.03214.x
[16]CUI B S, ZHANG Q J, ZHANG K J, et al. Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the yellow river delta, China[J]. Environmental Pollution, 2011, 159(5):1297-1306 doi: 10.1016/j.envpol.2011.01.024
[17]侯学会, 李新华.黄河三角洲自然保护区1992~2010年土地覆被变化分析[J].亚热带植物科学, 2015, 44(4):309-314 doi: 10.3969/j.issn.1009-7791.2015.04.009
HOU X H, LI X H. Characteristics of land cover change in the Yellow River Estuary Nature Reserve from 1992 to 2010[J]. Subtropical Plant Science, 2015, 44(4):309-314 doi: 10.3969/j.issn.1009-7791.2015.04.009
[18]于君宝, 陈小兵, 孙志高, 等.黄河三角洲新生滨海湿地土壤营养元素空间分布特征[J].环境科学学报, 2010, 30(4):855-861 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201004024
YU J B, CHEN X B, SUN Z G, et al. The spatial distribution characteristics of soil nutrients in new-born coastal wetland in the Yellow River Delta[J]. Acta Scientiae Circumstantiae, 2010, 30(4):855-861 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201004024
[19]王传远, 杨翠云, 孙志高, 等.黄河三角洲生态区土壤石油污染及其与理化性质的关系[J].水土保持学报, 2010, 24(2):214-217 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201002047
WANG C Y, YANG C Y, SUN Z G, et al. Contamination characteristics and its relationship with physico-chemical properties of oil polluted soils in the Yellow River Delta swamp[J]. Journal of Soil and Water Conservation, 2010, 24(2):214-217 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201002047
[20]李庆梅, 侯龙鱼, 刘艳, 等.黄河三角洲盐碱地不同利用方式土壤理化性质[J].中国生态农业学报, 2009, 17(6):1132-1136 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009615&flag=1
LI Q M, HOU L Y, LIU Y, et al. Properties of saline-alkaline soil under different land use types in Yellow River Delta[J]. Chinese Journal of Eco-Agriculture, 2009, 17(6):1132-1136 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009615&flag=1
[21]YUSTE J C, BALDOCCHI D D, Gershenson A, et al. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture[J]. Global Change Biology, 2007, 13(9):2018-2035 doi: 10.1111/gcb.2007.13.issue-9
[22]SCHLESINGER W H, ANDREWS J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 2000, 48(1):7-20 doi: 10.1023/A:1006247623877
[23]TRESEDER K K, VITOUSEK P M. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests[J]. Ecology, 2001, 82(4):946-954 doi: 10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2
[24]陶冶, 张元明.古尔班通古特沙漠4种草本植物叶片与土壤的化学计量特征[J].应用生态学报, 2015, 26(3):659-665 http://d.old.wanfangdata.com.cn/Periodical/yystxb201503003
TAO Y, ZHANG Y M. Leaf and soil stoichiometry of four herbs in the Gurbantunggut Desert, China[J]. Chinese Journal of Applied Ecology, 2015, 26(3):659-665 http://d.old.wanfangdata.com.cn/Periodical/yystxb201503003
[25]王丹, 张荣, 熊俊, 等.互花米草入侵对滨海湿地土壤碳库的贡献——基于稳定同位素的研究[J].植物生态学报, 2015, 39(10):941-949 doi: 10.17521/cjpe.2015.0091
WANG D, ZHANG R, XIONG J, et al. Contribution of invasive species spartina alterniflora to soil organic carbon pool in coastal wetland:Stable isotope approach[J]. Chinese Journal of Plant Ecology, 2015, 39(10):941-949 doi: 10.17521/cjpe.2015.0091
[26]朱敏, 张振华, 于君宝, 等.氮沉降对黄河三角洲芦苇湿地土壤呼吸的影响[J].植物生态学报, 2013, 37(6):517-529 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201306004
ZHU M, ZHANG Z H, YU J B, et al. Effect of nitrogen deposition on soil respiration in Phragmites australis wetland in the Yellow River Delta, China[J]. Chinese Journal of Plant Ecology, 2013, 37(6):517-529 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201306004
[27]吴统贵, 陈步峰, 肖以华, 等.珠江三角洲3种典型森林类型乔木叶片生态化学计量学[J].植物生态学报, 2010, 34(1):58-63 doi: 10.3773/j.issn.1005-264x.2010.01.009
WU T G, CHEN B F, XIAO Y H, et al. Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China[J]. Chinese Journal of Plant Ecology, 2010, 34(1):58-63 doi: 10.3773/j.issn.1005-264x.2010.01.009
[28]尹金来, 曹翠玉, 史瑞和.徐淮地区石灰性土壤磷素固定的研究[J].土壤学报, 1989, 26(2):131-138 doi: 10.3321/j.issn:0564-3929.1989.02.004
YIN J L, CAO C Y, SHI R H. Study on the phosphorus fixation of calcareous soils in Xu-Huai Districts[J]. Acta Pedologica Sinica, 1989, 26(2):131-138 doi: 10.3321/j.issn:0564-3929.1989.02.004
[29]张珂, 苏永中, 王婷, 等.荒漠绿洲区不同种植年限人工梭梭林土壤化学计量特征[J].生态学报, 2016, 36(11):3235-3243 http://d.old.wanfangdata.com.cn/Periodical/stxb201611012
ZHANG K, SU Y Z, WANG T, et al. Soil stoichiometry characteristics of Haloxylon ammodendron with different plantation age in the desert-oasis ecotone, north China[J]. Acta Ecologica Sinica, 2016, 36(11):3235-3243 http://d.old.wanfangdata.com.cn/Periodical/stxb201611012
[30]陶冶, 张元明, 周晓兵.伊犁野果林浅层土壤养分生态化学计量特征及其影响因素[J].应用生态学报, 2016, 27(7):2239-2248 http://d.old.wanfangdata.com.cn/Periodical/yystxb201607024
TAO Y, ZHANG Y M, ZHOU X B. Ecological stoichiometry of surface soil nutrient and its influencing factors in the wild fruit forest in Yili region, Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7):2239-2248 http://d.old.wanfangdata.com.cn/Periodical/yystxb201607024
[31]刘兴华, 陈为峰, 段存国, 等.黄河三角洲未利用地开发对植物与土壤碳、氮、磷化学计量特征的影响[J].水土保持学报, 2013, 27(2):204-208 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201302040
LIU X H, CHEN W F, DUAN C G, et al. Effect of exploitation of unutilized land on ecological stoichiometry characteristics of plants and soil carbon, nitrogen and phosphorus in the Yellow River Delta[J]. Journal of Soil and Water Conservation, 2013, 27(2):204-208 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201302040
[32]曾全超, 李鑫, 董扬红, 等.陕北黄土高原土壤性质及其生态化学计量的纬度变化特征[J].自然资源学报, 2015, 30(5):871-879 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZRZX201505015&dbname=CJFD&dbcode=CJFQ
ZENG Q C, LI X, DONG Y H, et al. Ecological stoichiometry characteristics and physical-chemical properties of soils at different latitudes on the loess plateau[J]. Journal of Natural Resources, 2015, 30(5):871-879 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZRZX201505015&dbname=CJFD&dbcode=CJFQ
[33]王建林, 钟志明, 王忠红, 等.青藏高原高寒草原生态系统土壤碳磷比的分布特征[J].草业学报, 2014, 23(2):9-19 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201402002
WANG J L, ZHONG Z M, WANG Z H, et al. Soil C/P distribution characteristics of alpine steppe ecosystems in the Qinhai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2014, 23(2):9-19 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201402002
[34]FAZHU Z, JIAO S, CHENGJIE R, et al. Land use change influences soil C, N, and P stoichiometry under 'Ggrain-to-Green Program' in China[J]. Scientific Reports, 2015, 5:10195 doi: 10.1038/srep10195
[35]ELSER J J, DOBBERFUHL D R, MACKAY N A, et al. Organism size, life history, and N:P stoichiometry:Toward a unified view of cellular and ecosystem processes[J]. BioScience, 1996, 46(9):674-684 doi: 10.2307/1312897
[36]REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30):11001-11006 doi: 10.1073/pnas.0403588101
[37]宋香静, 李胜男, 郭嘉, 等.环境变化对湿地植物根系的影响研究[J].水生态学杂志, 2017, 38(2):1-9 http://d.old.wanfangdata.com.cn/Periodical/sstxzz201702001
SONG X J, LI S N, GUO J, et al. Response of wetland plant roots to environmental factors:A review[J]. Journal of Hydroecology, 2017, 38(2):1-9 http://d.old.wanfangdata.com.cn/Periodical/sstxzz201702001
[38]曹磊, 宋金明, 李学刚, 等.黄河三角洲典型潮汐湿地碳、氮、磷生物地球化学特征[J].海洋科学, 2015, 39(1):84-92 http://d.old.wanfangdata.com.cn/Periodical/hykx201501013
CAO L, SONG J M, LI X G, et al. Biogeochemical characteristics of soil C, N, P in the tidal wetlands of the Yellow River Delta[J]. Marine Sciences, 2015, 39(1):84-92 http://d.old.wanfangdata.com.cn/Periodical/hykx201501013
[39]GüSEWELL S. N:P ratios in terrestrial plants:Variation and functional significance[J]. New Phytologist, 2004, 164(2):243-266 doi: 10.1111/j.1469-8137.2004.01192.x
[40]KOOJIMAN S A L M. The stoichiometry of animal energetics[J]. Journal of Theoretical Biology, 1995, 177(2):139-149 doi: 10.1006/jtbi.1995.0232
[41]李远, 章海波, 陈小兵, 等.黄河三角洲内陆到潮滩土壤中碳、氮元素的梯度分布规律[J].地球化学, 2014, 43(4):338-345 http://d.old.wanfangdata.com.cn/Periodical/dqhx201404003
LI Y, ZHANG H B, CHEN X B, et al. Gradient distributions of nitrogen and organic carbon in the soils from inland to tidal flat in the Yellow River Delta[J]. Geochimica, 2014, 43(4):338-345 http://d.old.wanfangdata.com.cn/Periodical/dqhx201404003

相关话题/土壤 生态 化学 植物 图片