删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

植物花分生组织终止发育机制的研究进展

本站小编 Free考研考试/2022-01-01

<script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.2-beta.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type='text/x-mathjax-config'> MathJax.Hub.Config({TeX:{extensions:["AMSmath.js","AMSsymbols.js"],Macros:{Bigggl:['\\Biggl{#1}',2],Bigggr:['\\Biggr{#1}',2]}},tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]},"HTML-CSS": {linebreaks: { automatic: true},scale: 180}}); </script> 张科1, ?,,
郭鑫鑫1, 2, ?,,
刘西岗1,
郭琳1,,
1.中国科学院遗传与发育生物学研究所农业资源研究中心 石家庄 050022
2.中国科学院大学 北京 100049
基金项目: 国家自然科学基金项目31701423
河北省重点方向培育项目ZZKT201601
中国科学院遗传与发育生物学研究所植物细胞与染色体工程国家重点实验室项目PCCE-KF-2018-04

详细信息
作者简介:张科, 主要研究方向为植物遗传发育与作物栽培, E-mail:zhangke0126@163.com
郭鑫鑫, 主要研究方向为植物遗传学, E-mail:guoxinxin16@mails.ucas.ac.cn
通讯作者:郭琳, 主要研究方向为植物遗传与表观遗传学。E-mail:guolin@sjziam.ac.cn
? 同等贡献者
中图分类号:Q756

计量

文章访问数:676
HTML全文浏览量:2
PDF下载量:673
被引次数:0
出版历程

收稿日期:2018-07-03
录用日期:2018-07-16
刊出日期:2018-10-01

Advances in research on floral meristem determinacy mechanisms in plants

ZHANG Ke1, ?,,
GUO Xinxin1, 2, ?,,
LIU Xigang1,
GUO Lin1,,
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Natural Science Foundation of China31701423
the Training Program of Key Direction of Hebei ProvinceZZKT201601
the State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesPCCE-KF-2018-04

More Information
Corresponding author:GUO Xinxin, E-mail:guolin@sjziam.ac.cn
? Equal contributors


摘要
HTML全文
(0)(0)
参考文献(136)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:植物花的发育依赖于花分生组织(floral meristem,FM)活性的维持与分化。当FM完成各轮花器官原基的起始后,其活性会程序性地终止(termination),这个过程就是FM的终止发育过程(FM determinacy)。FM的终止发育是一个复杂精细且多步骤的调控过程。WUSCHEL(WUS)是一个具有同源异型结构域(homeodomain)的转录因子,其对FM的活性维持及终止发育发挥着重要作用。越来越多的研究表明许多转录因子以及环境信号、激素信号和表观遗传相关因子通过对WUS及其调节基因的调控来影响FM终止发育过程。本研究组首次在组织水平阐明了生长素和细胞分裂素调控FM活性的分子机制:AUXIN RESPONSE FACTOR3(ARF3)能够整合AG、APETALA2AP2)和生长素(auxin)的信号通过抑制细胞分裂素(cytokinin)信号系统调控FM终止发育;还首次证实光信号对FM活性调控的分子机制:FAR-RED ELONGATED HYPOCOTYL3(FHY3)通过PHYTOCHROME APHY A)信号途径介导光信号对WUS表达的调控;在基因水平上首次揭示了染色质构象变化对FM终止发育的调控作用:AGAMOUS(AG)可以直接结合到WUS的调控区并招募PcG蛋白对WUS5'-TSS和WUS3'-CRE的结合,以介导WUS染色质环状结构(chromatin loop)的形成,进而抑制WUS的转录,而DNA TOPOISOMERASE 1 TOP1α(TOP1α)对染色质的高级结构的重塑作用也是该染色质环形成的基础。随着3D基因组(three dimensional genomics)时代的到来为我们进一步理解FM终止发育机制提供了新的窗口,而FM终止发育机制在农业生产上的运用也体现了其巨大的应用价值。本文首先简述了拟南芥(Arabidopsis thaliana)花发育研究的发展史,介绍了花发育相关领域所关心的3个科学问题,并着重阐述了FM终止发育调控的研究进展与前景。
关键词:花分生组织/
终止发育/
WUS/
环境信号/
激素信号/
表观遗传
Abstract:In higher plants, plant tissues and organs are generated from meristems. Shoot apical meristem (SAM) gives rise to all of the aboveground parts for the entire life of plant through continuous production of new organ primordial, including floral meristem (FM) which finally develops as flowers. Floral development is based on the balance between FM meristem maintenance and termination. At the initial stage, floral stem cells proliferate and produce defined number of floral organs based on the "ABC model" rules. At this stage, FM activity is maintained mainly by CLV (CLAVATA)-WUSCHEL (WUS) feedback loop. WUS encodes a homeodomain containing protein. It promotes stem cell marker gene CLV3 expression when WUS expression is low. It also inhibits CLV3 expression when WUS expression is high. Thus FM activity is maintained and can promote initiation of floral organs. However, after two carpels primordia initiation, FM activity is terminated in a process called FM determinacy. FM determinacy is a dynamic and multi-step process in which WUS plays a central role. WUS expression is regulated by many transcription factors related to floral organ identity[AGAMOUS (AG), APETALA2 (AP2) and SUPERMAN], environmental signals (light, temperature, etc.), plant hormones (auxin, cytokinin, gibberellin, etc.) and epigenetic-related factors (histone modification, chromatin remodeling, non-coding RNA, DNA methylation, etc.). Using model plant Arabidopsis, our study noted that AG terminates FM maintenance by directly repressing WUS through chromatin higher structure (chromatin loop), formed by AG and one of Polycomb Group components TERMINAL FLOWER2/LIKE HETEROCHROMATIN PROTEIN1 (TFL2/LHP1); binding to WUS5'-TSS (transcription start site) and WUS3'-CRE (cis-regulatory element). DNA TOPOISOMERASE 1 (TOP1α) inhibited WUS expression by modulating WUS nucleosome density to inhibit DNA accessibility, which also participated in the progress. AUXIN RESPONSE FACTOR3 (ARF3) induced by auxin regulated FM determinacy by repressing cytokinin biosynthesis[inhibiting cytokinin synthesis genes ISOPENTENYLTRANSFERASE (IPTs) and LONELY GUY (LOGs)] and signaling[inhibiting cytokinin receptor gene ARABIDOPSIS HISTIDINE KINASE4 (AHK4)], which clarified how auxin and cytokinin integrated to regulate FM activity; FAR-RED ELONGATED HYPOCOTYL 3(FHY3) activated SEPALLATA2, but inhibited CLAVATA3 to regulate meristem determinacy and maintenance, which shed light on how light affected meristem activity. As 3D (3-dimentional) genome organization technology developed, the importance of the impact of chromatin structure on gene expression was realized and more techniques were developed and improved. Using the newly reported methods, FM determinacy mechanism required further in-depth studies. What was more was that since plant FM determinacy was regulated precisely and accurately, any defects in FM determinacy affected seed development. Exploitation of FM determinacy mechanism had the potential to importantly contribute to agricultural production, which was helpful for ensuring reproductive success, seed development and yield of agricultural crops (maize, tomato, etc.). In this review, we gave a short introduction on floral organ identity in Arabidopsis thaliana and the mechanism of meristem maintenance and differentiation. Then we mainly focused on FM determinacy, including some recent studies by our group. Finally, we advanced the application of fundamental studies in crop yields and further prospects for research.
Key words:Floral meristem/
Determinacy/
WUS/
Environmental signal/
Plant hormone/
Epigenetics
? Equal contributors

注释:
1) ? 同等贡献者

HTML全文

参考文献(136)
[1]MEYEROWITZ E M, PRUITT R E. Arabidopsis thaliana and plant molecular genetics[J]. Science, 1985, 229(4719): 1214-1218 doi: 10.1126/science.229.4719.1214
[2]BOWMAN J L, SMYTH D R, MEYEROWITZ E M. Genes directing flower development in Arabidopsis[J]. The Plant Cell, 1989, 1(1): 37-52 doi: 10.1105/tpc.1.1.37
[3]SMYTH D R, BOWMAN J L, MEYEROWITZ E M. Early flower development in Arabidopsis[J]. The Plant Cell, 1990, 2(8): 755-767 doi: 10.1105/tpc.2.8.755
[4]BOWMAN J L, MEYEROWITZ E M. Genetic control of pattern formation during flower development in Arabidopsis[J]. Symposia of the Society for Experimental Biology, 1991, 45: 89-115 http://jhered.oxfordjournals.org/external-ref?access_num=1688210&link_type=MED
[5]COEN E S, MEYEROWITZ E M. The war of the whorls: Genetic interactions controlling flower development[J]. Nature, 1991, 353(6339): 31-37 doi: 10.1038/353031a0
[6]BOWMAN J L, SMYTH D R, MEYEROWITZ E M. The ABC model of flower development: Then and now[J]. Development, 2012, 139(22): 4095-4098 doi: 10.1242/dev.083972
[7]LLOYD A M, BARNASON A, ROGERS S G, et al. Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens[J]. Science, 1986, 234(4775): 464-466 doi: 10.1126/science.234.4775.464
[8]CHANG C, BOWMAN J L, DEJOHN A W, et al. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(18): 6856-6860 doi: 10.1073/pnas.85.18.6856
[9]AMBROS P F, MATZKE A J M, MATZKE M A. Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization[J]. The EMBO Journal, 1986, 5(9): 2073-2077 doi: 10.1002/embj.1986.5.issue-9
[10]KONCZ C, MARTINI N, MAYERHOFER R, et al. High-frequency T-DNA-mediated gene tagging in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(21): 8467-8471 doi: 10.1073/pnas.86.21.8467
[11]WEIGEL D, MEYEROWITZ E M. The ABCs of floral homeotic genes[J]. Cell, 1994, 78(2): 203-209 doi: 10.1016/0092-8674(94)90291-7
[12]SUNDSTR?M J F, NAKAYAMA N, GLIMELIUS K, et al. Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis[J]. The Plant Journal, 2006, 46(4): 593-600 doi: 10.1111/tpj.2006.46.issue-4
[13]GUSTAFSON-BROWN C, SAVIDGE B, YANOFSKY M F. Regulation of the arabidopsis floral homeotic gene APETALA1[J]. Cell, 1994, 76(1): 131-143 doi: 10.1016/0092-8674(94)90178-3
[14]PELAZ S, DITTA G S, BAUMANN E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature, 2000, 405(6783): 200-203 doi: 10.1038/35012103
[15]LOHMANN J U, WEIGEL D. Building beauty: The genetic control of floral patterning[J]. Development Cell, 2002, 2(2): 135-142 doi: 10.1016/S1534-5807(02)00122-3
[16]DINH T T, GIRKE T, LIU X G, et al. The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element[J]. Development, 2012, 139(11): 1978-1986 doi: 10.1242/dev.077073
[17]CHEN X M. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666): 2022-2025 doi: 10.1126/science.1088060
[18]AUKERMAN M J, SAKAI H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes[J]. The Plant Cell, 2003, 15(11): 2730-2741 doi: 10.1105/tpc.016238
[19]MIZUKAMI Y, MA H. Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA[J]. Plant Molecular Biology, 1995, 28(5): 767-784 doi: 10.1007/BF00042064
[20]SIEBURTH L E, RUNNING M P, MEYEROWITZ E M. Genetic separation of third and fourth whorl functions of AGAMOUS[J]. The Plant Cell, 1995, 7(8): 1249-1258 doi: 10.1105/tpc.7.8.1249
[21]LOHMANN J U, HONG R L, HOBE M, et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis[J]. Cell, 2001, 105(6): 793-803 doi: 10.1016/S0092-8674(01)00384-1
[22]ZHAO L, KIM Y, DINH T T, et al. miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems[J]. The Plant Journal, 2007, 51(5): 840-849 doi: 10.1111/j.1365-313X.2007.03181.x
[23]CARLES C C, FLETCHER J C. Shoot apical meristem maintenance: The art of a dynamic balance[J]. Trends in Plant Science, 2003, 8(8): 394-401 doi: 10.1016/S1360-1385(03)00164-X
[24]YADAV R K, PERALES M, GRUEL J, et al. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex[J]. Genes & Development, 2011, 25(19): 2025-2030 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3197201
[25]RODRIGUEZ K, PERALES M, SNIPES S, et al. DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning[J]. Proceedings of the National Academy Sciences of the United States of America, 2016, 113(41): E6307-E6315 doi: 10.1073/pnas.1607673113
[26]MAYER K F X, SCHOOF H, HAECKER A, et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem[J]. Cell, 1998, 95(6): 805-815 doi: 10.1016/S0092-8674(00)81703-1
[27]FLETCHER J C, BRAND U, RUNNING M P, et al. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems[J]. Science, 1999, 283(5409): 1911-1914 doi: 10.1126/science.283.5409.1911
[28]DAUM G, MEDZIHRADSZKY A, SUZAKI T, et al. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): 14619-14624 doi: 10.1073/pnas.1406446111
[29]LAUX T, MAYER K F, BERGER J, et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis[J]. Development, 1996, 122(1): 87-96 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000005706101
[30]GALLOIS J L, NORA F R, MIZUKAMI Y, et al. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem[J]. Genes & Development, 2004, 18(4): 375-380 doi: 10.1101-gad.291204/
[31]XU Y Y, WANG X M, LI J, et al. Activation of the WUS gene induces ectopic initiation of floral meristems on mature stem surface in Arabidopsis thaliana[J]. Plant Molecular Biology, 2005, 57(6): 773-784 doi: 10.1007/s11103-005-0952-9
[32]BRAND U, FLETCHER J C, HOBE M, et al. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity[J]. Science, 2000, 289(5479): 617-619 doi: 10.1126/science.289.5479.617
[33]LENHARD M, LAUX T. Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1[J]. Development, 2003, 130(14): 3163-3173 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ028286289
[34]PERALES M, RODRIGUEZK K, SNIPES S, et al. Threshold-dependent transcriptional discrimination underlies stem cell homeostasis[J]. Proceedings of National Academy Sciences of the United States of America, 2016, 113(41): E6298-E6306 doi: 10.1073/pnas.1607669113
[35]SNIPES S A, RODRIGUEZ K, DEVRIES A E, et al. Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription[J]. PLoS Genetics, 2018, 14(4): e1007351 doi: 10.1371/journal.pgen.1007351
[36]LENHARD M, BOHNERT A, JüRGENS G, et al. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS[J]. Cell, 2001, 105(6): 805-814 doi: 10.1016/S0092-8674(01)00390-7
[37]SUN B, XU Y F, NG K H, et al. A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem[J]. Genes & Development, 2009, 23(15): 1791-1804 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2720260
[38]SUN B, ITO T, Floral stem cells: From dynamic balance towards termination[J]. Biochemical Society Transactions, 2010, 38(2): 613-616 doi: 10.1042/BST0380613
[39]LIU X G, KIM Y J, MüLLER R, et al. AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins[J]. The Plant Cell, 2011, 23(10): 3654-3670 doi: 10.1105/tpc.111.091538
[40]ITO T, NG K H, LIM T S, et al. The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis[J]. The Plant Cell, 2007, 19(11): 3516-3529 doi: 10.1105/tpc.107.055467
[41]LIU X G, GAO L, DINH T T, et al. DNA topoisomerase Ⅰ affects polycomb group protein-mediated epigenetic regulation and plant development by altering nucleosome distribution in Arabidopsis[J]. The Plant Cell, 2014, 26(7): 2803-2817 doi: 10.1105/tpc.114.124941
[42]GUO L, CAO X W, LIU Y H, et al. A chromatin loop represses WUSCHEL expression in Arabidopsis[J]. The Plant Journal, 2018, 94(6): 1083-1097 doi: 10.1111/tpj.2018.94.issue-6
[43]MIZUKAMI Y, MA H. Determination of Arabidopsis floral meristem identity by AGAMOUS[J]. The Plant Cell, 1997, 9(3): 393-408 doi: 10.1105/tpc.9.3.393
[44]PAYNE T, JOHNSON S D, KOLTUNOW A M. KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium[J]. Development, 2004, 131(15): 3737-3749 doi: 10.1242/dev.01216
[45]SUN B, T. ITO T. Regulation of floral stem cell termination in Arabidopsis[J]. Frontiers in Plant Science, 2015, 6: 17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004617870
[46]CARLES C C, CHOFFNES-INADA D, REVILLE K, et al. ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis[J]. Development, 2005, 132(5): 897-911 doi: 10.1242/dev.01642
[47]CARLES C C, FLETCHER J C. The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants[J]. Genes & Development, 2009, 23(23): 2723-2728 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2788324
[48]DAS P, ITO T, WELLMER F, et al. Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA[J]. Development, 2009, 136(10): 1605-1611 doi: 10.1242/dev.035436
[49]MAIER A T, STEHLING-SUN S, WOLLMANN H, et al. Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression[J]. Development, 2009, 136(10): 1613-1620 doi: 10.1242/dev.033647
[50]LI J J, JIA D X, CHEN X M. HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein[J]. The Plant Cell, 2001, 13(10): 2269-2281 doi: 10.1105/tpc.13.10.2269
[51]CHEN X M, MEYEROWITZ E M. HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway[J]. Molecular Cell, 1999, 3(3): 349-360 doi: 10.1016/S1097-2765(00)80462-1
[52]PARK W, LI J J, SONG R T, et al. CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana[J]. Current Biology, 2002, 12(17): 1484-1495 doi: 10.1016/S0960-9822(02)01017-5
[53]AMBROS V. MicroRNA pathways in flies and worms: Growth, death, fat, stress, and timing[J]. Cell, 2003, 113(6): 673-676 doi: 10.1016/S0092-8674(03)00428-8
[54]CHEN X M, LIU J, CHENG Y L, et al. HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower[J]. Development, 2002, 129(5): 1085-1094 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ027001742
[55]CHENG Y L, KATO N, WANG W M, et al. Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana[J]. Development Cell, 2003, 4(1): 53-66 doi: 10.1016/S1534-5807(02)00399-4
[56]BOWMAN J L. SMYTH D R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains[J]. Development, 1999, 126(11): 2387-2396 http://pcp.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=develop&resid=126/11/2387
[57]YAMAGUCHI N, HUANG J B, XU Y F, et al. Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation[J]. Nature Communications, 2017, 8(1): 1125 doi: 10.1038/s41467-017-01252-6
[58]GóMEZ-MENA C, DE FOLTER S, COSTA M M R, et al. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis[J]. Development, 2005, 132(3): 429-438 doi: 10.1242/dev.01600
[59]Lee J Y, BAUM S F, ALVAREZ J, et al. Activation of CRABS CLAW in the nectaries and carpels of Arabidopsis[J]. The Plant Cell, 2005, 17(1): 25-36 doi: 10.1105/tpc.104.026666
[60]WüRSCHUM T, GRO?-HARDT R, LAUX T. APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem[J]. The Plant Cell, 2006, 18(2): 295-307 doi: 10.1105/tpc.105.038398
[61]LIU X, DINH T T, LI D M, et al. AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy[J]. The Plant Journal, 2014, 80(4): 629-641 doi: 10.1111/tpj.12658
[62]BOWMAN J L, SAKAI H, JAKE T, et al. SUPERMAN, a regulator of floral homeotic genes in Arabidopsis[J]. Development, 1992, 114(3): 599-615 http://www.ncbi.nlm.nih.gov/pubmed/1352237/
[63]SAKAI H, MEDRANO L J, MEYEROWITZ E M. Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries[J]. Nature, 1995, 378(6553): 199-203 doi: 10.1038/378199a0
[64]PRUNET N, YANG W B, DAS P, et al. SUPERMAN prevents class B gene expression and promotes stem cell termination in the fourth whorl of Arabidopsis thaliana flowers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 7166-7171 doi: 10.1073/pnas.1705977114
[65]XU Y F, PRUNET N, GAN E S, et al. SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis[J]. The EMBO Journal, 2018, 37(11): e97499 doi: 10.15252/embj.201797499
[66]PRUNET N, MOREL P, THIERRY A, et al. REBELOTE, SQUINT, and ULTRAPETALA1 function redundantly in the temporal regulation of floral meristem termination in Arabidopsis thaliana[J]. The Plant Cell, 2008, 20(4): 901-919 doi: 10.1105/tpc.107.053306
[67]LI D M, FU X, GUO L, et al. FAR-RED ELONGATED HYPOCOTYL3 activates SEPALLATA2 but inhibits CLAVATA3 to regulate meristem determinacy and maintenance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(33): 9375-9380 doi: 10.1073/pnas.1602960113
[68]HUGOUVIEUX V, SILVA C S, JOURDAIN A, et al. Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis[J]. Nucleic Acids Research, 2018, 46(10): 4966-4977 doi: 10.1093/nar/gky205
[69]YOSHIDA S, MANDEL T, KUHLEMEIER C. Stem cell activation by light guides plant organogenesis[J]. Genes & Developmen, 2011, 25(13): 1439-1450 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3134086
[70]LIN R C, DING L, CASOLA C, et al. Transposase-derived transcription factors regulate light signaling in Arabidopsis[J]. Science, 2007, 318(5854): 1302-1305 doi: 10.1126/science.1146281
[71]OUYANG X H, LI J G, LI B S, et al. Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development[J]. The Plant Cell, 2011, 23(7): 2514-2535 doi: 10.1105/tpc.111.085126
[72]CONN V M, HUGOUVIEUX V, NAYAK A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation[J]. Natrual Plants, 2017, 3: 17053 doi: 10.1038/nplants.2017.53
[73]YU H, ITO T, ZHAO Y X, et al. Floral homeotic genes are targets of gibberellin signaling in flower development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(20): 7827-7832 doi: 10.1073/pnas.0402377101
[74]MURRAY J A H, JONES A, GODIN C, et al. Systems analysis of shoot apical meristem growth and development: Integrating hormonal and mechanical signaling[J]. The Plant Cell, 2012, 24(10): 3907-3919 doi: 10.1105/tpc.112.102194
[75]VERNOUX T, BESNARD F, TRAAS J. Auxin at the shoot apical meristem[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(4): a001487 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2845202
[76]CHENG Z J, WANG L, SUN W, et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3[J]. Plant Physiology, 2013, 161(1): 240-251 doi: 10.1104/pp.112.203166
[77]ZHANG K, WANG R Z, ZI H L, et al. AUXIN RESPONSE FACTOR3 regulates floral meristem determinacy by repressing cytokinin biosynthesis and signaling[J]. The Plant Cell, 2018, 30(2): 324-346 doi: 10.1105/tpc.17.00705
[78]WERNER S, GROSE R. Regulation of wound healing by growth factors and cytokines[J]. Physiological Reviews, 2003, 83(3): 835-870 doi: 10.1152/physrev.2003.83.3.835
[79]GIULINI A, WANG J, JACKSON D. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1[J]. Nature, 2004, 430(7003): 1031-1034 doi: 10.1038/nature02778
[80]HIGUCHI M, PISCHKE M S, M?H?NEN A P, et al. In planta functions of the Arabidopsis cytokinin receptor family[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(23): 8821-8826 doi: 10.1073/pnas.0402887101
[81]NISHIMURA C, OHASHI Y, SATO S, et al. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis[J]. The Plant Cell, 2004, 16(6): 1365-1377 doi: 10.1105/tpc.021477
[82]LEIBFRIED A, TO J P C, BUSCH W, et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators[J]. Nature, 2005, 438(7071): 1172-1175 doi: 10.1038/nature04270
[83]GORDON S P, CHICKARMANE V S, OHNO C, et al. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16529-16534 doi: 10.1073/pnas.0908122106
[84]PASZKOWSKI J, SCHEID O M. Plant genes: The genetics of epigenetics[J]. Current Biology, 1998, 8(6): R206-R208 doi: 10.1016/S0960-9822(98)70126-5
[85]KIEFER J C. Epigenetics in development[J]. Developmental Dynamics, 2007, 236(4): 1144-1156 doi: 10.1002/(ISSN)1097-0177
[86]BERGER S L, KOUZARIDES T, SHIEKHATTAR R, et al. An operational definition of epigenetics[J]. Genes & Development, 2009, 23(7): 781-783 doi: 10.1101-gad.1787609/
[87]HUANG B, JIANG C Z, ZHANG R X. Epigenetics: The language of the cell?[J]. Epigenomics, 2014, 6(1): 73-88 doi: 10.2217/epi.13.72
[88]TOLLERVEY J R, LUNYAK V V. Epigenetics: gudge, jury and executioner of stem cell fate[J]. Epigenetics, 2012, 7(8): 823-840 doi: 10.4161/epi.21141
[89]CAO X W, HE Z S, GUO L, et al. Epigenetic mechanisms are critical for the regulation of WUSCHEL expression in floral meristems[J]. Plant Physiology, 2015, 168(4): 1189-1196 doi: 10.1104/pp.15.00230
[90]NG H H, FENG Q, WANG H B, et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association[J]. Genes & Development, 2002, 16(12): 1518-1527 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_186335
[91]ZHANG L W, EUGENI E E, PARTHUN M R, et al. Identification of novel histone post-translational modifications by peptide mass fingerprinting[J]. Chromosoma, 2003, 112(2): 77-86 doi: 10.1007/s00412-003-0244-6
[92]XU F, ZHANG K L, GRUNSTEIN M. Acetylation in histone H3 globular domain regulates gene expression in yeast[J]. Cell, 2005, 121(3): 375-385 doi: 10.1016/j.cell.2005.03.011
[93]PIEN S, GROSSNIKLAUS U. Polycomb group and trithorax group proteins in Arabidopsis[J]. Biochimical et Biophysica Acta-Gene Structure, 2007, 1769(5/6): 375-382 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3244960
[94]GOODRICH J, PUANGSOMLEE P, MARTIN M, et al. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis[J]. Nature, 1997, 386(6620): 44-51 doi: 10.1038/386044a0
[95]KINOSHITA T, HARADA J J, GOLDBERG R B, et al. Polycomb repression of flowering during early plant development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24): 14156-14161 doi: 10.1073/pnas.241507798
[96]SCHUBERT D, PRIMAVESI L, BISHOPP A, et al. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27[J]. The EMBO Journal, 2006, 25(19): 4638-4649 doi: 10.1038/sj.emboj.7601311
[97]SALEH A, AI-ABDALLAT A, NDAMUKONG I, et al. The Arabidopsis homologs of trithorax (ATX1) and enhancer of zeste (CLF) establish 'bivalent chromatin marks' at the silent AGAMOUS locus[J]. Nucleic Acids Research, 2016, 44(7): 3475-3476 doi: 10.1093/nar/gkv1489
[98]CALONJE M, SANCHEZ R, CHEN L J, et al. EMBRYONIC FLOWER1 participates in polycomb group-mediated AG gene silencing in Arabidopsis[J]. The Plant Cell, 2008, 20(2): 277-291 doi: 10.1105/tpc.106.049957
[99]ALVAREZ-VENEGAS R, PIEN S, SADDER M, et al. ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes[J]. Current Biology, 2003, 13(8): 627-637 doi: 10.1016/S0960-9822(03)00243-4
[100]ITO T, SUN B. Epigenetic regulation of developmental timing in floral stem cells[J]. Epigenetics, 2009, 4(8): 564-567 doi: 10.4161/epi.4.8.10351
[101]SHEN W H, XU L. Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana[J]. Molecular Plant, 2009, 2(4): 600-609 doi: 10.1093/mp/ssp022
[102]SHAFA M, KRAWETZ R, RANCOURT D E. Returning to the stem state: Epigenetics of recapitulating pre-differentiation chromatin structure[J]. BioeEssays, 2010, 32(9): 791-799 doi: 10.1002/bies.201000033
[103]KWON C S, CHEN C B, WAGNER D. WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis[J]. Genes Development, 2005, 19(8): 992-1003 doi: 10.1101/gad.1276305
[104]WAGNER D, MEYEROWITZ E M. SPLAYED, a novel SWI/SNF ATPase homolog, controls reproductive development in Arabidopsis[J]. Current Biology, 2002, 12(2): 85-94 doi: 10.1016/S0960-9822(01)00651-0
[105]WU M F, SANG Y, BEZHANI S, et al. SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): 3576-3581 doi: 10.1073/pnas.1113409109
[106]KAYA H, SHIBAHARA K, TAOKA K, et al. FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems[J]. Cell, 2001, 104(1): 131-142 doi: 10.1016/S0092-8674(01)00197-0
[107]KIEBER J J, TISSIER A F, SIGNER E R. Cloning and characterization of an Arabidopsis thaliana topoisomerase Ⅰ gene[J]. Plant Physiology, 1992, 99(4): 1493-1501 doi: 10.1104/pp.99.4.1493
[108]GRAF P, DOLZBLASZ A, WüRSCHUM T, et al. MGOUN1 encodes an Arabidopsis type IB DNA topoisomerase required in stem cell regulation and to maintain developmentally regulated gene silencing[J]. The Plant Cell, 2010, 22(3): 716-728 doi: 10.1105/tpc.109.068296
[109]ZHANG Y C, CHEN Y Q. Long noncoding RNAs: New regulators in plant development[J]. Biochemical and Biophysical Research Communications, 2013, 436(2): 111-114 doi: 10.1016/j.bbrc.2013.05.086
[110]JOFUKU K D, DEN BOER B G, VAN MONTAGU M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. The Plant Cell, 1994, 6(9): 1211-1225 doi: 10.1105/tpc.6.9.1211
[111]YUMUL R E, KIM Y J, LIU X G, et al. POWERDRESS and diversified expression of the MIR172 gene family bolster the floral stem cell network[J]. PLoS Genetics, 2013, 9(1): e1003218 doi: 10.1371/journal.pgen.1003218
[112]VAUCHEREt H. Plant ARGONAUTES[J]. Trends in Plant Science, 2008, 13(7): 350-358 doi: 10.1016/j.tplants.2008.04.007
[113]ZHENG X W, ZHU J H, KAPOOR A, et al. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing[J]. The EMBO Journal, 2007, 26(6): 1691-1701 doi: 10.1038/sj.emboj.7601603
[114]MONTGOMERY T A, HOWELL M D, CUPERUS J T, et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation[J]. Cell, 2008, 133(1): 128-141 doi: 10.1016/j.cell.2008.02.033
[115]HAVECKER E R, WALLBRIDGE L M, HARDCASTLE T J, et al. The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci[J]. The Plant Cell, 2010, 22(2): 321-334 doi: 10.1105/tpc.109.072199
[116]JI L J, LIU X G, WANG W M, et al. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis[J]. PLoS Genetics, 2011, 7(3): e1001358 doi: 10.1371/journal.pgen.1001358
[117]LYNN K, FERNANDEZ A, AIDA M, et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene[J]. Development, 1999, 126(3): 469-481 http://europepmc.org/abstract/MED/9876176
[118]EHRLICH M, GAMA-SOSA M A, HUANG L H, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells[J]. Nucleic Acids Research, 1982, 10(8): 2709-27021 doi: 10.1093/nar/10.8.2709
[119]CAO X F, AUFSATZ W, ZILBERMAN D, et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation[J]. Current Biology, 2003, 13(24): 2212-2217 doi: 10.1016/j.cub.2003.11.052
[120]COKUS S J, FENG S H, ZHANG X Y, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning[J]. Nature, 2008, 452(7184): 215-219 doi: 10.1038/nature06745
[121]LUFER K, M?DER A W, RICHMOND R K, et al. Crystal structure of the nucleosome core particle at 2.8 ? resolution[J]. Nature, 1997, 389(6648): 251-260 doi: 10.1038/38444
[122]SCHALCH T, DUDA S, SARGENT D F, et al. X-ray structure of a tetranucleosome and its implications for the chromatin fibre[J]. Nature, 2005, 436(7047): 138-141 doi: 10.1038/nature03686
[123]CHEN P, ZHU P, LI G H. New insights into the helical structure of 30-nm chromatin fibers[J]. Protein & Cell, 2014, 5(7): 489-491 http://d.old.wanfangdata.com.cn/Periodical/dbzyxb201407001
[124]DEKKER J, RIPPE K, DEKKER M, et al. Capturing chromosome conformation[J]. Science, 2002, 295(5558): 1306-1311 doi: 10.1126/science.1067799
[125]HAGèGEH, KLOUS P, BRAEM C, et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR)[J]. Nature Protocols, 2007, 2(7): 1722-1733 doi: 10.1038/nprot.2007.243
[126]DOSTIE J, RICHMOND T A, ARNAOUT R A, et al. Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements[J]. Genome Research, 2006, 16(10): 1299-1309 doi: 10.1101/gr.5571506
[127]GROB S, SCHMID M W, LUEDTKE N W, et al. Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture[J]. Genome Biology, 2013, 14(11): R129 doi: 10.1186/gb-2013-14-11-r129
[128]BELTON J M, MCCORD R P, GIBCUS J H, et al. Hi-C: A comprehensive technique to capture the conformation of genomes[J]. Methods, 2012, 58(3): 268-276 doi: 10.1016/j.ymeth.2012.05.001
[129]ZHANG J Y, POH H M, PEH S Q, et al. ChIA-PET analysis of transcriptional chromatin interactions[J]. Methods, 2012, 58(3): 289-299 doi: 10.1016/j.ymeth.2012.08.009
[130]JE B I, GRUEL J, LEE Y K, et al. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits[J]. Nature Genetics, 2016, 48(7): 785-791 doi: 10.1038/ng.3567
[131]SUZAKI T, YOSHIDA A, HIRANO H Y. Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice[J]. The Plant Cell, 2008, 20(8): 2049-2058 doi: 10.1105/tpc.107.057257
[132]KLEE H J. Genetic control of floral architecture: Insights into improving crop yield[J]. Cell, 2017, 169(6): 983-984 doi: 10.1016/j.cell.2017.05.026
[133]PAUTLER M, TANAKA W, HIRANO H, et al. Grass meristems Ⅰ: Shoot apical meristem maintenance, axillary meristem determinacy and the floral transition[J]. Plant & Cell Physiology, 2013, 54(3): 302-312 http://cn.bing.com/academic/profile?id=1f9d5a00494c83d643d5c7d282e54e00&encoded=0&v=paper_preview&mkt=zh-cn
[134]XU C, LIBERATORE K L, MACALISTER C A, et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato[J]. Nature Genetics, 2015, 47(7): 784-792 doi: 10.1038/ng.3309
[135]VAN DER KNAAP E, CHAKRABARTI M, CHU Y H, et al. What lies beyond the eye: The molecular mechanisms regulating tomato fruit weight and shape[J]. Frontiers in Plant Science, 2014, 5: 227 http://cn.bing.com/academic/profile?id=5234b6a675284d322b1e1ea8aeca7986&encoded=0&v=paper_preview&mkt=zh-cn
[136]RODRIGUEZ-LEAL D, LEMMON Z H, MAN J, et al. Engineering quantitative trait variation for crop improvement by genome editing[J]. Cell, 2017, 171(2): 470-480 doi: 10.1016/j.cell.2017.08.030

相关话题/信号 遗传 植物 过程 组织