删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

4种水生植物深度净化村镇生活污水厂尾水效果研究

本站小编 Free考研考试/2022-01-01

刘海琴1, ?,,
邱园园1, 2, ?,,
闻学政1,
王岩1,
张迎颖1,
宋伟1,
张志勇1,,
1.江苏省农业科学院农业资源与环境研究所/农业部长江下游平原农业环境重点实验室 南京 210014
2.南京理工大学环境与生物工程学院 南京 210094
基金项目: 江苏省农业科技自主创新基金项目CX(15)1004-06

详细信息
作者简介:刘海琴, 主要从事污染水体治理研究, E-mail:zh84391231@163.com
邱园园, 主要从事污染水体治理研究, E-mail:1252735038@qq.com
通讯作者:张志勇, 主要从事污染水体治理研究。E-mail:jaaszyzhang@126.com
?同等贡献者
中图分类号:X173

计量

文章访问数:906
HTML全文浏览量:4
PDF下载量:965
被引次数:0
出版历程

收稿日期:2017-06-09
录用日期:2017-09-30
刊出日期:2018-04-01

The deep purification of four aquatic macrophytes for tailrace of rural sewage treatment plants

LIU Haiqin1, ?,,
QIU Yuanyuan1, 2, ?,,
WEN Xuezheng1,
WANG Yan1,
ZHANG Yingying1,
SONG Wei1,
ZHANG Zhiyong1,,
1. Institute of Agricultural Resources and Environmental Sciences, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Agro-environment in Downstream Yangtze Plain, Ministry of Agriculture, Nanjing 210014, China
2. School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Funds: the Agriculture Science and Technology Innovation Fund of Jiangsu ProvinceCX(15)1004-06

More Information
Corresponding author:ZHANG Zhiyong, E-mail: jaaszyzhang@126.com
? Equal contributors


摘要
HTML全文
(7)(3)
参考文献(29)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:通过设置动态模拟试验,持续进水、出水条件下分析比较了漂浮植物凤眼莲和水浮莲、沉水植物轮叶黑藻和挺水植物黄菖蒲对村镇生活污水厂(一级A标准)尾水深度净化效果,筛选出具有去污效果优势的水生植物,为优化水生植物生态修复工程技术在尾水深度净化中的应用提供依据。结果表明:经水生植物深度净化后,尾水水质得到明显改善,漂浮植物凤眼莲和水浮莲对尾水氮、磷的净化效果优于挺水植物黄菖蒲和沉水植物轮叶黑藻。试验周期内,污水厂尾水总氮、总磷和高锰酸盐指数(CODMn)平均浓度为12.22 mg·L-1、0.38 mg·L-1和3.88 mg·L-1,凤眼莲、水浮莲、轮叶黑藻、黄菖蒲和对照各系统的总氮平均去除率分别为46.25%、45.74%、43.41%、38.39%和29.22%,总磷去除率分别为36.84%、34.21%、31.58%、28.95%和26.32%,CODMn去除率分别为42.27%、30.93%、32.47%、32.47%和37.89%。凤眼莲、水浮莲、黄菖蒲和轮叶黑藻生物量净增长率分别为550.5%、418.8%、210.6%和80.3%,凤眼莲生物量净增率最大。各处理系统内凤眼莲、水浮莲、黄菖蒲和轮叶黑藻对尾水氮富集量分别为7.36 g、2.33 g、5.12 g和4.46 g,对磷的富集量分别为0.60 g、0.19 g、0.33 g和0.78 g,凤眼莲富集氮能力优于另外3种水生植物,轮叶黑藻磷富集量高于另外3种水生植物。凤眼莲、水浮莲、黄菖蒲和轮叶黑藻植株吸收作用对尾水总氮去除的表观贡献率分别为15.29%、4.90%、11.17%和11.34%,对尾水总磷去除的表观贡献率分别为50.34%、17.17%、35.24%和76.34%。因此,可利用漂浮植物凤眼莲和沉水植物轮叶黑藻立体复合种养的方式深度净化生活污水厂尾水。
关键词:村镇生活污水/
污水处理厂尾水/
水生植物/
深度净化/
生态修复/
/

Abstract:To provide theoretical basis for optimized application of restoration engineering of aquatic macrophytes in deep purification of tail water of rural sewage treatment plant, a dynamic simulation experiment with running water was conducted, in which the purifying effects of Eichhornia crassipes, Pistia stratiotes, Hydrilla verticillata, and Iris pseudacorus on effluent from sewage treatment works (STW) were compared. Based on the results, plant systems significantly improved water quality of effluent from STW. The purifying effects of E. crassipes and P. stratiotes on nitrogen (N) and phosphorus (P) in STW effluent were better than those of I. pseudacorus and H. verticillata. The average concentration of total nitrogen (TN) in STW effluent was 12.22 mg·L-1. The average removal efficiency of TN by E. crassipes, P. stratiotes, I. pseudacorus, H. verticillata and control group were 46.25%, 45.74%, 43.41%, 38.39% and 29.22%, respectively. The average concentration of total phosphorus (TP) in STW effluent was 0.38 mg·L-1. The average removal efficiency of TP by the five experimental treatments were 36.84%, 34.21%, 31.58%, 28.95% and 26.32%, respectively. The average concentration of permanganate index (CODMn) in STW effluent was 3.88 mg·L-1. The average removal rates of CODMn in the five experimental treatments were 42.27%, 30.93%, 32.47%, 32.47% and 37.89%, respectively. The net growth rates of E. crassipes, P. stratiotes, H. verticillata, and I. pseudacorus biomass were 550.5%, 418.8%, 210.6% and 80.3%, respectively. The amount of TN absorbed by E. crassipes, P. stratiotes, H. verticillata, I. pseudacorus were 7.36 g, 2.33 g, 5.12 g and 4.46 g, respectively. The amounts of absorption of TP by the four aquatic plants were 0.60 g, 0.19 g, 0.33 g and 0.78 g, respectively. The ability of E. crassipes to assimilate nitrogen was stronger than the other three aquatic plants. Meanwhile, the ability of H. verticillata to assimilate phosphorus was stronger than the other three aquatic macrophytes. The apparent contribution rates of absorption by E. crassipes, P. stratiotes, H. verticillata, I. pseudacorus to nitrogen removal were 15.29%, 4.90% 11.17% and 11.34%, respectively. Meanwhile, the apparent contribution rates of absorption by the four plants to phosphorus removal were 50.34%, 17.17%, 35.24% and 76.34%, respectively. It was feasible and effective to cultivate the floating plant of E. crassipes and submerged plant of H. verticillata in different water layers and combinations in space for deep purification of STW effluent.
Key words:Rural sewage/
Sewage treatment plant tailrace/
Aquatic plant/
Deep purification/
Ecological restoration/
Nitrogen/
Phosphorus
? Equal contributors

注释:
1) ?同等贡献者

HTML全文


图1水生植物深度净化村镇污水处理厂尾水动态模拟试验装置图
Figure1.Sketch of the dynamic simulation device of the deep purification of rural sewage treatment plant tailrace with aquatic plants


下载: 全尺寸图片幻灯片


图2试验期间村镇污水处理厂尾水和不同处理组出水pH和溶解氧(DO)变化
同一日期不同字母表示不同处理之间在0.05水平差异显著。
Figure2.Changes of pH and dissolved oxygen (DO) in the tailrace of rural sewage treatment plant and effluents of different treatments during the experiment
Bars with different lowercase letters in the same date are significantly different at 0.05 level.


下载: 全尺寸图片幻灯片


图3试验期间村镇污水处理厂尾水和不同处理组出水氧化还原电位(OPR)和电导率(EC)变化
同一日期不同字母表示不同处理之间在0.05水平差异显著。
Figure3.Changes of redox potential (ORP) and electrical conductivity (EC) in the tailrace of rural sewage treatment plant and effluents of different treatments during the experiment
Bars with different lowercase letters in the same date are significantly different at 0.05 level.


下载: 全尺寸图片幻灯片


图4试验期间村镇污水处理厂尾水和不同处理组出水高锰酸盐指数(CODMn)变化
同一日期不同字母表示不同处理之间在0.05水平差异显著。
Figure4.Changes of permanganate index (CODMn) in the tailrace of rural sewage treatment plant and effluents of different treatments during the experiment
Bars with different lowercase letters in the same date are significantly different at 0.05 level.


下载: 全尺寸图片幻灯片


图5试验期间村镇污水处理厂尾水和不同处理组出水总氮(TN)浓度变化
同一日期不同字母表示不同处理之间在0.05水平差异显著。
Figure5.Changes of total nitrogen (TN) concentration in the tailrace of rural sewage treatment plant and effluents of different treatments during the experiment
Bars with different lowercase letters in the same date are significantly different at 0.05 level.


下载: 全尺寸图片幻灯片


图6试验期间村镇污水处理厂尾水和不同处理组出水铵态氮(NH4+-N)浓度变化
同一日期不同字母表示不同处理之间在0.05水平差异显著。
Figure6.Changes of ammonia nitrogen (NH4+-N) concentration in the tailrace of rural sewage treatment plant and effluents of different treatments during the experiment
Bars with different lowercase letters in the same date are significantly different at 0.05 level.


下载: 全尺寸图片幻灯片


图7试验期间村镇污水处理厂尾水和不同处理组出水总磷(TP)浓度变化
同一日期不同字母表示不同处理之间在0.05水平差异显著。
Figure7.Changes of total phosphorus (TP) concentration in the tailrace of rural sewage treatment plant and effluents of different treatments during the experiment
Bars with different lowercase letters in the same date are significantly different at 0.05 level.


下载: 全尺寸图片幻灯片

表1试验用村镇污水处理厂尾水的主要理化指标
Table1.Main physicochemical indexes of the tailrace of rural sewage treatment plant used in the experiment
温度
Temperature
(℃)
pH 溶解氧
Dissolved oxygen
(mg·L-1)
氧化还原电位
Oxidation-reduction potential (mV)
电导率
Electrical conductivity
(μS·cm-1)
高锰酸盐指数
Permanganate index
(mg·L-1)
总氮
Total nitrogen
(mg·L-1)
铵态氮
Ammonia nitrogen
(mg·L-1)
总磷
Total phosphorus
(mg·L-1)
范围Range 26.7~12.8 7.3~8.9 5.9~12.5 88.3~207.8 277.7~478.0 2.0~4.6 7.52~21.81 0.88~4.43 0.14~0.80
均值Mean 20.0 8.1 10.2 150.8 386.8 3.88 12.22 1.35 0.38


下载: 导出CSV
表2试验周期内凤眼莲、水浮莲、黄菖蒲和轮叶黑藻生物量和氮、磷吸收能力
Table2.Absorptive capacities of nitrogen (N) and phosphorus (P) and total biomass of Eichhornia crassipes, Pistia stratiotes, Hydrilla verticillata, and Iris pseudacorus during the experiment
水生植物
Aquatic plant
生物量
Biomass
(kg·m-2)
干物质含量
Dry matter content
(%)
干物质氮含量
N dry matter content (g·kg-1)
干物质磷含量
P dry matter content (g·kg-1)
氮吸收能力
N absorption capacity (g·kg-1)
磷吸收能力
P absorption capacity (g·kg-1)
凤眼莲
Eichhornia crassipes
16.43±0.38a 6.90±0.77b 19.67±0.21b 1.50±0.03b 1.36±0.02bc 0.10±0.00b
水浮莲
Pistia stratiotes
13.10±0.64b 3.77±0.40c 17.23±0.11b 1.45±0.01b 0.65±0.01c 0.05±0.00b
黄菖蒲
Iris pseudacorus
7.84±0.45c 12.24±0.70a 17.52±0.06b 1.20±0.04b 2.14±0.00b 0.15±0.04b
轮叶黑藻
Hydrilla verticillata
3.64±0.14d 11.09±3.46a 36.20±0.38a 5.51±0.11a 4.02±0.13a 0.61±0.04a
??同列不同小写字母表示显著性差异(P < 0.05)。Different lowercase letters in the same column mean significant differences at P < 0.05 level.


下载: 导出CSV
表3试验期间各处理系统植物吸收作用对尾水氮、磷削减表观贡献率
Table3.Apparent contributions of plant absorption to nitrogen (N) and phosphorus (P) removals in the effluents from rural sewage treatment plants after different aquatic plants treatments during the experiment
水生植物
Aquatic plant
氮Nitrogen 磷Phosphorus
总削减量
Total reduction
(g)
植株吸收量
Plant uptake
(g)
表观贡献率
Apparent contribution rate (%)
总削减量
Total reduction
(g)
植株吸收量
Plant uptake
(g)
表观贡献率
Apparent contribution rate (%)
凤眼莲Eichhornia crassipes 48.12±14.40a 7.36±0.00a 15.29±0.00a 1.19±0.11a 0.60±0.00a 50.34±0.00ab
水浮莲Pistia stratiotes 47.59±14.13a 2.33±0.00c 4.90±0.00c 1.11±0.05a 0.19±0.00c 17.17±0.00c
黄菖蒲Iris pseudacorus 39.94±13.81ab 5.12±0.01b 11.17±0.00b 0.94±0.04b 0.33±0.00b 35.24±0.00b
轮叶黑藻Hydrilla verticillata 45.17±13.79a 4.46±0.00b 11.34±0.00b 1.02±0.03a 0.78±0.00a 76.34±0.00a
空白对照No-growing 30.40±10.97b 0.85±0.06b
??同列不同小写字母表示显著性差异(P < 0.05)。Different lowercase letters in the same column mean significant differences at P < 0.05 level.


下载: 导出CSV

参考文献(29)
[1]杨林章, 薛利红, 施卫明, 等.农村面源污染治理的"4R"理论与工程实践——案例分析[J].农业环境科学学报, 2013, 32(6):2309-2315 http://www.doc88.com/p-8071939315235.html
YANG L Z, XUE L H, SHI W M, et al. Re-duce-retain-reuse-restore technology for the controlling the agricultural non-point source pollution in countryside in China:A case study[J]. Journal of Agro-Environment Science, 2013, 32(6):2309-2315 http://www.doc88.com/p-8071939315235.html
[2]潘碌亭, 吴坤, 杨学军, 等.我国农村污水现状及处理方法探析[J].现代农业科技, 2015, (5):223-225 https://www.cnki.com.cn/qikan-ANHE201505140.html
PAN L T, WU K, YANG X J, et al. Analysis of present situation and treatment methods of sewage in rural areas in China[J]. Modern Agricultural Science and Technology, 2015, (5):223-225 https://www.cnki.com.cn/qikan-ANHE201505140.html
[3]管策, 郁达伟, 郑祥, 等.我国人工湿地在城市污水处理厂尾水脱氮除磷中的研究与应用进展[J].农业环境科学学报, 2012, 31(12):2309-2320 http://www.oalib.com/paper/4675032
GUAN C, YU D W, ZHENG X, et al. Removing nitrogen and phosphorus of effluent from wastewater treatment plants by constructed wetlands in China:An overview[J]. Journal of Agro-Environment Science, 2012, 31(12):2309-2320 http://www.oalib.com/paper/4675032
[4]冯玥, 王密灵, 柳欢欢, 等.活性炭表面性质对染料废水生化出水深度净化效果的影响[J].工业水处理, 2013, 33(6):75-79 doi: 10.11894/1005-829x.2013.33(6).75
FENG Y, WANG M L, LIU H H, et al. Effects of the surface properties of activated carbon on the advanced purification of the effluent of biochemical treatment from dye wastewater[J]. Industrial Water Treatment, 2013, 33(6):75-79 doi: 10.11894/1005-829x.2013.33(6).75
[5]张旋, 王启山.高级氧化技术在废水处理中的应用[J].水处理技术, 2009, 35(3):18-22
ZHANG X, WANG Q S. Application of advanced oxidation technologies in wastewater treatment[J]. Technology of Water Treatment, 2009, 35(3):18-22
[6]CHOI Y, JOHNSON K, HAYES D F, et al. Dissolved or-ganic matter and nitrogen removal by advanced aerated sub-merged bio-film reactor[J]. Desalination, 2010, 250(1):368-372 doi: 10.1016/j.desal.2009.09.058
[7]TANG G M, JIA Z H, YU X M, et al. New advanced treat-ment of biologically treated effluents from traditional Chinese medicine wastewater using the coupling process of O3/H2O2-BAF[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 56:167-173 doi: 10.1016/j.jtice.2015.05.011
[8]刘明国, 吴昌永, 周岳溪, 等.臭氧-曝气生物滤池组合工艺处理石化二级出水的试验研究[J].环境科学, 2014, 35(2):651-656 https://www.wenkuxiazai.com/doc/9b8ace6f376baf1ffc4fad98-2.html
LIU M G, WU C Y, ZHOU Y X, et al. Treatment of petro-chemical secondary effluent by ozone-biological aerated fil-ter[J]. Environmental Science, 2014, 35(2):651-656 https://www.wenkuxiazai.com/doc/9b8ace6f376baf1ffc4fad98-2.html
[9]常会庆, 王浩.城市尾水深度处理工艺及效果研究[J].生态环境学报, 2015, 24(3):457-462 http://ir.rcees.ac.cn/handle/311016/33215
CHANG H Q, WANG H. Advanced treatment technology for city tail water and its effects[J]. Ecology and Environmental Sciences, 2015, 24(3):457-462 http://ir.rcees.ac.cn/handle/311016/33215
[10]李爽, 耿峰, 刘侨博, 等.人工湿地深度处理造纸污水尾水的工程应用[J].哈尔滨商业大学学报:自然科学版, 2014, 30(6):668-671 doi: 10.3969/j.issn.1672-0946.2014.06.009
LI S, GENG F, LIU Q B, et al. Engineering applications on advanced treatment of papermaking wastewater tailwater by constructed wetland[J]. Journal of Harbin University of Commerce:Natural Sciences Edition, 2014, 30(6):668-671 doi: 10.3969/j.issn.1672-0946.2014.06.009
[11]AKINBILE C O, OGUNRINDE T A, CHE BT MAN H, et al. Phytoremediation of domestic wastewaters in free water sur-face constructed wetlands using Azolla pinnata[J]. Interna-tional Journal of Phytoremediation, 2016, 18(1):54-61 doi: 10.1080/15226514.2015.1058330
[12]刘士哲, 林东教, 唐淑军, 等.利用漂浮植物修复系统栽培风车草、彩叶草和茉莉净化富营养化污水的研究[J].应用生态学报, 2004, 15(7):1261-1265 https://www.wenkuxiazai.com/doc/19d7f36e1eb91a37f1115c9d-2.html
LIU S Z, LIN D J, TANG S J, et al. Purification of eutrophic wastewater by Cyperus alternifolius, Coleus blumei and Jas-minum sambac planted in a floating phytoremediation sys-tem[J]. Chinese Journal of Applied Ecology, 2004, 15(7):1261-1265 https://www.wenkuxiazai.com/doc/19d7f36e1eb91a37f1115c9d-2.html
[13]唐艺璇, 郑洁敏, 楼莉萍, 等. 3种挺水植物吸收水体NH4+, NO3-、H2PO4-的动力学特征比较[J].中国生态农业学报, 2011, 19(3):614-618 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110322&flag=1
TANG Y X, ZHENG J M, LOU L P, et al. Comparisons of NH4+, NO3- and H2PO4- uptake kinetics in three different mac-rophytes in waterlogged condition[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3):614-618 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110322&flag=1
[14]吴娟, 吴振斌, 成水平.黑藻对水体和沉积物理化性质的改善和营养元素的去除作用[J].水生生物学报, 2009, 33(4):589-595 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_ssswxb200904004
WU J, WU Z B, CHENG S P. Effect of Hydrilla verticillata on characteristics of water and sediment and removals of nutrition[J]. Acta Hydrobiologica Sinica, 2009, 33(4):589-595 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_ssswxb200904004
[15]黄露露, 马晓建.凤眼莲净化富营养化水体效果影响因素的综述[J].科技与创新, 2015, (9):4-5 http://d.wanfangdata.com.cn/Periodical_wjsjxx201509003.aspx
HUANG L L, MA X J. Water hyacinth eutrophic water puri-fication effect of influential factors review[J]. Science and Technology & Innovation, 2015, (9):4-5 http://d.wanfangdata.com.cn/Periodical_wjsjxx201509003.aspx
[16]DEBUSK T A, PETERSON J E, REDDY K R. Use of aquatic and terrestrial plants for removing phosphorus from dairy wastewaters[J]. Ecological Engineering, 1995, 5(2/3):371-390 http://www.sciencedirect.com/science/article/pii/092585749500033X
[17]ROGERS K H, BREEN P F, CHICK A J. Nitrogen removal in experimental wetland treatment systems:Evidence for the role of aquatic plants[J]. Research Journal of the Water Pol-lution Control Federation, 1991, 63(7):934-941 http://agris.fao.org/openagris/search.do?recordID=US9145772
[18]张志勇, 常志州, 刘海琴, 等.不同水力负荷下凤眼莲去除氮、磷效果比较[J].生态与农村环境学报, 2010, 26(2):148-154 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncsthj201002010
ZHANG Z Y, CHANG Z Z, LIU H Q, et al. Effect of Eich-hornia crassipes on removing nitrogen and phosphorus from eutrophicated water as affected by hydraulic loading[J]. Journal of Ecology and Rural Environment, 2010, 26(2):148-154 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncsthj201002010
[19]鲍士旦. 土壤农业化学分析方法[M]. 3版. 北京: 中国农业出版社, 2000: 147-149, 168-169
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000: 147-149, 168-169
[20]王智, 张志勇, 韩亚平, 等.滇池湖湾大水域种养水葫芦对水质的影响分析[J].环境工程学报, 2012, 6(11):3827-3832 http://www.cqvip.com/QK/90325C/201211/43852414.html
WANG Z, ZHANG Z Y, HAN Y P, et al. Effects of large-area planting water hyacinth (Eichhornia crassipes) on water quality in the bay of Lake Dianchi[J]. Chinese Journal of Environmental Engineering, 2012, 6(11):3827-3832 http://www.cqvip.com/QK/90325C/201211/43852414.html
[21]谢永宏, 于丹, 耿显华. CO2浓度升高对沉水植物菹草叶表型及生理生化特征的影响[J].植物生态学报, 2003, 27(2):218-222 doi: 10.17521/cjpe.2003.0033
XIE Y H, YU D, GENG X H. Effects of elevated CO2 con-centration on phenotypic, physiological and biochemical characteristics of submersed plant Potamogeton crispus leaf[J]. Acta Phytoecologica Sinica, 2003, 27(2):218-222 doi: 10.17521/cjpe.2003.0033
[22]高大文, 王淑莹, 彭永臻, 等.温度变化对DO和ORP作为过程控制参数的影响[J].环境科学, 2003, 24(1):63-69 http://d.wanfangdata.com.cn/Periodical_hjkx200301010.aspx
GAO D W, WANG S Y, PENG Y Z, et al. Temperature ef-fects on DO and ORP in the wastewater treatment[J]. Envi-ronmental Science, 2003, 24(1):63-69 http://d.wanfangdata.com.cn/Periodical_hjkx200301010.aspx
[23]付融冰, 朱宜平, 杨海真, 等.连续流湿地中DO、ORP状况及与植物根系分布的关系[J].环境科学学报, 2008, 28(10):2036-2041 doi: 10.3321/j.issn:0253-2468.2008.10.016
FU R B, ZHU Y P, YANG H Z, et al. DO and ORP conditions and their correlation with plant root distribution in a continuous-flow constructed wetland treating eutrophic water[J]. Acta Scientiae Circumstantiae, 2008, 28(10):2036-2041 doi: 10.3321/j.issn:0253-2468.2008.10.016
[24]徐华成, 徐晓军, 王凯, 等.饮用水氧化还原电位的影响因素分析[J].苏州科技学院学报:工程技术版, 2007, 20(2):63-66 https://www.wenkuxiazai.com/doc/9145ef04eff9aef8941e0671.html
XU H C, XU X J, WANG K, et al. An analysis of factors af-fecting the oxidation reduction potential in drinking water[J]. Journal of University of Science and Technology of Suzhou:Engineering and Technology, 2007, 20(2):63-66 https://www.wenkuxiazai.com/doc/9145ef04eff9aef8941e0671.html
[25]尹军, 刘志生, 赵可, 等.饮用水中无机成分与氧化还原电位的关系[J].环境与健康杂志, 2006, 23(2):148-151 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_hjyjkzz200602017
YIN J, LIU Z S, ZHAO K, et al. Relationship between inor-ganic components and oxidation reduction potential in drinking water[J]. Journal of Environment and Health, 2006, 23(2):148-151 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_hjyjkzz200602017
[26]JONES D L, DARRAH P R. Role of root derived organic ac-ids in the mobilization of nutrients from the rhizosphere[J]. Plant and Soil, 1994, 166(2):247-257 doi: 10.1007/BF00008338
[27]王智, 张志勇, 张君倩, 等.两种水生植物对滇池草海富营养化水体水质的影响[J].中国环境科学, 2013, 33(2):328-335 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_zghjkx201302020
WANG Z, ZHANG Z Y, ZHANG J Q, et al. Water quality effects of two aquatic macrophytes on eutrophic water from Lake Dianchi Caohai[J]. China Environmental Science, 2013, 33(2):328-335 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_zghjkx201302020
[28]高岩, 马涛, 张振华, 等.不同生长阶段凤眼莲净化不同程度富营养化水体的效果研究[J].农业环境科学学报, 2014, 33(12):2427-2435 doi: 10.11654/jaes.2014.12.021
GAO Y, MA T, ZHANG Z H, et al. Nutrient removals from eutrophic water by Eichhornia crassipes at different growth stages[J]. Journal of Agro-Environment Science, 2014, 33(12):2427-2435 doi: 10.11654/jaes.2014.12.021
[29]SOOKNAH R. A review of the mechanisms of pollutant re-moval in water hyacinth systems[J]. Science and Technology Research Journal, 2000, 6:49-57 https://www.ajol.info/index.php/umrj/article/download/130841/120412

相关话题/植物 环境科学 农业 图片 生态