王凤花,
孙瑞波,
刘彬彬,
中国科学院遗传与发育生物学研究所农业资源研究中心 石家庄 050022
基金项目: 国家重点研发计划项目2016YFD0800100
国家自然科学青年基金项目41601511
河北省优秀青年基金项目D2017503022
详细信息
作者简介:王新珍, 主要研究领域为环境微生物学。E-mail:xzwang@sjziam.ac.cn
通讯作者:刘彬彬, 主要研究领域为微生物分子生态学和生物信息学。E-mail:binbinliu@sjziam.ac.cn
中图分类号:Q93-31;Q938.1计量
文章访问数:945
HTML全文浏览量:4
PDF下载量:1270
被引次数:0
出版历程
收稿日期:2018-07-15
录用日期:2018-08-05
刊出日期:2018-10-01
Application of high-throughput DNA sequencing in microbial ecology
WANG Xinzhen,WANG Fenghua,
SUN Ruibo,
LIU Binbin,
Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
Funds: the National Key Research and Development Project of China2016YFD0800100
the National Natural Science Foundation of China41601511
Foundation for Distinguished Young Scholars of Hebei ProvinceD2017503022
More Information
Corresponding author:LIU Binbin, E-mail:binbinliu@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:微生物在众多的自然和人工生态系统中发挥着核心的作用,但能够被培养分离的微生物在大部分生态系统中只占极少一部分,极大地限制了人们对微生物组成、功能及其潜在应用的认识。分子生物学方法,尤其是高通量测序技术应用到微生物生态学研究中,为认识微生物多样性、群落结构组成及其生态功能提供了有利手段。高通量测序作为一种新兴的免培养分子生物学技术,具备检测快速、准确、信息全面丰富等特点。随着高通量测序技术的不断升级换代,测序通量、读长和准确度的不断提升以及成本的大幅下降,该技术在过去十几年间被迅速应用于土壤、水体和肠道等微生物区系的研究中。本文简述了基于高通量测序技术的PCR产物测序技术和宏基因组学测序技术的原理、发展历程、数据分析方法与应用,以及宏基因组学测序技术在病毒学领域的应用,以期为微生物分子生态学研究提供参考。
关键词:高通量测序/
微生物分子生态学/
PCR产物测序/
宏基因组学/
病毒
Abstract:Microorganisms play essential roles in natural and artificial ecosystems. However, only a small portion of microorganisms can be cultured and isolated in most ecosystems, which greatly limits our understanding of microbial community composition, ecological function and their potential applications. The novel molecular techniques, especially high-throughput sequencing, have provided advantages for further exploring the diversity, composition and ecological functions of microbial community. High-throughput sequencing is a culture-independent technology capable of deep, rapid and accurate detection of genetic information. With the update of the high-throughput sequencing technology, the sequencing throughput, read length and accuracy have been dramatically improved, and the cost has greatly declined. During the past decade, high-throughput sequencing technology has been rapidly applied in the microbial ecological studies with various types of samples such as soil, water and gut microbial communities. Amplicon and metagenomic sequencing are most widely used strategies for environmental samples. Amplicon sequencing refers to sequencing the PCR products of target gene fragments amplified with specifically designed primers. The 16S rRNA gene of prokaryotes and the 18S rRNA and ITS genes of eukaryotes are most commonly used marker genes to conduct microbial taxonomic analysis. In addition, functional genes such as nirK, nirS and nosZ genes of denitrifying bacteria, amoA gene of ammonia-oxidizing bacteria, and ureC gene of urea hydrolytic bacteria are frequently adopted to study the diversity of functional microorganisms. In metagenomics, sequencing is performed on the genomic DNA directly extracted from environmental samples therefore avoiding the bias from PCR. Theoretically this method can provide a representation of all genomes in the sample and can be used for fully exploring the genetic diversity, functional potentials and metabolic pathways of both cultured and uncultured microorganisms. Metagenomic sequencing technology has been applied in the field of medical diagnosis, human health, biological energy, environmental restoration and agricultural ecology, etc. and has provided us new insights into taxonomic diversity, ecological function, evolutionary succession and interaction in the complex microflora. The application of metagenomic sequencing technology to the field of virology is referred as viral metagenomics. Viruses are not only related to various diseases of crop, animal and human, but also indispensable in the natural ecosystems, and play an important role in regulating host diversity and community succession, mediating gene transfer between microbes, and promoting global biogeochemical cycles. Viral metagenomics has recently gained momentum in application in the field of environmental science to reveal the genetic diversity, explore the novel species of viruses, and investigate their interactions with environmental factors.
Key words:High-throughput sequencing/
Microbial ecology/
Amplicon sequencing/
Metagenomics/
Virus
HTML全文
图1典型的宏基因组研究流程图(虚线表示可省略的步骤)[17]
Figure1.Flow diagram of a typical metagenome project (dashed arrows indicate steps that can be omitted)[17]
下载: 全尺寸图片幻灯片
参考文献
[1] | STALEY J T, KONOPKA A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats[J]. Annual Review of Microbiology, 2003, 39(1): 321-346 doi: 10.1146-annurev.mi.39.100185.001541/ |
[2] | ALEGRíA A, SZCZESNY P, MAYO B, et al. Biodiversity in oscypek, a traditional Polish cheese, determined by culture- dependent and -independent approaches[J]. Applied and Environmental Microbiology, 2012, 78: 1890-1898 doi: 10.1128/AEM.06081-11 |
[3] | AMANN R I, LUDWIG W, SCHLEIGER K H. Phylogenetic identification and in-situ detection of individual microbial- cells without cultivation[J]. Microbiological Reviews, 1995, 59(1): 143-169 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_239358 |
[4] | BAKER G C, SMITH J J, COWAN D A. Review and re-analysis of domain-specific 16S primers[J]. Journal of Microbiological Methods, 2003, 55(3): 541-555 doi: 10.1016/j.mimet.2003.08.009 |
[5] | MARGULIES M, EGHOLM M, ALTMAN W E, et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437(7057): 376 doi: 10.1038/nature03959 |
[6] | QAIL M A, KOZARWA I, SMITH F, et al. A large genome center's improvements to the Illumina sequencing system[J]. Nature Methods, 2008, 5(12): 1005-1010 doi: 10.1038/nmeth.1270 |
[7] | 楼骏, 柳永, 李延.高通量测序技术在土壤微生物多样性研究中的研究进展[J].中国农学通报, 2014, 30(15): 256-260 doi: 10.11924/j.issn.1000-6850.2013-2513 LOU J, LIU Y, LI Y. Review of high-throughput sequencing techniques in studies of soil microbial diversity[J]. Chinese Agricultural Science Bulletin, 2014, 30(15): 256-260 doi: 10.11924/j.issn.1000-6850.2013-2513 |
[8] | CHEN C P, TSENG C H, CHEN C A, et al. The dynamics of microbial partnerships in the coral Isopora palifera[J]. ISME Journal, 2011, 5(4): 728-740 doi: 10.1038/ismej.2010.151 |
[9] | YE L, ZHANG T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing[J]. Applied Microbiology & Biotechnology, 2013, 97(6): 2681-2690 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3586070 |
[10] | LEININGER S, URICH T, SCHOLTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104): 806-809 doi: 10.1038/nature04983 |
[11] | HE Z L, XU M Y, DENG Y, et al. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2[J]. Ecology Letters, 2010, 13(5): 564-575 doi: 10.1111/j.1461-0248.2010.01453.x |
[12] | 赵柏霞, 潘凤荣, 韩晓日.基于高通量测序技术的樱桃根际细菌群落研究[J].土壤通报, 2018, 49(3): 596-601 http://d.old.wanfangdata.com.cn/Periodical/trtb201803014 ZHAO B X, PAN F R, HAN X R. Bacterial community development based on Illumina amplicon sequencing of 16S rDNA tag in the cherry rhizosphere[J]. Chinese Journal of Soil Science, 2018, 49(3): 596-601 http://d.old.wanfangdata.com.cn/Periodical/trtb201803014 |
[13] | SUN R B, LI W Y, DONG W X, et al. Tillage changes vertical distribution of soil bacterial and fungal communities[J]. Frontiers in Microbiology, 2018, doi: 10.3389/fmicb.2018. 00699 |
[14] | CHEN S, WANG F, ZHANG Y, et al. Organic carbon availability limiting microbial denitrification in the deep vadose zone[J]. Environmental Microbiology, 2018, 20(3): 980-992 doi: 10.1111/emi.2018.20.issue-3 |
[15] | HANDELSMAN J, RONDON M R, BRADY S F, et al. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products[J]. Chemistry & Biology, 1998, 5(10): 245-249 http://femsle.oxfordjournals.org/lookup/external-ref?access_num=9818143&link_type=MED&atom=%2Ffemsle%2F332%2F2%2F91.atom |
[16] | BLAMEY J M, FISCHER F, MEYER H P, et al. Chapter 14 — Enzymatic biocatalysis in chemical transformations: A promising and emerging field in green chemistry practice[M]// BRAHMACHARI G. Biotechnology of Microbial Enzymes. Salt Lake City: Academic Press, 2017: 347-403 |
[17] | THOMAS T, GILBERT J, MEYER F. Metagenomics, a guide from sampling to data analysis[J]. Microbial Informatics and Experimentation, 2012, 2(1): 3 doi: 10.1186/2042-5783-2-3 |
[18] | SCHUSTER S C. Next-generation sequencing transforms today's biology[J]. Nature Methods, 2008, 5(1): 16-18 doi: 10.1038/nmeth1156 |
[19] | GOODWIN S, MCPHERSON J D, MCCOMBIE W R, et al. Coming of age: Ten years of next-generation sequencing technologies[J]. Nature Reviews Genetics, 2016, 17(6): 333-351 doi: 10.1038/nrg.2016.49 |
[20] | 叶丹丹, 樊萌萌, 关琼, 等.宏基因组研究的生物信息学平台现状[J].动物学研究, 2012, 33(6): 574-585 http://d.old.wanfangdata.com.cn/Periodical/dwxyj201206004 YE D D, FAN M M, GUAN Q, et al. A review on the bioinformatics pipelines for metagenomic research[J]. Zoological Research, 2012, 33(6): 574-585 http://d.old.wanfangdata.com.cn/Periodical/dwxyj201206004 |
[21] | 程福东, 丁啸, 李晟, 等.宏基因组样本数据的分析比较与分类[J].生物技术通报, 2016, 32(5): 1-10 http://d.old.wanfangdata.com.cn/Periodical/swjstb201605001 CHENG F D, DING X, LI S, et al. Analysis, comparison and classification of metagenomic samples[J]. Biotechnology Bulletin, 2016, 32(5): 1-10 http://d.old.wanfangdata.com.cn/Periodical/swjstb201605001 |
[22] | WANG Q, FISH J A, GILMAN M, et al. Xander: Employing a novel method for efficient gene-targeted metagenomic assembly[J]. Microbiome, 2015, 3(1): 32 doi: 10.1186/s40168-015-0093-6 |
[23] | LOOMBA R, SEGURITAN V, LI W Z, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease[J]. Cell Metabolism, 2017, 25(5): 1054-1065 doi: 10.1016/j.cmet.2017.04.001 |
[24] | 朱真, 朱嗣博, 张铁军, 等.宏基因组学与人类健康关系的研究进展[J].中国公共卫生, 2018, DOI: 10.11847/zgggws1118997 ZHU Z, ZHU S B, ZHANG T J, et al. Association between metagenome and human health: A research progress review[J]. Chinese Journal of Public Health, 2018, DOI: 10.11847/zgggws1118997 |
[25] | 吴宇佳, 迟晓培, 陈峰, 等.肥胖者唾液微生物宏基因组学特点[J].北京大学学报:医学版, 2018, 50(1): 5-12 http://d.old.wanfangdata.com.cn/Periodical/bjykdxxx201801002 WU Y J, CHI X P, CHEN F, et al. Salivary microbiome in people with obesity: A pilot study[J]. Journal of Peking University: Health Sciences, 2018, 50(1): 5-12 http://d.old.wanfangdata.com.cn/Periodical/bjykdxxx201801002 |
[26] | ZHAO L P, ZHANG F, DING X Y, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380): 1151-1156 doi: 10.1126/science.aao5774 |
[27] | LIU Y, LIU C, NELSON W C, et al. Effect of water chemistry and hydrodynamics on nitrogen transformation activity and microbial community functional potential in hyporheic zone sediment columns[J]. Environmental Science & Technology, 2017, 51: 4877-4886 http://cn.bing.com/academic/profile?id=975a584b9bc876fe479ce74762f96106&encoded=0&v=paper_preview&mkt=zh-cn |
[28] | CHU B T T, PETROVICH M L, CHAUDHARY A, et al. Metagenomics reveals the impact of wastewater treatment plants on the dispersal of microorganisms and genes in aquatic sediments[J]. Applied and Environmental Microbiology, 2018, 84(5): e02168-17 doi: 10.1128/AEM.02168-17 |
[29] | 李晶, 杨洪一, 刘崇.病毒宏基因组学的研究概况及应用[J].黑龙江农业科学, 2015, (12): 182-185 http://d.old.wanfangdata.com.cn/Periodical/hljnykx201512045 LI J, YANG H Y, LIU C. Research and application of viral metagenomics[J]. Heilongjiang Agricultural Sciences, 2015, (12): 182-185 http://d.old.wanfangdata.com.cn/Periodical/hljnykx201512045 |
[30] | MANN N H. The third age of phage[J]. PLoS Biology, 2005, 3: e182 doi: 10.1371/journal.pbio.0030182 |
[31] | BREITBART M, SALAMON P, ANDRESEN B, et al. Genomic analysis of uncultured marine viral communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(22): 14250-14255 doi: 10.1073/pnas.202488399 |
[32] | ANGLY F E, Ben FELTS B, BREITBART M, et al. The marine viromes of four oceanic regions[J]. Plos Biology, 2006, 4(11): e386 doi: 10.1371-journal.pbio.0040368/ |
[33] | MIDDELBOE M, JACQUET S, WEINBAUER M. Viruses in freshwater ecosystems: An introduction to the exploration of viruses in new aquatic habitats[J]. Freshwater Biology, 2008, 53(6): 1069-1075 doi: 10.1111/fwb.2008.53.issue-6 |
[34] | 张奇亚, 桂建芳.一类不可忽视的战略生物资源——淡水与海水中的病毒及其在生态系统中的作用[J].中国科学院院刊, 2009, 24(4): 414-420 doi: 10.3969/j.issn.1000-3045.2009.04.005 ZHANG Q Y, GUI J F. A kind of strategic bio-resource not to be neglected — Freshwater and marine viruses and their roles in the global ecosystem[J]. Bulletin of Chinese Academy of Sciences, 2009, 24(4): 414-420 doi: 10.3969/j.issn.1000-3045.2009.04.005 |
[35] | LóPEZ-BUENO A, TAMAMES J, VELáZQUEZ D, et al. High diversity of the viral community from an Antarctic Lake[J]. Science, 2009, 326: 858-861 doi: 10.1126/science.1179287 |
[36] | GE X Y, WU Y Q, WANG M N, et al. Viral metagenomics analysis of planktonic viruses in East Lake, Wuhan, China[J]. Virologica Sinica, 2013, 28(5): 280-290 doi: 10.1007/s12250-013-3365-y |
[37] | 夏骏, 汪岷, 宫政, 等.以宏基因组技术探讨渤海秋冬季节病毒多样性[J].海洋与湖泊, 2016, 47(3): 572-580 http://d.old.wanfangdata.com.cn/Periodical/hyyhz201603011 XIA J, WANG M, GONG Z, et al. Metagenomic study on viral diversity in autumn and winter in Bohai Sea[J]. Oceanologia et Limnologia Sinica, 2016, 47(3): 572-580 http://d.old.wanfangdata.com.cn/Periodical/hyyhz201603011 |
[38] | KIMURA M, JIA Z J, NAKAYAMA N, et al. Ecology of viruses in soils: Past, present and future perspectives[J]. Soil Science and Plant Nutrition, 2008, 54: 1-32 doi: 10.1111/j.1747-0765.2007.00197.x |
[39] | 韩丽丽, 于丹婷, 贺纪正.土壤病毒生态学研究方法[J].生态学报, 2017, 37(6): 1749-1756 http://d.old.wanfangdata.com.cn/Periodical/stxb201706001 HAN L L, YU D T, HE J Z. Research methods for soil viral ecology[J]. Acta Ecologica Sinica, 2017, 37(6): 1749-1756 http://d.old.wanfangdata.com.cn/Periodical/stxb201706001 |
[40] | ADRIAENSSENS E M, COWAN D A. Using signature genes as tools to assess environmental viral ecology and diversity[J]. Applied and Environmental Microbiology, 2014, 80: 4470-4480 doi: 10.1128/AEM.00878-14 |
[41] | ADRIAENSSENS E M, Van ZYL L, De MAAYER P, et al. Metagenomic analysis of the viral community in Namib Desert hypoliths[J]. Environmental Microbiology, 2015, 17(2): 480-495 doi: 10.1111/1462-2920.12528 |
[42] | REAVY B, SWANSON M M, COCK P J, et al. Distinct circular single-stranded DNA viruses exist in different soil types[J]. Applied and Environmental Microbiology, 2015, 81(12): 3934-3945 doi: 10.1128/AEM.03878-14 |
[43] | HAN L L, YU D T, ZHANG L M, et al. Genetic and functional diversity of ubiquitous DNA viruses in selected Chinese agricultural soils[J]. Scientific Reports, 2017, 7: 45142 doi: 10.1038/srep45142 |
[44] | WILLNER D, FURLAN M, HAYNES M, et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals[J]. PLoS One, 2009, 4(10): e7370 doi: 10.1371/journal.pone.0007370 |
[45] | SVRAKA S, ROASRIO K, DUIZER E, et al. Metagenomic sequencing for virus identification in a public-health setting[J]. Journal of General Virology, 2010, 91: 2846-2856 doi: 10.1099/vir.0.024612-0 |
[46] | LAW J, JOVEL J, PATTERSON J, et al. Identification of hepatotropic viruses from plasma using deep sequencing: A next generation diagnostic tool[J]. PLoS One, 2013, 8(4): e60595 doi: 10.1371/journal.pone.0060595 |
[47] | DONALDSON E F, HASKEW A N, GATES J E, et al. Metagenomic analysis of the viromes of three North American bat species: Viral diversity among different bat species that share a common habitat[J]. Journal of Virology, 2010, 84(24): 13004-13018 doi: 10.1128/JVI.01255-10 |
[48] | 杨凡力, 王意银, 郑文成, 等.中国部分地区蝙蝠携带病毒的宏基因组学分析[J].生物工程学报, 2013, 29(5): 586-600 http://d.old.wanfangdata.com.cn/Periodical/swgcxb201305004 YANG F L, WANG Y Y, ZHENG W C, et al. Metagenomic analysis of bat virome in several regions of China[J]. Chinese Journal of Biotechnology, 2013, 29(5): 586-600 http://d.old.wanfangdata.com.cn/Periodical/swgcxb201305004 |
[49] | CARROLL D, DASZAK P, WOLGE N D, et al. The global virome project[J]. Science, 2018, 359(6378): 872-874 doi: 10.1126/science.aap7463 |
[50] | DAY J M, BALLARD L L, DUKE M V, et al. Metagenomic analysis of the turkey gut RNA virus community[J]. Virology Journal, 2010, 7: 313 doi: 10.1186/1743-422X-7-313 |
[51] | SHAN T L, LAN D L, LI L L, et al. Genomic characterization and high prevalence of bocaviruses in swine[J]. PLoS One, 2011, 6: e17292 doi: 10.1371/journal.pone.0017292 |
[52] | YU H M, OI S S, CHANG Z X, et al. Complete genome sequence of a novel Velarivirus infecting areca palm in China[J]. Archives of Virology, 2015, 160(9): 2367-2370 doi: 10.1007/s00705-015-2489-9 |