中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室石家庄 050022
基金项目: 国家重点研发计划课题2017YFD0300904
国家重点研发计划课题2016YFC0401403
详细信息
作者简介:张喜英, 主要从事农田节水机理和技术研究。E-mail:xyzhang@sjziam.ac.cn
中图分类号:S341计量
文章访问数:915
HTML全文浏览量:5
PDF下载量:595
被引次数:0
出版历程
收稿日期:2018-07-06
录用日期:2018-07-16
刊出日期:2018-10-01
Water use and water-saving irrigation in typical farmlands in the North China Plain
ZHANG Xiying,Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Water-Saving Agriculture, Shijiazhuang 050022, China
Funds: the National Key Research and Development Project of China2017YFD0300904
the National Key Research and Development Project of China2016YFC0401403
More Information
Corresponding author:ZHANG Xiying, E-mail: xyzhang@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:本文总结了中国科学院遗传与发育生物学研究所农业资源研究中心围绕华北典型地区冬小麦-夏玉米一年两熟开展的节水灌溉研究。在位于华北中北部的中国科学院栾城农业生态系统试验站的定点试验结果显示,从1980年到2017年,在充分灌溉条件下冬小麦产量增加55.7%、夏玉米产量增加59.7%。冬小麦生育期耗水(ET)从400 mm增加到465 mm;玉米耗水年平均稳定在375 mm左右;年耗水量从777.0 mm增加到834.4 mm;满足冬小麦、夏玉米生育期耗水条件下,年灌溉需水量平均300 mm,必须减少灌溉用水和田间耗水,才能解决区域地下水超采问题。研究发现在限水灌溉条件下,冬小麦拔节期1次灌溉可显著促进作物营养生长和根系生长,利于后期土壤水分高效利用,在维持作物稳产基础上,比充分灌溉年节水165.2 mm。研究发现进一步利用小定额灌溉技术,通过增加灌水频率、缩减次灌水量,可增加有限水对作物的有效性,实现作物根系、土壤水分和养分在空间上的耦合,进一步提升有限灌溉对作物的增产作用。只考虑维持播种时良好土壤水分条件、生育期不进行灌溉的最小灌溉模式,与充分灌溉模式相比,产量减少28%,但可节约灌溉水69%,田间耗水减少43%,水分利用效率提高13%,年耗水量维持在560 mm左右。相对于减熟制节约灌溉水措施,冬小麦-夏玉米一年两季最小灌溉模式总产量高于两年3作5.5%~12.0%,年耗水量低于两年3作10%~13%,可显著消减减熟制带来的休闲期土壤蒸发损失。因此,实施冬小麦、夏玉米生育期节水灌溉,如最小灌溉、关键期灌溉,可大幅度降低灌水量和作物生育期耗水量,同时又能维持一定的生产能力,是华北实施地下水限采措施下应优先考虑的技术选择。
Abstract:This paper summarized the researches of Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences on water-saving irrigation for winter wheat and summer maize at the Luancheng Agro-Ecosystem Experimental Station, Chinese Academy of Sciences, a typical farming area in the North China Plain (NCP). The results from long-term field studies showed that for the period from 1980 to 2017, yield of winter wheat was increased by 55.7% and that of summer maize by 59.7% under fully irrigated conditions. Water consumption (ET) of winter wheat was increased from 400 mm to 465 mm, ET of summer maize was relative stable at about 375 mm. Annual ET was increased from 777.0 mm in the 1980s to 834.4 mm in the 2010s. The annual irrigation water demand was averagely around 300 mm. Therefore, it was necessary to reduce irrigation water use to conserve local groundwater resources. Under limited irrigation, one irrigation of winter wheat at jointing stage significantly increased vegetative and root growth of this crop, which was beneficial for the efficient use of soil water at later stages of crop growth. Under this critical stage irrigation schedule, annual ET was reduced by 165.2 mm, while grain production remained stable at relative higher level. Results also showed that by reducing irrigation amount per application and increasing irrigation frequency under limited irrigation, the combined effects of interaction of crop root, soil water and soil nutrient at the topsoil layer could increase water availability to the crop and thereby increase grain production and water use efficiency. A minimum irrigation (MI) schedule was developed for more serious water shortage regions, which was to maintain good soil moisture conditions at the time of sowing and no other irrigation being applied during the other growth periods. As compared with full irrigation, yield was reduced by 28%, but irrigation water use was reduced up to 69%, reduction in ET was by 43% and water use efficiency increased by 13%. Annual ET was reduced to 560 mm and annual irrigation water use was reduced to 120 mm. Significant reduction in irrigation water use was achieved as compared with the full irrigation schedule. As compared with the reduction in cropping intensity (RCI) measure (changing annual double cropping of winter wheat and summer maize to three crops every two years), MI schedule could fully use the rainfall resources and reduce soil evaporation consumption during fallow period under RCI. Yield of winter wheat and summer maize for MI under double cropping system was 5.5%-12.0% higher than that for RCI, with annual ET of 10%-13% less. Based on results from the long-term field experiment, the implementation of water-saving irrigation schedule such as MI and critical irrigation scheduling significantly reduced irrigation water use and at the same time maintained stable grain production. Therefore, water-saving irrigation schedule under double cropping of winter wheat and summer maize was recommended as one of the important measures for solving the problem in groundwater overdraft in the NCP.
HTML全文
图1栾城试验站1980—2017年不同年代冬小麦、夏玉米在充分灌溉下平均蒸散量与平均年降水量的差值(灌溉需水量)
Figure1.Average differences between annual evapotranspiration and rainfall as irrigation requirements for the double cropping system of winter wheat and summer maize under sufficient water supply during 1980s, 1990s, 2000s and 2010s at Luancheng Station
下载: 全尺寸图片幻灯片
图2栾城试验站2007—2017冬小麦10个生育期从不灌水到灌水5次的产量变化
Figure2.Yields of winter wheat from no irrigation up to five irrigations for 10 growth seasons during 2007-2017 at Luancheng Station
下载: 全尺寸图片幻灯片
图3栾城试验站2005—2017夏玉米13个生育期从播种灌水1次至生育期再增加1~3水的产量变化(T1处理为播种灌水1次; T2~T4处理为除了播种水外, 生育期增加灌水次数1~3次; 2015年只有T1处理)
Figure3.Yields of summer maize with one irrigation at sowing (T1 treatment) to one to three more irrigations during growing seasons (T2, T3 and T4 treatments) for 13 growth seasons during 2005-2017 at Luancheng Station
下载: 全尺寸图片幻灯片
图4栾城试验站冬小麦生育期灌水一次的灌水时间(播种水或拔节水)对产量的影响(2005—2014年)
Figure4.Effects of irrigation time under one irrigation application to winter wheat (irrigation at sowing or at jointing) on grain production from 2005 to 2014 at Luancheng Station
下载: 全尺寸图片幻灯片
图5冬小麦棵间蒸发(E)占蒸散比例(ET)随叶面积指数的变化
Figure5.Relation of the ratio of soil evaporation (E) over evapotranspiration (ET) with the leaf area index (LAI) of winter wheat
下载: 全尺寸图片幻灯片
图6栾城试验站2013—2017年冬小麦在限水灌溉(生育期总供水90 mm)下灌水频率对产量的影响(T1: 1次灌水90 mm; T2: 2次灌水, 每次灌水45 mm; T3: 3次灌水, 每次灌水30 mm)
Figure6.Effects of combinations of irrigation amount and frequency on yield of winter wheat at Luancheng Station (T1: one irrigation with 90 mm; T2: two irrigations with 45 mm each; T3: three irrigations with 30 mm each)
下载: 全尺寸图片幻灯片
图7栾城试验站不同供水条件下(NI:水分亏缺; FI:供水充足)冬小麦耗水量与产量的相关关系
Figure7.Correlation of evapotranspiration (ET) with yield under two different water supply conditions for winter wheat at Luancheng Station (NI: deficit irrigation; FI: full irrigation)
下载: 全尺寸图片幻灯片
图82007—2017年冬小麦、夏玉米保证出苗水分条件下生育期不进行灌溉的生长季和年耗水量
Figure8.Seasonal and annual evapotranspiration (ET) for winter wheat and summer maize under minimum irrigation schedule (irrigation at sowing to ensure good soil moisture condition for germination, no other irrigation during the growth season)
下载: 全尺寸图片幻灯片
图9不同种植制度和灌水制度下作物年产量和年耗水量比较
W+M:充分灌溉下的冬小麦和夏玉米一年两作; W+M+M:冬小麦+夏玉米+玉米两年3作; W+M+W:冬小麦+夏玉米+冬小麦两年3作; W:一年1作冬小麦; M:一年1作玉米; Imin:冬小麦夏玉米一年两作实施最小灌溉制度; Icri:冬小麦夏玉米一年两作实施关键期灌溉制度。
Figure9.Annual grain yield and evapotranspiration (ET) under different cropping systems and irrigation schedules
W+M: annual double cropping of winter wheat-summer maize with full irrigation; W+M+M: triple cropping in two years of winter wheat-summer maize-maize; W+M+W: triple cropping in two years of winter wheat-summer maize-winter wheat; W: single cropping in one year of winter wheat; M: single cropping in one year of maize; Imin: minimum irrigation of annual double cropping of winter wheat-summer maize; Icri: critical irrigation of annual double cropping of winter wheat-summer maize.
下载: 全尺寸图片幻灯片
表1栾城试验站冬小麦2014—2017年3个生长季不同灌溉条件下农田水分平衡各分量及生育期蒸散量*
Table1.Components of water balance and seasonal evapotranspiration under different irrigation treatments for winter wheat in three seasons from 2014 to 2017 at Luancheng Station*
mm | ||||||||||||||
灌水次数 Irrigation numbers | 2014—2015 | 2015—2016 | 2016—2017 | |||||||||||
灌水量 Irrigation amount | 根层渗漏量 Drainage from root zone | 土壤储水消耗 Soil water depletion | 蒸散 Evapotrans-piration | 灌水量 Irrigation amount | 根层渗漏量 Drainage from root zone | 土壤储水消耗 Soil water depletion | 蒸散 Evapotrans-piration | 灌水量 Irrigation amount | 根层渗漏量 Drainage from root zone | 土壤储水消耗 Soil water depletion | 蒸散 Evapotrans- piration | |||
0 | 0.0 | 0.0 | 78.4 | 148.4 | 0.0 | 4.0 | 182.2 | 265.4 | 0.0 | 29.1 | 246.4 | 325.7 | ||
1 | 100.0 | 0.0 | 135.9 | 305.9 | 75.0 | 12.4 | 191.7 | 341.5 | 80.0 | 32.0 | 208.0 | 364.5 | ||
2 | 175.0 | 18.4 | 192.1 | 418.7 | 135.0 | 12.1 | 132.4 | 342.5 | 140.0 | 30.4 | 200.3 | 418.3 | ||
3 | 230.0 | 45.5 | 168.2 | 422.7 | 195.0 | 10.0 | 92.2 | 364.4 | 200.0 | 54.9 | 256.7 | 510.2 | ||
4 | 325.0 | 71.6 | 156.5 | 479.9 | 270.0 | 17.3 | 62.5 | 402.4 | 260.0 | 51.7 | 218.0 | 534.7 | ||
5 | 390.0 | 112.0 | 120.4 | 468.4 | 270.0 | 16.5 | 61.8 | 402.5 | 320.0 | 69.9 | 197.7 | 556.2 | ||
*研究区域的地下水埋深40 m, 毛管上升水为零; 作物生长期间降水较少, 没有径流发生, 水分平衡公式中的C和R为0。2014—2015年、2015—2016年和2016—2017年冬小麦生育期降水量分别为70 mm、87.2 mm和108.4 mm。* Due to the deep groundwater level below soil surface (40 m) and the small rainfall during the growing season, capillary rise and runoff in the water balance equation are taken as zero. Precipitations in growth seasons of 2014-2015, 2015-2016 and 2016-2017 were 70 mm, 87.2 mm and 108.4 mm, respectively. |
下载: 导出CSV
表2栾城试验站冬小麦夏玉米在充分灌溉下1980—2017年不同年代平均产量、生育期耗水量和水分利用效率的变化
Table2.Average yield, seasonal evapotranspiration (ET) and water use efficiency (WUE) of winter wheat and summer maize under sufficient water supply during 1980s, 1990s, 2000s and 2010s at Luancheng Station
年代 Decade | 产量Yield (kg?hm-2) | 耗水量ET (mm) | 水分利用效率WUE (kg?m-3) | |||||
冬小麦 Winter wheat | 夏玉米 Summer maize | 冬小麦 Winter wheat | 夏玉米 Summer maize | 冬小麦 Winter wheat | 夏玉米 Summer maize | |||
1980—1989 | 4 695.9 | 5 169.1 | 401.4 | 375.7 | 1.19 | 1.35 | ||
1990—1999 | 5 631.3 | 7 179.9 | 417.3 | 381.1 | 1.31 | 1.84 | ||
2000—2009 | 6 639.4 | 7 760.5 | 458.6 | 396.2 | 1.45 | 1.98 | ||
2010—2017 | 7 313.8 | 8 254.8 | 465.1 | 369.3 | 1.70 | 2.24 |
下载: 导出CSV
参考文献
[1] | DU T S, KANG S Z, SUN J S, et al. An improved water use efficiency of cereals under temporal and spatial deficit irrigation in North China[J]. Agricultural Water Management, 2010, 97(1):66-74 doi: 10.1016/j.agwat.2009.08.011 |
[2] | QIU G Y, WANG L M, HE X H, et al. Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the North China Plain[J]. Agricultural and Forest Meteorology, 2008, 148(11):1848-1859 doi: 10.1016/j.agrformet.2008.06.010 |
[3] | YANG Y H, WATANABE M, ZHANG X Y, et al. Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain[J]. Agricultural Water Management, 2006, 82(1/2):25-44 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0212694713 |
[4] | ZHANG X Y, CHEN S Y, LIU M Y, et al. Improved water use efficiency associated with cultivars and agronomic management in the North China Plain[J]. Agronomy Journal, 2005, 97(3):783-790 doi: 10.2134/agronj2004.0194 |
[5] | 董宝娣, 张正斌, 刘孟雨, 等.小麦不同品种的水分利用特性及对灌溉制度的响应[J].农业工程学报, 2007, 23(9):27-33 doi: 10.3321/j.issn:1002-6819.2007.09.005 DONG B D, ZHANG Z B, LIU M Y, et al. Water use characteristics of different wheat varieties and their responses to different irrigation schedulings[J]. Transactions of the CSAE, 2007, 23(9):27-33 doi: 10.3321/j.issn:1002-6819.2007.09.005 |
[6] | CHEN S Y, ZHANG X Y, PEI D, et al. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat:Field experiments on the North China Plain[J]. Annals of Applied Biology, 2007, 150(3):261-268 doi: 10.1111/aab.2007.150.issue-3 |
[7] | ZHANG X Y, CHEN S Y, SUN H Y, et al. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat[J]. Irrigation Science, 2008, 27(1):1-10 doi: 10.1007/s00271-008-0131-2 |
[8] | ZHANG X Y, PEI D, HU C S. Conserving groundwater for irrigation in the North China Plain[J]. Irrigation Science, 2003, 21(4):159-166 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0211927978 |
[9] | ZHANG X Y, WANG Y Z, SUN H Y, et al. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply[J]. Irrigation Science, 2013, 31(5):1103-1112 doi: 10.1007/s00271-012-0391-8 |
[10] | ZHANG X Y, CHEN S Y, SUN H Y, et al. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades[J]. Agricultural Water Management, 2011, 98(6):1097-1104 doi: 10.1016/j.agwat.2011.02.003 |
[11] | ZHANG X Y, WANG S F, SUN H Y, et al. Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades:A case study in the North China Plain[J]. European Journal of Agronomy, 2013, 50:52-59 doi: 10.1016/j.eja.2013.05.005 |
[12] | CHAVES M M, OLIVEIRA M M. Mechanisms underlying plant resilience to water deficits:Prospects for water-saving agriculture[J]. Journal of Experimental Botany, 2004, 55(407):2365-2384 doi: 10.1093/jxb/erh269 |
[13] | FERERES E, SORIANO M A. Deficit irrigation for reducing agricultural water use[J]. Journal of Experimental Botany, 2007, 58(2):147-159 doi: 10.1093-jxb-erl165/ |
[14] | 张喜英.中国科学院栾城农业生态系统试验站农田节水研究过去、现在和未来[J].中国生态农业学报, 2011, 19(5):987-996 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110502&flag=1 ZHANG X Y. A review of agricultural water-saving research at Luancheng Agro-Ecosystem Experimental Station of Chinese Academy of Sciences over the last 30 years[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5):987-996 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110502&flag=1 |
[15] | 可福存, 师连生, 李建军.冬小麦灌溉制度研究[M]//王绍仁.生态农业实验研究.北京: 中国科学技术出版社, 1994: 121-126 KE F C, SHI L S, LI J J. Study on Irrigation Scheduling of Winter Wheat[M]//WANG S R. Experimental Research on Eco-Agriculture. Beijing: China Science and Technology Press, 1994: 121-126 |
[16] | ZHANG X Y, CHEN S Y, SUN H Y, et al. Root size, distribution and soil water depletion as affected by cultivars and environmental factors[J]. Field Crops Research, 2009, 114(1):75-83 doi: 10.1016/j.fcr.2009.07.006 |
[17] | ZHANG X Y, PEI D, CHEN S Y. Root growth and soil water utilization of winter wheat in the North China Plain[J]. Hydrological Processes, 2004, 18(12):2275-2287 doi: 10.1002/(ISSN)1099-1085 |
[18] | KIRKEGAARD J A, LILLEY J M, HOWE G N, et al. Impact of subsoil water use on wheat yield[J]. Australian Journal of Agricultural Research, 2007, 58(4):303-315 doi: 10.1071/AR06285 |
[19] | KAGE H, KOCHLER M, STüTZEL H. Root growth and dry matter partitioning of cauliflower under drought stress conditions:Measurement and simulation[J]. European Journal of Agronomy, 2004, 20(4):379-394 doi: 10.1016/S1161-0301(03)00061-3 |
[20] | SLAFER G A, ARAUS J L, ROYO C, et al. Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments[J]. Annals of Applied Biology, 2005, 146(1):61-70 doi: 10.1111/aab.2005.146.issue-1 |
[21] | FANG Q, ZHANG X Y, SHAO L W, et al. Assessing the performance of different irrigation systems on winter wheat under limited water supply[J]. Agricultural Water Management, 2018, 196:133-143 doi: 10.1016/j.agwat.2017.11.005 |
[22] | RODRIGUES G C, PAREDES P, GON?ALVES J M, et al. Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling:Ranking for water saving vs. farm economic returns[J]. Agricultural Water Management, 2013, 126:85-96 doi: 10.1016/j.agwat.2013.05.005 |
[23] | ENCISO J M, UNRUH B L, COLAIZZI P D, et al. Cotton response to subsurface drip irrigation frequency under deficit irrigation[J]. Applied Engineering in Agriculture, 2003, 19(5):555-558 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0212435525 |
[24] | CHENG H F, HU Y N, ZHAO J F. Meeting China's water shortage crisis:Current practices and challenges[J]. Environmental Science & Technology, 2009, 43(2):240-244 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025996494/ |
[25] | LI J. Water shortages loom as northern China's aquifers are sucked dry[J]. Science, 2010, 328(5985):1462-1463 |
[26] | FANG Q, MA L, YU Q, et al. Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain[J]. Agricultural Water Management, 2010, 97(8):1165-1174 doi: 10.1016/j.agwat.2009.02.012 |
[27] | JENSEN C R, ?RUM J E, PEDERSEN S M, et al. A short overview of measures for securing water resources for irrigated crop production[J]. Journal of Agronomy and Crop Science, 2014, 200(5):333-343 doi: 10.1111/jac.12067 |
[28] | ZHANG X Y, QIN W L, XIE J N. Improving water use efficiency in grain production of winter wheat and summer maize in the North China Plain:A review[J]. Frontiers of Agricultural Science and Engineering, 2016, 3(1):25-33 doi: 10.15302/J-FASE-2016090 |
[29] | 张喜英, 裴冬, 由懋正.几种作物的生理指标对土壤水分变动的阈值反应[J].植物生态学报, 2000, 24(3):280-283 doi: 10.3321/j.issn:1005-264X.2000.03.005 ZHANG X Y, PEI D, YOU M Z. Response of leaf water potential, photosynthesis and stomatal conductance to varying soil moisture in four crops, winter wheat, corn, sorghum and millet[J]. Acta Phytoecological Sinica, 2000, 24(3):280-283 doi: 10.3321/j.issn:1005-264X.2000.03.005 |
[30] | SUN H Y, ZHANG X Y, CHEN S Y, et al. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain[J]. Industrial Crops and Products, 2007, 25(3):239-247 doi: 10.1016/j.indcrop.2006.12.003 |
[31] | ZHANG X Y, PEI D, CHEN S Y, et al. Performance of double-cropped winter wheat-summer maize under minimum irrigation in the North China Plain[J]. Agronomy Journal, 2006, 98(6):1620-1626 doi: 10.2134/agronj2005.0358 |
[32] | SUN H Y, ZHANG X Y, CHEN S Y, et al. Performance of a double cropping system under a continuous minimum irrigation strategy[J]. Agronomy Journal, 2014, 106(1):281-289 doi: 10.2134/agronj2013.0309 |
[33] | GEERTS S, RAES D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas[J]. Agricultural Water Management, 2009, 96(9):1275-1284 doi: 10.1016/j.agwat.2009.04.009 |
[34] | 张喜英.提高农田水分利用效率的调控机制[J].中国生态农业学报, 2013, 21(1):80-87 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2013110&journal_id=zgstny ZHANG X Y. Regulation mechanisms of improving farmland water use efficiency[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1):80-87 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2013110&journal_id=zgstny |