删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

深松深度对砂姜黑土耕层特性、作物产量和水分利用效率的影响

本站小编 Free考研考试/2022-01-01

程思贤,
刘卫玲,
靳英杰,
周亚男,
周金龙,
赵亚丽,,
李潮海,
河南农业大学农学院/省部共建小麦玉米作物学国家重点实验室/河南粮食作物协同创新中心 郑州 450002
基金项目: 国家公益性行业(农业)科研专项201503117
国家自然科学基金项目31771729
国家重点研发计划项目2016YFD0300106

详细信息
作者简介:程思贤, 主要研究方向为玉米生理生态。E-mail:85785619@qq.com
通讯作者:赵亚丽, 主要研究方向为玉米生理生态, E-mail:zhaoyali2006@126.com
李潮海, 主要研究方向为玉米生理生态, E-mail:lichaohai2005@163.com
中图分类号:S341.1;S512.1+1;S513

计量

文章访问数:882
HTML全文浏览量:3
PDF下载量:596
被引次数:0
出版历程

收稿日期:2017-12-18
录用日期:2018-04-24
刊出日期:2018-09-01

Effects of subsoiling depth on topsoil properties, crop yield and water use efficiency in Lime Concretion Black soil

CHENG Sixian,
LIU Weiling,
JIN Yingjie,
ZHOU Yanan,
ZHOU Jinlong,
ZHAO Yali,,
LI Chaohai,
College of Agronomy, Henan Agricultural University/Co-construction State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, China
Funds: the Special Fund for Agro-scientific Research in the Public Interest of China201503117
the National Natural Science Foundation of China31771729
the National Key Research and Development Project of China2016YFD0300106

More Information
Corresponding author:ZHAO Yali, E-mail: zhaoyali2006@126.com;LI Chaohai, E-mail: lichaohai2005@163.com


摘要
HTML全文
(2)(5)
参考文献(42)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:研究深松深度对砂姜黑土耕层特性、作物产量和水分利用效率的影响,可为构建砂姜黑土合理耕层的耕作深度指标提供依据。本研究基于多年定位大田试验,采用大区对比设计,设置4个深松深度(30 cm、40 cm、50 cm、60 cm)处理,以旋耕(RT,平均耕作深度为15 cm)作为对照,研究不同深松深度对土壤紧实度、土壤三相比(R)值、作物根系形态、作物产量和水分利用效率的影响。研究结果表明,深松深度增加能显著降低土壤紧实度,使土壤的三相比(R)更加合理,进而促进作物根系生长。不同深松深度中,深松60 cm处理的土壤紧实度和三相比(R)值与对照相比降幅最大,深松40 cm处理的冬小麦根系生物量最大,深松50 cm处理的夏玉米根系生物量最大。深松不仅增加作物产量,还提高作物水分利用效率。深松30 cm处理的周年作物产量最高,比对照增产12.2%,但与深松40 cm处理差异不显著。深松50 cm处理的周年水分利用效率最高,但与深松30 cm和深松40 cm处理差异不显著。深松30 cm、40 cm和50 cm的周年水分利用效率比对照分别增加9.1%、8.8%和12.7%。因此,砂姜黑土适宜的深松深度为30~40 cm。
关键词:砂姜黑土/
冬小麦/
深松深度/
土壤紧实度/
土壤三相比(R)值/
根系形态
Abstract:Lime Concretion Black soil is widely distributed in the south of the Huang-Huai-Hai Plain with area of 3.7 million hm2, which is one of the main middle-to-low-yielding soil types in the region. Currently, the long-term continuous farming system is made possible by using small-sized 4-wheel tractors. However, owing to the years of over exploitation and improper mechanical plough, the effective depth of topsoil has gradually decreased and the plow pan thickened. The problem of shallow, solid and little topsoil in the plough layer has limited the ability of storage and release of fertilizer and continuous increase in crop yield in the Lime Concretion Black soils. Subsoiling is one of the main technologies in conservation tillage and the area with sub-soling in China has exceeded 10 million hm2. Studies have shown that subsoiling can improve soil properties in plough layer by reducing soil bulk density and penetration resistance, increasing soil porosity, hydraulic conductivity and infiltration rate, and creating more favorable soil environment for root growth and crop production than rotary tillage. However, most studies have been carried out only on the 30 cm depth of subsoiling and little research has been focused on the effects of different depths of subsoiling on soil characteristics, root growth, crop yield and water use efficiency under wheat-maize cropping system in Lime Concretion Black soils. The objective of this study was to determine the effects of the depth of subsoiling on topsoil properties, crop yield and water use efficiency and to build the basis for establishing suitable depth of subsoiling in Lime Concretion Black soils. To that end, a multi-year experiment with four depths of subsoiling[30 cm (SS30), 40 cm (SS40), 50 cm (SS50) and 60 cm (SS60)] and rotary tillage (RT) as the control was carried out to study the effects of different depths of subsoiling on soil penetration resistance, soil three-phase (R) value, root growth, crop yield and water use efficiency. The results showed that increasing depth of subsoiling significantly reduced soil compaction, created more suitable soil three-phase (R) value and thus promoted crop root growth. In the four depths of subsoiling, decrease in soil penetration resistance and soil three-phase (R) value were the highest under SS60 treatment, root weight of winter wheat was the highest under SS40 treatment and root weight of summer maize the highest under SS50. Subsoiling not only increased crop yield, but also increased water use efficiency. Annual crop yield was the highest under SS30 treatment, 12.2% higher than that under RT. There was no significant difference in annual crop yield between SS30 and SS40 treatments. Annual water use efficiency was the highest under SS50 treatment, which was 12.7% higher than that under RT. Also there was no significant difference in annual crop yield among SS30, SS40 and SS50 treatments. Annual water use efficiency was respectively 9.1% and 8.8% higher under SS30 and SS40 treatments than that under RT. Therefore, subsoiling at the 30-40 cm depth was a suitable depth in Lime Concretion Black soils.
Key words:Lime Concretion Black soil/
Winter wheat/
Subsoiling depth/
Soil compaction/
Soil three-phase (R) value/
Root morphology

HTML全文


图1冬小麦深松深度对不同时期土壤紧实度的影响(A:冬小麦拔节期; B:夏玉米拔节期; C:冬小麦开花期; D:夏玉米开花期; E:冬小麦成熟期; F:夏玉米成熟期)
RT:旋耕; SS30:深松30 cm; SS40:深松40 cm; SS50:深松50 cm; SS60:深松60 cm。
Figure1.Effects of subsoiling depth of winter wheat on soil penetration resistance at different growth stages of winter wheat and summer maize (A: jointing stage of winter wheat; B: jointing stage of summer maize; C: anthesis stage of winter wheat; D: anthesis stage of summer maize; E: maturity stage of winter wheat; F: maturity of summer maize.)
RT: rotary tillage; SS30: subsoiling 30 cm; SS40: subsoiling 40 cm; SS50: subsoiling 50 cm; SS60: subsoiling 60 cm.


下载: 全尺寸图片幻灯片


图22015年和2016年小麦季深松深度对夏玉米开花期根系生长的影响
同一土层不同小写字母表示处理间差异达5%显著水平。
Figure2.Effect of subsoiling depth of winter wheat on root growth of summer maize at anthesis stage in 2015 and 2016
Different lowercase letters above the bars mean significant differences among treatments for the same soil layer at 0.05 level.


下载: 全尺寸图片幻灯片

表1冬小麦季深松深度、年份以及其交互对土壤紧实度、三相比(R)值、作物产量和水分利用效率影响的方差分析
Table1.Variance analysis of effects of subsoiling depth of winter wheat, year and their interaction on soil penetration resistance, soil three-phase (R) value, crop yield and water use efficiencyVariance analysis of effects of subsoiling depth of winter wheat, year and their interaction on soil penetration resistance, soil three-phase (R) value, crop yield and water use efficiency
项目Item PRW PRM RW RM YieldW YieldM Yieldtotal WUEW WUEM WUEtotal
深松深度Subsoiling depth < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 < 0.001 < 0.001 < 0.001 < 0.001
年份Year ns ns ns ns < 0.001 < 0.001 ns < 0.001 < 0.001 < 0.001
深松深度×年份Subsoiling depth × year ns ns ns ns ns 0.025 ns ns < 0.001 0.003
??PRW:冬小麦季土壤紧实度; PRM:夏玉米季土壤紧实度; RW:冬小麦季土壤三相比(R)值; RM:夏玉米季土壤三相比(R)值; YieldW:冬小麦产量; YieldM:夏玉米产量; Yieldtotal:周年产量; WUEW:冬小麦水分利用效率; WUEM:夏玉米水分利用效率; WUEtotal:周年水分利用效率。ns:差异未达5%显著水平。PRW: soil penetration resistance in winter wheat season; PRM: soil penetration resistance in summer maize season; RW: soil three-phase (R) value in winter wheat season; RM: soil three-phase (R) value in summer maize season; YieldW: yield of winter wheat; YieldM: yield of summer maize; Yieldtotal: annual yield; WUEW: water use efficiency of winter wheat; WUEM: water use efficiency of summer maize; WUEtotal: annul water use efficiency. ns: no significant difference at 5% level.


下载: 导出CSV
表2冬小麦季深松深度对不同土层三相比(R)值的影响
Table2.Effects of subsoiling depth of winter wheat on three-phase R values of different soil layers
作物
Crop
处理Treatment 土层Soil layer (cm)
0~15 15~30 30~40 40~50 50~60
冬小麦
Winter wheat
旋耕Rotary tillage 14.09±0.16a 7.19±0.95a 15.87±3.07a 15.45±2.09a 17.90±1.94a
深松30 cm Subsoiling 30 cm 10.19±1.70bc 8.19±0.24a 14.07±3.10a 15.31±2.15a 16.66±0.19a
深松40 cm Subsoiling 40 cm 11.74±1.57ab 7.22±0.66a 7.29±0.45b 3.87±1.62b 9.44±0.61b
深松50 cm Subsoiling 50 cm 6.75±0.92d 4.49±1.71b 3.80±0.86b 5.33±3.19b 8.00±0.66bc
深松60 cm Subsoiling 60 cm 8.12±1.58bcd 4.12±0.92b 3.68±1.36b 2.51±0.80b 5.95±1.45c
夏玉米
Summer maize
旋耕Rotary tillage 19.13±0.36a 11.14±1.78a 9.08±0.77a 10.06±1.63a 10.37±1.14a
深松30 cm Subsoiling 30 cm 18.25±1.92a 9.29±1.29ab 8.33±0.42a 8.26±1.00ab 8.80±0.60b
深松40 cm Subsoiling 40 cm 20.37±3.51a 9.64±1.11ab 7.99±0.85ab 7.12±0.35b 7.88±0.39bc
深松50 cm Subsoiling 50 cm 19.00±2.00a 8.72±0.58ab 6.95±0.34b 7.06±0.39b 7.87±0.41bc
深松60 cm Subsoiling 60 cm 17.85±2.00a 8.17±1.30b 5.29±0.60c 6.70±1.25b 6.72±0.55c
??同一作物数据后不同小写字母表示不同处理间差异达5%显著水平。For the same crop, different lowercase letters indicate significant difference at 5% level among different treatments.


下载: 导出CSV
表32015年和2016年冬小麦季深松深度对冬小麦开花期根系生长的影响
Table3.Effect of subsoiling depth of winter wheat on root growth of winter wheat at anthesis stage in 2015 and 2016
年份
Year
土层
Soil layer(cm)
处理
Treatment
根长
Root length(m)
根系表面积
Root surface area(cm2)
根系平均直径
Root average diameter (mm)
根系体积
Root volume (cm3)
根系干重密度
Root dry weight density (g·cm-3)
2015 0~15 旋耕Rotary tillage 134.71±2.41c 1 967.56±87.35c 0.46±0.03a 23.10±2.17b 285.41±50.71c
深松30 cm Subsoiling 30 cm 212.82±1.72b 2 624.56±282.74b 0.39±0.04a 26.14±5.65ab 346.01±8.42b
深松40 cm Subsoiling 40 cm 247.80±21.76a 3 349.12±424.38a 0.43±0.05a 36.78±9.53a 439.41±16.85a
深松50 cm Subsoiling 50 cm 194.80±1.78b 2 520.75±312.83b 0.40±0.05a 26.63±6.57ab 308.33±7.57bc
深松60 cm Subsoiling 60 cm 159.80±23.00c 2 140.23±205.62bc 0.43±0.04a 23.13±2.72b 295.31±1.88c
15~30 旋耕Rotary tillage 12.50±1.85e 110.91±13.43b 0.28±0.01ab 0.78±0.08b 9.72±1.83e
深松30 cm Subsoiling 30 cm 25.05±1.54c 217.10±14.24ab 0.27±0.01b 1.50±0.11ab 17.88±0.79c
深松40 cm Subsoiling 40 cm 19.83±1.66d 183.66±12.59ab 0.30±0.02ab 1.36±0.13ab 13.72±2.17d
深松50 cm Subsoiling 50 cm 29.56±2.81b 261.99±40.02a 0.28±0.02ab 1.85±0.38a 21.88±2.71b
深松60 cm Subsoiling 60 cm 33.28±0.45a 278.17±116.82a 0.31±0.03a 2.24±1.06a 26.39±1.83a
2016 0~15 旋耕Rotary tillage 17.35±0.70d 503.58±10.63c 0.92±0.02ab 11.64±0.29b 170.31±0.52c
深松30 cm Subsoiling 30 cm 39.32±3.69a 915.15±151.18a 0.71±0.05c 17.29±4.39a 301.39±28.23a
深松40 cm Subsoiling 40 cm 31.61±2.72b 759.18±27.44ab 0.77±0.06c 14.56±1.16ab 235.42±7.01b
深松50 cm Subsoiling 50 cm 27.27±0.53b 739.42±48.93b 0.87±0.06b 16.01±2.19ab 213.02±12.25b
深松60 cm Subsoiling 60 cm 22.50±2.85c 688.60±111.72b 0.97±0.05a 16.80±3.41ab 178.30±4.67c
15~30 旋耕Rotary tillage 12.49±1.83c 185.10±29.47c 0.47±0.03a 2.19±0.42b 15.10±3.25d
深松30 cm Subsoiling 30 cm 15.34±0.51bc 217.97±15.03c 0.45±0.03a 2.47±0.33ab 20.66±0.79c
深松40 cm Subsoiling 40 cm 17.35±0.86b 241.74±40.92b 0.44±0.06a 2.72±0.83ab 22.05±1.09bc
深松50 cm Subsoiling 50 cm 21.91±2.85a 309.18±37.95ab 0.45±0.04a 3.49±0.59ab 25.69±1.97ab
深松60 cm Subsoiling 60 cm 24.47±2.68a 338.22±64.65a 0.44±0.04a 3.74±1.03a 29.86±3.59a
??同一作物同一土层不同小写字母表示不同处理间差异达5%显著水平。Different lowercase letters indicate significant differences among treatments in the same soil layer for the same crop at 5% level.


下载: 导出CSV
表42015年和2016年小麦季深松深度对作物产量的影响
Table4.Effects of subsoiling depth of winter wheat on crops yields in 2015 and 2016
t·hm-2
处理
Treatment
2015 2016
冬小麦
Winter wheat
夏玉米
Summer maize
周年总产
Whole yield
冬小麦
Winter wheat
夏玉米
Summer maize
周年总产
Whole yield
旋耕Rotary tillage 7.98±0.48b 9.24±0.59b 17.21±0.92b 10.81±0.50b 7.22±0.21b 18.03±0.60b
深松30 cm Subsoiling 30 cm 10.38±0.15a 9.46±0.63b 19.84±0.61a 11.89±0.31a 7.78±0.24a 19.67±0.23a
深松40 cm Subsoiling 40 cm 9.92±0.69a 9.84±0.12ab 19.76±0.69a 11.80±0.27a 7.63±0.17a 19.43±0.13a
深松50 cm Subsoiling 50 cm 8.10±0.83b 10.53±0.13a 18.63±0.94ab 11.11±0.65ab 7.79±0.07a 18.91±0.61ab
深松60 cm Subsoiling 60 cm 8.47±1.22b 9.85±0.22ab 18.32±1.38ab 11.52±0.36ab 7.01±0.27b 18.53±0.38ab
??同列不同小写字母表示处理间差异达5%显著水平。Different lowercase letters in the same column indicate significant differences among treatments at 5% level.


下载: 导出CSV
表52015年和2016年小麦季深松深度对水分利用效率的影响
Table5.Effect of subsoiling depth of winter wheat on water use efficiencies in 2015 and 2016
kg·hm-2·mm-1
处理
Treatment
2015 2016
冬小麦季
Winter wheat
夏玉米季
Summer maize
周年
Whole year
冬小麦季
Winter wheat
夏玉米季
Summer maize
周年
Whole year
旋耕Rotary tillage 15.72±0.40c 20.55±0.83c 18.13±0.59c 11.09±0.23c 25.08±0.36c 18.08±0.30b
深松30 cm Subsoiling 30 cm 18.09±0.43a 21.82±0.70b 19.95±0.40b 12.89±0.48a 26.02±0.28b 19.46±0.38a
深松40 cm Subsoiling 40 cm 17.82±0.66a 21.92±0.73b 19.87±0.64b 12.93±0.09a 26.00±0.33b 19.47±0.19a
深松50 cm Subsoiling 50 cm 16.75±0.33b 25.12±0.40a 20.94±0.36a 11.89±0.45b 27.90±0.34a 19.90±0.28a
深松60 cm Subsoiling 60 cm 17.00±0.28b 22.80±0.28b 19.90±0.28b 11.53±0.50bc 24.06±0.36d 17.80±0.41b
??同列不同小写字母表示处理间差异达5%显著水平。Different lowercase letters in the same column indicate significant differences among treatments at 5% level.


下载: 导出CSV

参考文献(42)
[1]全国土壤普查办公室.中国土壤[M].北京:中国农业出版社, 1998:601-617
The National Soil Survey Office. Soil of China[M]. Beijing:China Agriculture Press, 1998:601-617
[2]查理思, 吴克宁, 李玲, 等.河南省砂姜黑土土属的耕作障碍因素研究[J].土壤通报, 2015, 46(2):280-286 http://d.old.wanfangdata.com.cn/Periodical/trtb201502004
ZHA L S, WU K N, LI L, et al. The cultivation obstacle factors of lime concretion black soil genuses in Henan[J]. Chinese Journal of Soil Science, 2015, 46(2):280-286 http://d.old.wanfangdata.com.cn/Periodical/trtb201502004
[3]杜群, 欧阳竹.淮北砂姜黑土区小麦单产变化及影响因素分析[J].中国生态农业学报, 2008, 16(6):1434-1438 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2008618&flag=1
DU Q, OUYANG Z. Changes in per-hectare yield of wheat and related factors in Shajiang black soil region of the Huaibei Plain[J]. Chinese Journal of Eco-Agriculture, 2008, 16(6):1434-1438 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2008618&flag=1
[4]侯晓娜, 李慧, 朱刘兵, 等.生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响[J].中国农业科学, 2015, 48(4):705-712 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201504008
HOU X N, LI H, ZHU L B, et al. Effects of biochar and straw additions on lime concretion black soil aggregate composition and organic carbon distribution[J]. Scientia Agricultura Sinica, 2015, 48(4):705-712 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201504008
[5]谢迎新, 靳海洋, 孟庆阳, 等.深耕改善砂姜黑土理化性状提高小麦产量[J].农业工程学报, 2015, 31(10):167-173 doi: 10.11975/j.issn.1002-6819.2015.10.022
XIE Y X, JIN H Y, MENG Q Y, et al. Deep tillage improving physical and chemical properties of soil and increasing grain yield of winter wheat in lime concretion black soil farmland[J]. Transactions of the SEA, 2015, 31(10):167-173 doi: 10.11975/j.issn.1002-6819.2015.10.022
[6]Salem H M, Valero C, Mu?oz M á, et al. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield[J]. Geoderma, 2015, 237/238:60-70 doi: 10.1016/j.geoderma.2014.08.014
[7]JI B, Zhao Y, Mu X, et al. Effects of tillage on soil physical properties and root growth of maize in loam and clay in central China[J]. Plant, Soil and Environment, 2013, 59(7):295-302 doi: 10.17221/PSE
[8]朱瑞祥, 张军昌, 薛少平, 等.保护性耕作条件下的深松技术试验[J].农业工程学报, 2009, 25(6):145-147 doi: 10.3969/j.issn.1002-6819.2009.06.027
ZHU R X, ZHANG J C, XUE S P, et al. Experimentation about subsoiling technique for conservation tillage[J]. Transactions of the CSAE, 2009, 25(6):145-147 doi: 10.3969/j.issn.1002-6819.2009.06.027
[9]农业部农业机械化管理司.中国农业机械化年鉴[M].北京:中国农业科学技术出版社, 2016
Department of Farm Mechanization, Ministry of Agriculture, China. The Yearbook of Agricultural Mechanization in China[M]. Beijing:China Agricultural Science and Technology Press, 2016
[10]孔晓民, 韩成卫, 曾苏明, 等.不同耕作方式对土壤物理性状及玉米产量的影响[J].玉米科学, 2014, 22(1):108-113 doi: 10.3969/j.issn.1005-0906.2014.01.019
KONG X M, HAN C W, ZENG S M, et al. Effects of different tillage managements on soil physical properties and maize yield[J]. Journal of Maize Sciences, 2014, 22(1):108-113 doi: 10.3969/j.issn.1005-0906.2014.01.019
[11]陈宁宁, 李军, 吕薇, 等.不同轮耕方式对渭北旱塬麦玉轮作田土壤物理性状与产量的影响[J].中国生态农业学报, 2015, 23(9):1102-1111 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015904&flag=1
CHEN N N, LI J, LYU W, et al. Effects of different rotational tillage patterns on soil physical properties and yield of winter wheat-spring maize rotation field in Weibei highland[J]. Chinese Journal of Eco-Agriculture, 2015, 23(9):1102-1111 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015904&flag=1
[12]尹宝重, 甄文超, 马燕会.深松一体化播种对夏玉米农田土壤水热特征及微生物动态的影响[J].中国生态农业学报, 2015, 23(3):285-293 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015304&flag=1
YIN B Z, ZHEN W C, MA Y H, et al. Effects of subsoiling-seeding on soil water, temperature and microbial characteristics of summer maize field[J]. Chinese Journal of Eco-Agriculture, 2015, 23(3):285-293 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015304&flag=1
[13]郭志军, 佟金, 周志立, 等.深松技术研究现状与展望[J].农业工程学报, 2001, 17(6):169-174 doi: 10.3321/j.issn:1002-6819.2001.06.042
GUO Z J, TONG J, ZHOU Z L, et al. Review of subsoiling techniques and their applications[J]. Transactions of the CSAE, 2001, 17(6):169-174 doi: 10.3321/j.issn:1002-6819.2001.06.042
[14]李其昀.深松覆盖免耕沟播机械化技术[J].农业工程学报, 1996, 12(4):132-136 doi: 10.3321/j.issn:1002-6819.1996.04.027
LI Q Y. The mechanization technology for subsoiling, mulching, non-tillage and furrow-planting[J]. Transactions of the CSAE, 1996, 12(4):132-136 doi: 10.3321/j.issn:1002-6819.1996.04.027
[15]BUNNA S, SINATH P, MAKARA O, et al. Effects of straw mulch on mungbean yield in rice fields with strongly compacted soils[J]. Field Crops Research, 2011, 124(3):295-301 doi: 10.1016/j.fcr.2011.06.015
[16]MALHI S S, NYBORG M, SOLBERG E D, et al. Improving crop yield and N uptake with long-term straw retention in two contrasting soil types[J]. Field Crops Research, 2011, 124(3):378-391 doi: 10.1016/j.fcr.2011.07.009
[17]黄昌勇.土壤学[M].北京:中国农业出版社, 2000:66-69
HUANG C Y. Soil Science[M]. Beijing:China Agriculture Press, 2000:66-69
[18]郭海斌, 冀保毅, 王巧锋, 等.深耕与秸秆还田对不同质地土壤物理性状和作物产量的影响[J].河南农业大学学报, 2014, 48(4):505-511 http://cdmd.cnki.com.cn/Article/CDMD-10466-1014420953.htm
GUO H B, JI B Y, WANG Q F, et al. Effects of deep tillage and straw returning on soil physical properties and grain yield of different soil texture[J]. Journal of Henan Agricultural University, 2014, 48(4):505-511 http://cdmd.cnki.com.cn/Article/CDMD-10466-1014420953.htm
[19]刘增进, 李宝萍, 李远华, 等.冬小麦水分利用效率与最优灌溉制度的研究[J].农业工程学报, 2004, 20(4):58-63 http://d.old.wanfangdata.com.cn/Periodical/nygcxb200404013
LIU Z J, LI B P, LI Y H, et al. Research on the water use efficiency and optimal irrigation schedule of the winter wheat[J]. Transactions of the CSAE, 2004, 20(4):58-63 http://d.old.wanfangdata.com.cn/Periodical/nygcxb200404013
[20]江晓东, 李增嘉, 侯连涛, 等.少免耕对灌溉农田冬小麦/夏玉米作物水、肥利用的影响[J].农业工程学报, 2005, 21(7):20-24 doi: 10.3321/j.issn:1002-6819.2005.07.005
JIANG X D, LI Z J, HOU L T, et al. Impacts of minimum tillage and no-tillage systems on soil NO3--N content and water use efficiency of winter wheat/summer corn cultivation[J]. Transactions of the CSAE, 2005, 21(7):20-24 doi: 10.3321/j.issn:1002-6819.2005.07.005
[21]侯连涛, 江晓东, 韩宾, 等.不同覆盖处理对冬小麦气体交换参数及水分利用效率的影响[J].农业工程学报, 2006, 22(9):58-63 doi: 10.3321/j.issn:1002-6819.2006.09.012
HOU L T, JIANG X D, HAN B, et al. Effects of different mulching treatments on the gas exchange parameters and water use efficiency of winter wheat[J]. Transactions of the CSAE, 2006, 22(9):58-63 doi: 10.3321/j.issn:1002-6819.2006.09.012
[22]AHMAD N, HASSAN F U, BELFORD R K. Effect of soil compaction in the sub-humid cropping environment in Pakistan on uptake of NPK and grain yield in wheat (Triticum aestivum):Ⅰ. Compaction[J]. Field Crops Research, 2008, 110(1):54-60 https://www.sciencedirect.com/science/article/pii/S0378429008001366
[23]张丽, 张中东, 郭正宇, 等.深松耕作和秸秆还田对农田土壤物理特性的影响[J].水土保持通报, 2015, 35(1):102-106 http://d.old.wanfangdata.com.cn/Periodical/stbctb201501019
ZHANG L, ZHANG Z D, GUO Z Y, et al. Effects of subsoiling tillage and straw returning to field on soil physical properties[J]. Bulletin of Soil and Water Conservation, 2015, 35(1):102-106 http://d.old.wanfangdata.com.cn/Periodical/stbctb201501019
[24]LAL R, SHUKLA M K. Principles of Soil Physics[M]. New York:Marcel Dekker, Inc., 2004:15-19
[25]齐华, 刘明, 张卫建, 等.深松方式对土壤物理性状及玉米根系分布的影响[J].华北农学报, 2012, 27(4):191-196 doi: 10.3969/j.issn.1000-7091.2012.04.037
QI H, LIU M, ZHANG W J, et al. Effect of deep loosening mode on soil physical characteristics and maize root distribution[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(4):191-196 doi: 10.3969/j.issn.1000-7091.2012.04.037
[26]LI X, TANG M J, ZHANG D X, et al. Effects of sub-soiling on soil physical quality and corn yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23):65-69 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201423009
[27]谢军红, 张仁陟, 李玲玲, 等.耕作方法对黄土高原旱作玉米产量和土壤水温特性的影响[J].中国生态农业学报, 2015, 23(11):1384-1393 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151105&flag=1
XIE J H, ZHANG R Z, LI L L, et al. Effect of different tillage practice on rain-fed maize yield and soil water/temperature characteristics in the Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2015, 23(11):1384-1393 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151105&flag=1
[28]张凤杰, 孙继颖, 高聚林, 等.春玉米根系形态及土壤理化性质对深松深度的响应研究[J].玉米科学, 2016, 24(6):88-96 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016121600122513
ZHANG F J, SUN J Y, GAO J L, et al. Response of spring maize root morphological characteristics and soil physicochemical properties to chiseling depth[J]. Journal of Maize Sciences, 2016, 24(6):88-96 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016121600122513
[29]王群, 李潮海, 李全忠, 等.紧实胁迫对不同类型土壤玉米根系时空分布及活力的影响[J].中国农业科学, 2011, 44(10):2039-2050 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201110009
WANG Q, LI C H, LI Q Z, et al. Effect of soil compaction on spatio-temporal distribution and activities in maize under different soil types[J]. Scientia Agricultura Sinica, 2011, 44(10):2039-2050 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201110009
[30]刘朝巍, 张恩和, 谢瑞芝, 等.玉米宽窄行交替休闲保护性耕作的根系和光分布特征研究[J].中国生态农业学报, 2012, 20(2):203-209 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012212&flag=1
LIU C W, ZHANG E H, XIE R Z, et al. Effect of conservation tillage of wide/narrow row planting on maize root and transmittance distribution[J]. Chinese Journal of Eco-Agriculture, 2012, 20(2):203-209 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012212&flag=1
[31]孔凡磊, 陈阜, 张海林, 等.轮耕对土壤物理性状和冬小麦产量的影响[J].农业工程学报, 2010, 26(8):150-155 doi: 10.3969/j.issn.1002-6819.2010.08.026
KONG F L, CHEN F, ZHANG H L, et al. Effects of rotational tillage on soil physical properties and winter wheat yield[J]. Transactions of the CSAE, 2010, 26(8):150-155 doi: 10.3969/j.issn.1002-6819.2010.08.026
[32]于晓芳, 高聚林, 叶君, 等.深松及氮肥深施对超高产春玉米根系生长、产量及氮肥利用效率的影响[J].玉米科学, 2013, 21(1):114-119 doi: 10.3969/j.issn.1005-0906.2013.01.021
YU X F, GAO J L, YE J, et al. Effects of deep loosening with nitrogen deep placement on root growth, grain yield and nitrogen use efficiency of super high-yield spring maize[J]. Journal of Maize Sciences, 2013, 21(1):114-119 doi: 10.3969/j.issn.1005-0906.2013.01.021
[33]王法宏, 王旭清, 任德昌, 等.土壤深松对小麦根系活性的垂直分布及旗叶衰老的影响[J].核农学报, 2003, 17(1):56-61 doi: 10.3969/j.issn.1000-8551.2003.01.011
WANG F H, WANG X Q, REN D C, et al. Effect of soil deep tillage on root activity and vertical distribution[J]. Acta Agriculturae Nucleatae Sinica, 2003, 17(1):56-61 doi: 10.3969/j.issn.1000-8551.2003.01.011
[34]张瑞富, 杨恒山, 高聚林, 等.深松对春玉米根系形态特征和生理特性的影响[J].农业工程学报, 2015, 31(5):78-84 doi: 10.3969/j.issn.1002-6819.2015.05.012
ZHANG R F, YANG H S, GAO J L, et al. Effect of subsoiling on root morphological and physiological characteristics of spring maize[J]. Transactions of the CSAE, 2015, 31(5):78-84 doi: 10.3969/j.issn.1002-6819.2015.05.012
[35]王新兵, 侯海鹏, 周宝元, 等.条带深松对不同密度玉米群体根系空间分布的调节效应[J].作物学报, 2014, 40(12):2136-2148 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201412013
WANG X B, HOU H P, ZHOU B Y, et al. Effect of strip subsoiling on population root spatial distribution of maize under different planting densities[J]. Acta Agronomica Sinica, 2014, 40(12):2136-2148 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201412013
[36]CAI H G, MA W, ZHANG X Z, et al. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize[J]. The Crop Journal, 2014, 2(5):297-307 doi: 10.1016/j.cj.2014.04.006
[37]张岁岐, 山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究, 2002, 20(4):1-5 doi: 10.3321/j.issn:1000-7601.2002.04.001
ZHANG S Q, SHAN L. Research progress on water use efficiency of plant[J]. Agricultural Research in the Arid Areas, 2002, 20(4):1-5 doi: 10.3321/j.issn:1000-7601.2002.04.001
[38]王育红, 姚宇卿, 吕军杰, 等.豫西旱坡地高留茬深松对冬小麦生态效应的研究[J].中国生态农业学报, 2004, 12(2):146-148 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2004245&flag=1
WANG Y H, YAO Y Q, LYU J J, et al. Ecological effect of subsoiling high stubble on the winter wheat in sloping land of western Henan[J]. Chinese Journal of Eco-Agriculture, 2004, 12(2):146-148 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2004245&flag=1
[39]张喜英.提高农田水分利用效率的调控机制[J].中国生态农业学报, 2013, 21(1):80-87 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013110&flag=1
ZHANG X Y. Regulating mechanisms for improving farmland water use efficiency[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1):80-87 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013110&flag=1
[40]杨永辉, 武继承, 李学军, 等.耕作和保墒措施对冬小麦生育时期光合特征及水分利用的影响[J].中国生态农业学报, 2014, 22(5):534-542 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014505&flag=1
YANG Y H, WU J C, LI X J, et al. Impact of tillage and soil moisture conservation measures on photosynthetic characteristics and water use of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2014, 22(5):534-542 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014505&flag=1
[41]秦红灵, 高旺盛, 马月存, 等.两年免耕后深松对土壤水分的影响[J].中国农业科学, 2008, 41(1):78-85 doi: 10.3864/j.issn.0578-1752.2008.01.010
QIN H L, GAO W S, MA Y C, et al. Effects of subsoiling on soil moisture under no-tillage 2 years later[J]. Scientia Agricultura Sinica, 2008, 41(1):78-85 doi: 10.3864/j.issn.0578-1752.2008.01.010
[42]张海林, 高旺盛, 陈阜, 等.保护性耕作研究现状、发展趋势及对策[J].中国农业大学学报, 2005, 10(1):16-20 doi: 10.3321/j.issn:1007-4333.2005.01.005
ZHANG H L, GAO W S, CHEN F, et al. Prospects and present situation of conservation tillage[J]. Journal of China Agricultural University, 2005, 10(1):16-20 doi: 10.3321/j.issn:1007-4333.2005.01.005

相关话题/土壤 作物 科学 物理 生态