删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

牛粪和生物炭对苹果根系生长、土壤特性和氮素利用的影响

本站小编 Free考研考试/2022-01-01

王芬1,,
刘会1,
冯敬涛1,
田歌1,
刘相阳2,
葛顺峰1,,,
姜远茂1,,
1.山东农业大学园艺科学与工程学院/作物生物学国家重点实验室 泰安 271018
2.陕西枫丹百丽生物科技有限公司 千阳 721100
基金项目: 国家重点研发计划项目2016YFD0201100
国家自然科学基金项目31501713
国家现代农业产业技术体系建设资金项目CARS-27

详细信息
作者简介:王芬, 主要研究方向为苹果氮素营养。E-mail:757086004@qq.com
通讯作者:葛顺峰, 主要从事果树营养生理与氮、磷循环研究, E-mail:geshunfeng210@126.com
姜远茂, 主要从事果树营养生理和土壤肥力研究, E-mail:ymjiang@sdau.edu.cn
中图分类号:S661.1

计量

文章访问数:723
HTML全文浏览量:13
PDF下载量:581
被引次数:0
出版历程

收稿日期:2018-04-18
录用日期:2018-07-05
刊出日期:2018-12-01

Effects of cow dung and biochar on root growth, soil properties and nitrogen utilization of apple

WANG Fen1,,
LIU Hui1,
FENG Jingtao1,
TIAN Ge1,
LIU Xiangyang2,
GE Shunfeng1,,,
JIANG Yuanmao1,,
1. College of Horticultural Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai'an 271018, China
2. Shaanxi BELLE Ferndean Biotechnology Co. Ltd., Qianyang 721100, China
Funds: the National Key R&D Program of China2016YFD0201100
the National Natural Science Foundation of China31501713
the National Modern Agricultural Industry Technology System Construction Fund Project of ChinaCARS-27

More Information
Corresponding author:GE Shunfeng, E-mail: geshunfeng210@126.com;JIANG Yuanmao, E-mail: ymjiang@sdau.edu.cn


摘要
HTML全文
(1)(5)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:以两年生红富士/平邑甜茶苹果为试材,采用15N同位素示踪技术,研究牛粪与生物炭不同配比对苹果根系生长、土壤特性和氮素吸收利用的影响,为苹果生产中合理施肥及可持续发展提供依据。试验共设6个处理:对照(CK)、100%牛粪(T1)、75%牛粪+25%生物炭(T2)、50%牛粪+50%生物炭(T3)、25%牛粪+75%生物炭(T4)和100%生物炭(T5)。结果表明,牛粪和生物炭混施可显著改善土壤理化性状,增加土壤有机质、碱解氮、速效磷和速效钾含量,降低土壤容重。苹果根际土壤中的微生物均以细菌占绝对优势,放线菌次之,真菌含量最少;添加牛粪和生物炭均显著提高了根际土壤的细菌、放线菌和真菌数量,其中T2处理细菌、放线菌和真菌数量均达到最高。牛粪和生物炭混施还可促进苹果根系生长,根尖数、根表面积和根系活力等指标均在T2处理达到最高,分别较对照提高47.90%、33.47%、44.67%。表明T2处理可显著促进苹果根系的生长和根系活力的提高。与对照相比,牛粪和生物炭混合处理显著提高了苹果各器官的Ndff值、全氮量和15N吸收量,提高了15N利用率和15N残留率,降低了15N损失率。各处理15N利用率和15N残留率趋势为牛粪和生物炭混合处理最高,单施牛粪或生物炭处理次之,对照最低;15N损失率呈相反的变化趋势。其中以T2处理效果最好,15N利用率和15N残留率最高,15N损失率最低,15N利用率较对照提高5.51%,15N损失率较对照降低14.52%。综合分析认为,75%牛粪+25%生物炭处理(T2)对苹果根系生长、土壤特性和氮素吸收利用的效果最好。
关键词:苹果/
牛粪/
生物炭/
根系/
氮素利用/
土壤养分/
土壤微生物
Abstract:Two-year-old 'Fuji' apple (Malus domestica Borkh. cv Red Fuji/Malus hupehensis) trees were used to study the effect of cow dung and biochar on soil properties, and apple root growth, nitrogen uptake and utilization using 15N isotope tracer technique. The study aimed at providing reference for rational fertilization and sustainable apple development and production. There were 6 treatments in the study-no cow dung or biochar (CK), 100% cow dung (T1), 75% cow dung + 25% biochar (T2), 50% cow dung + 50% biochar (T3), 25% cow dung + 75% biochar (T4) and 100% biochar (T5). The results showed that combined application of cow dung and biochar improved soil physical and chemical properties, and increased soil contents of organic matter, alkali-hydrolyzale nitrogen, available phosphorus and available potassium, but reduced soil bulk density. The soil contents of organic matter, alkali-hydrolyzale nitrogen, available phosphorus and available potassium decreased gradually with decreasing cow dung proportion, and they were highest under T1, which increased by respectively 97.31%, 19.01%, 24.37% and 32.73% over CK. There was no significant difference between T1 and T2 in terms of the contents of the variables. Soil bulk density decreased with gradual increase in biochar proportion. The difference between T4 and T5 treatments was not significant. Soil bulk density under T4 or T5 treatment was significantly lower than that of CK and T1. Bacteria population was highest in rhizosphere soil, followed by actinomyces, and fungus content was lowest. The addition of cow dung and biochar significantly increased the number of bacteria, actinomycetes and fungus in rhizosphere soil. The population of bacteria, actinomycetes and fungus was highest in T2 treated soil. The cow dung and biochar mixture also promoted apple root growth. Root tip, root surface area and root activity were highest in T2 treated soil, with respective increases of 47.90%, 33.47% and 44.67% over that of CK. Compared with CK, the cow dung plus biochar significantly improved the Ndff value, total nitrogen and 15N absorption of various organs of apple. It also increased 15N utilization and residual rate, while reducing 15N loss rate. The utilization rate and the residual rate of 15N were higher under treatments of mixed cow dung and biochar. Single application of cow dung or biochar was second and CK treatment the lowest. The loss rate of 15N showed the reverse trend. T2 treatment showed best with the highest 15N utilization rate and residue rate and lowest 15N loss rate. Under T2 treatment, while 15N utilization ratio increased by 5.51%, 15N loss rate decreased by 14.52% compared with CK. Comprehensive analysis showed that the 75% cow dung + 25% biochar treatment (T2) had the best effect on apple root growth, soil characteristics and nitrogen absorption and utilization.
Key words:Apple/
Cow dung/
Biochar/
Root/
Nitrogen utlization/
Soil nutrients/
Soil microbia

HTML全文


图1不同添加牛粪和生物炭处理对肥料15N去向的影响
Figure1.Effects of different treatments of cow dung and biochar application on the fate of fertilizer 15N


下载: 全尺寸图片幻灯片

表1试验处理及其牛粪和生物炭施用量设计
Table1.Experimental treatments and their application rates of cow dung and biochar
g·kg-1(soil)
处理
Treatment
牛粪
Cow dung
生物炭
Biochar
CK 对照Control 0 0
T1 100%牛粪100% cow dung 30 0
T2 75%牛粪+25%生物炭
75% cow dung + 25% biochar
22.5 7.5
T3 50%牛粪+50%生物炭
50% cow dung + 50% biochar
15 15
T4 25%牛粪+75%生物炭
25% cow dung + 75% biochar
7.5 22.5
T5 100%生物炭100% biochar 0 30


下载: 导出CSV
表2不同添加牛粪和生物炭处理对土壤理化性质的影响
Table2.Effects of different treatments of cow dung and biochar application on physical and chemical properties of soil
处理
Treatment
有机质
Organic matter
(g·kg-1)
碱解氮
Alkali-hydrolyzale N
(mg·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
土壤容重
Bulk density
(g·cm-3)
CK 12.66±0.86c 157.07±7.51c 39.76±2.30b 207.32±7.50c 1.34a
T1 24.98±1.38a 186.93±16.68a 49.45±2.74a 275.18±10.10a 1.33a
T2 24.05±0.57a 182.79±11.93ab 47.61±1.13a 263.04±6.86ab 1.30ab
T3 19.58±1.06b 177.52±8.04ab 43.43±3.06b 244.43±22.52b 1.28abc
T4 18.41±2.00b 173.89±5.28abc 42.44±1.66b 224.13±5.28c 1.21bc
T5 17.99±0.64b 167.08±4.86bc 41.62±2.42b 217.33±4.86c 1.19c
同列不同小写字母分别表示各处理间差异显著(P < 0.05)。Data followed by different lowercase letters in the same row are significantly different at 5%.


下载: 导出CSV
表3不同添加牛粪和生物炭处理对苹果根际土壤微生物数量的影响
Table3.Effects of different treatments of cow dung and biochar application on numbers of microbes in apple rhizosphere soil
处理
Treatment
细菌
Bacteria
(108 CFU·g-1)
放线菌
Actinomycetes
(106 CFU·g-1)
真菌
Fungus
(104 CFU·g-1)
CK 2.41±0.08d 7.89±0.57d 1.94±0.13d
T1 2.92±019bc 11.95±1.49c 2.53±0.12c
T2 3.38±0.11a 16.73±1.69a 3.75±0.08a
T3 3.32±018a 16.41±1.03a 3.52±0.11a
T4 3.17±030ab 14.31±082b 3.12±0.24b
T5 2.75±0.08c 10.88±0.80c 2.48±0.12c
同列不同小写字母分别表示各处理间差异显著(P < 0.05)。Data followed by different lowercase letters in the same column are significantly different at 5%.


下载: 导出CSV
表4不同添加牛粪和生物炭处理对植株生物量、根系形态指标和根系活力的影响
Table4.Effects of different treatments of cow dung and biochar application on biomass, root morphological indices and root activity of apple
处理
Treatment
总干重
Total dry weight
(g·plant-1)
根系形态Root morphological 根系活力
Root activity
(μg·h-1·g-1)
总根长
Total root length (cm)
根尖数
Number of root tips
根表面积
Root surface area (cm2)
CK 146.67±10.26d 1 075.71±59.58d 7 221.93±168.84c 531.65±25.74c 60.53±2.33d
T1 170.33±12.64c 1 326.57±95.71c 8 450.52±152.94b 615.44±17.29b 75.29±4.57bc
T2 226.34±12.07a 1 663.16±39.44a 10 681.20±886.17a 709.57±49.71a 87.57±5.02a
T3 221.00±13.47a 1 754.94±72.98a 9 992.49±814.56a 696.63±52.67a 84.06±3.92a
T4 191.33±10.35b 1 473.34±137.98b 8 748.06±953.49b 668.90±41.90ab 80.19±4.82ab
T5 165.66±12.28c 1 244.31±43.97c 8 439.45±92.08b 610.30±49.08b 70.03±4.52c
同列不同小写字母分别表示各处理间差异显著(P < 0.05)。Data followed by different lowercase letters in the same column are significantly different at 5%.


下载: 导出CSV
表5不同添加牛粪和生物炭处理对苹果各器官Ndff、全氮量和15N吸收量的影响
Table5.Effects of different treatments of cow dung and biochar application on Ndff values of different organs, total nitrogen and 15N absorption of apple
处理
Treatment
Ndff (%) 全氮量
Total N
(g·plant-1)
15N吸收量
15N absorption
(g·plant-1)
根Root 茎Stem 叶Leaf
CK 10.90±0.63d 9.04±0.25d 8.19±0.25d 1.30±0.08d 0.11±0.01e
T1 13.29±1.18bc 10.44±0.65c 9.92±0.19c 1.59±0.14bc 0.14±0.01cd
T2 15.11±0.78a 12.93±0.56a 11.74±0.23a 1.84±0.06a 0.17±0.01a
T3 14.46±0.48ab 12.61±0.32a 11.26±0.25ab 1.72±0.06ab 0.15±0.01b
T4 14.18±0.46ab 11.59±0.46b 10.74±0.46b 1.69±0.06b 0.15±0.01bc
T5 12.22±0.39c 10.70±0.39c 9.85±0.39c 1.46±0.05c 0.13±0.01d
同列不同小写字母分别表示各处理间差异显著(P < 0.05)。Data followed by different lowercase letters in the same column are significantly different at 5%.


下载: 导出CSV

参考文献(32)
[1]彭福田, 姜远茂.不同产量水平苹果园氮磷钾营养特点研究[J].中国农业科学, 2006, 39(2): 361-367 doi: 10.3321/j.issn:0578-1752.2006.02.021
PENG F T, JIANG Y M. Characteristics of N, P, and K nutrition in different yield level apple orchards[J]. Scientia Agricultura Sinica, 2006, 39(2): 361-367 doi: 10.3321/j.issn:0578-1752.2006.02.021
[2]葛顺峰, 姜远茂, 陈倩, 等.土壤有机质含量对平邑甜茶生长及氮素吸收和损失的影响[J].水土保持学报, 2012, 26(1): 81-84 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201201017
GE S F, JIANG Y M, CHEN Q, et al. Effect of soil organic matter content on growth and 15N-urea absorption, utilization and loss of Malus hupehensis[J]. Journal of Soil and Water Conservation, 2012, 26(1): 81-84 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201201017
[3]葛顺峰, 朱占玲, 魏绍冲, 等.中国苹果化肥减量增效技术途径与展望[J].园艺学报, 2017, 44(9): 1681-1692 http://d.old.wanfangdata.com.cn/Periodical/yyxb201709004
GE S F, ZHU Z L, WEI S C, et al. Technical approach and research prospect of saving and improving efficiency of chemical fertilizers for apple in China[J]. Acta Horticulturae Sinica, 2017, 44(9): 1681-1692 http://d.old.wanfangdata.com.cn/Periodical/yyxb201709004
[4]葛顺峰, 姜远茂.国内外苹果产量差、氮效率差及我国苹果节氮潜力分析[J].中国果树, 2017, (4): 94-97 http://d.old.wanfangdata.com.cn/Periodical/zhongggs201704030
GE S F, JIANG Y M. Difference of apple yield and nitrogen efficiency at home and abroad and analysis of the potential of apple nitrogen reduction in China[J]. China Fruits, 2017, (4): 94-97 http://d.old.wanfangdata.com.cn/Periodical/zhongggs201704030
[5]CHAN K Y, VAN ZWIETEN L, MESZAROS I, et al. Using poultry litter biochars as soil amendments[J]. Australian Journal of Soil Research, 2008, 46(5): 437-444 doi: 10.1071/SR08036
[6]VAN ZWIETEN L, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1/2): 235-246 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd45581500636317aeabc54232a95e0e
[7]陈温福, 张伟明, 孟军, 等.生物炭应用技术研究[J].中国工程科学, 2011, 13(2): 83-89 doi: 10.3969/j.issn.1009-1742.2011.02.015
CHEN W F, ZHANG W M, MENG J, et al. Researches on biochar application technology[J]. Engineering Sciences, 2011, 13(2): 83-89 doi: 10.3969/j.issn.1009-1742.2011.02.015
[8]KIMETU J M, LEHMANN J, KRULL E, et al. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents[J]. Australian Journal of Soil Research, 2010, 48(7): 577-585 doi: 10.1071/SR10036
[9]张文玲, 李桂花, 高卫东.生物质炭对土壤性状和作物产量的影响[J].中国农学通报, 2009, 25(17): 153-157 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200917032
ZHANG W L, LI G H, GAO W D. Effect of biomass charcoal on soil character and crop yield[J]. Chinese Agricultural Science Bulletin, 2009, 25(17): 153-157 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200917032
[10]袁晶晶, 同延安, 卢绍辉, 等.生物炭与氮肥配施对土壤肥力及红枣产量、品质的影响[J].植物营养与肥料学报, 2017, 23(2): 468-475 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201702023
YUAN J J, TONG Y A, LU S H, et al. Effects of biochar and nitrogen fertilizer application on soil fertility and jujube yield and quality[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 468-475 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201702023
[11]高海英, 何绪生, 陈心想, 等.生物炭及炭基硝酸铵肥料对土壤化学性质及作物产量的影响[J].农业环境科学学报, 2012, 31(10): 1948-1955 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204561056
GAO H Y, HE X S, CHEN X X, et al. Effect of biochar and biochar-based ammonium nitrate fertilizers on soil chemical properties and crop yield[J]. Journal of Agro-Environment Science, 2012, 31(10): 1948-1955 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204561056
[12]何绪生, 张树清, 佘雕, 等.生物炭对土壤肥料的作用及未来研究[J].中国农学通报, 2011, 27(15): 16-25 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201115004
HE X S, ZHANG S Q, SHE D, et al. Effects of biochar on soil and fertilizer and future research[J]. Chinese Agricultural Science Bulletin, 2011, 27(15): 16-25 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201115004
[13]张文君, 刘兆辉, 江丽华, 等.有机无机复混肥对作物产量及品质的影响[J].山东农业科学, 2005, (3): 57-58 doi: 10.3969/j.issn.1001-4942.2005.03.026
ZHANG W J, LIU Z H, JIANG L H, et al. Effect of organic-inorganic compound fertilizer on crop yield and quality[J]. Shandong Agricultural Sciences, 2005, (3): 57-58 doi: 10.3969/j.issn.1001-4942.2005.03.026
[14]袁立, 王占哲, 刘春龙.国内外牛粪生物质资源利用的现状与趋势[J].中国奶牛, 2011, (5): 3-9 doi: 10.3969/j.issn.1004-4264.2011.05.002
YUAN L, WANG Z Z, LIU C L. Current situation and trend of dairy manure biomass resources at home and abroad[J]. China Dairy Cattle, 2011, (5): 3-9 doi: 10.3969/j.issn.1004-4264.2011.05.002
[15]孟安华, 吴景贵.不同处理牛粪对植菜土壤腐殖质结构特征的影响[J].水土保持学报, 2015, 29(4): 223-228 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201504041
MENG A H, WU J G. Effects of different cow dung treatments on humus structure of vegetable planting soil[J]. Journal of Soil and Water Conservation, 2015, 29(4): 223-228 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201504041
[16]井大炜, 张红, 王明友.牛粪对西瓜根际土壤微生物多样性及氮素利用率的影响[J].核农学报, 2014, 28(11): 2102-2107 doi: 10.11869/j.issn.100-8551.2014.11.2102
JING D W, ZHANG H, WANG M Y. Effect of cattle manure on microbial diversity in the rhizosphere soil and nitrogen use efficiency of watermelon[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(11): 2102-2107 doi: 10.11869/j.issn.100-8551.2014.11.2102
[17]高英杰.不同有机肥对葡萄产量和品质的影响[D].石河子: 石河子大学, 2013 http://www.cnki.com.cn/Article/CJFDTotal-XJLK201309032.htm
GAO Y J. Effects of different organic fertilizers on yield and quality of grape[D]. Shihezi: Shihezi University, 2013 http://www.cnki.com.cn/Article/CJFDTotal-XJLK201309032.htm
[18]冯锡鸿, 赵金华.育苗基质中腐熟牛粪用量对番茄、甜瓜幼苗生长的影响[J].中国农学通报, 2009, 25(6): 230-232 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200908054
FENG X H, ZHAO J H. Effects of the amount of cow manure compost on the seedling growth of tomato and melon[J]. Chinese Agricultural Science Bulletin, 2009, 25(6): 230-232 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200908054
[19]岳现录, 冀宏杰, 张认连, 等.华北平原冬小麦-夏玉米轮作体系秋季一次基施牛粪氮素损失与利用研究[J].植物营养与肥料学报, 2011, 17(3): 592-599 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201103011
YUE X L, JI H J, ZHANG R L, et al. Nitrogen loss and use efficiency of one-time basal application of cattle manure in autumn to a winter wheat-summer maize cropping system on the North China Plain[J]. Plant Nutrition and Fertilizer Science, 2011, 17(3): 592-599 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201103011
[20]张斌, 刘晓雨, 潘根兴, 等.施用生物质炭后稻田土壤性质、水稻产量和痕量温室气体排放的变化[J].中国农业科学, 2012, 45(23): 4844-4853 doi: 10.3864/j.issn.0578-1752.2012.23.011
ZHANG B, LIU X Y, PAN G X, et al. Changes in soil properties, yield and trace gas emission from a paddy after biochar amendment in two consecutive rice growing cycles[J]. Scientia Agricultura Sinica, 2012, 45(23): 4844-4853 doi: 10.3864/j.issn.0578-1752.2012.23.011
[21]高俊凤.植物生理学实验指导[M].北京:高等教育出版社, 2006
GAO J F. Experimental Guide of Plant Physiology[M]. Beijing: Higher Education Press, 2006
[22]陈伟, 周波, 束怀瑞.生物炭和有机肥处理对平邑甜茶根系和土壤微生物群落功能多样性的影响[J].中国农业科学, 2013, 46(18): 3850-3856 doi: 10.3864/j.issn.0578-1752.2013.18.014
CHEN W, ZHOU B, SU H R. Effects of organic fertilizer and biochar on root system and microbial functional diversity of Malus hupehensis rehd[J]. Scientia Agricultura Sinica, 2013, 46(18): 3850-3856 doi: 10.3864/j.issn.0578-1752.2013.18.014
[23]章明奎, BAYOU W D, 唐红娟.生物质炭对土壤有机质活性的影响[J].水土保持学报, 2012, 26(2): 127-131 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201202027
ZHANG M K, BAYOU W D, TANG H J. Effects of biochar's application on active organic carbon fractions in soil[J]. Journal of Soil and Water Conservation, 2012, 26(2): 127-131 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201202027
[24]周莉华, 李维炯, 倪永珍.长期施用EM生物有机肥对冬小麦生产的影响[J].农业工程学报, 2005, 21(S1): 221-224 http://d.old.wanfangdata.com.cn/Periodical/nygcxb2005z1054
ZHOU L H, LI W J, NI Y Z. Effects of long-term application of EM biological-organic fertilizer on winter wheat production[J]. Transactions of the CSAE, 2005, 21(S1): 221-224 http://d.old.wanfangdata.com.cn/Periodical/nygcxb2005z1054
[25]RAJKUMAR M, AE N, PRASAD M N V, et al. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction[J]. Trends in Biotechnology, 2010, 28(3): 142-149 doi: 10.1016/j.tibtech.2009.12.002
[26]NIHORIMBERE V, ONGENA M, SMARGIASSI M, et al. Beneficial effect of the rhizosphere microbial community for plant growth and health[J]. Biotechnologie, Agronomie, Société et Environnement, 2011, 15(2): 327-337 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_611e649bf91da190d789020cbfd12e7c
[27]PIETIK?INEN J, KⅡKKIL? O, FRITZE H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. Oikos, 2000, 89(2): 231-242 doi: 10.1034/j.1600-0706.2000.890203.x
[28]KOLB S E, FERMANICH K J, DORNBUSH M E. Effect of charcoal quantity on microbial biomass and activity in temperate soils[J]. Soil Science Society of America Journal, 2009, 73(4): 1173-1181 doi: 10.2136/sssaj2008.0232
[29]DEMPSTER D N, GLEESON D B, SOLAIMAN Z M, et al. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J]. Plant and Soil, 2012, 354(1/2): 311-324 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=56a66b51fb856b43fab69a094f3fcfbc
[30]VAN ZWIETEN L, KIMBER S, MORRIS S, et al. Influence of biochars on flux of N2O and CO2 from Ferrosol[J]. Australian Journal of Soil Research, 2010, 48(7): 555-568 doi: 10.1071/SR10004
[31]FARRELL M, MACDONALD L M, BUTLER G, et al. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield[J]. Biology and Fertility of Soils, 2014, 50(1): 169-178 doi: 10.1007/s00374-013-0845-z
[32]葛顺峰, 彭玲, 任饴华, 等.秸秆和生物质炭对苹果园土壤容重、阳离子交换量和氮素利用的影响[J].中国农业科学, 2014, 47(2): 366-373 http://d.old.wanfangdata.com.cn/Periodical/zgyywz201508147
GE S F, PENG L, REN Y H, et al. Effect of straw and biochar on soil bulk density, cation exchange capacity and nitrogen absorption in apple orchard soil[J]. Scientia Agricultura Sinica, 2014, 47(2): 366-373 http://d.old.wanfangdata.com.cn/Periodical/zgyywz201508147

相关话题/生物 土壤 微生物 科学 营养