删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

离子界面行为在土壤有机无机复合体形成中的作用

本站小编 Free考研考试/2022-01-01

李少博1,,
徐英德1,
高晓丹1,,,
张昀1,
张广才1,
李嵩1,
许晨阳2,
田锐3,
汪景宽1
1.沈阳农业大学土地与环境学院/土肥资源高效利用国家工程实验室/农业部东北耕地保育重点实验室 沈阳 110866
2.西北农林科技大学资源与环境学院 杨凌 712100
3.西南大学资源与环境学院/土壤多尺度界面过程与调控重庆市重点实验室 重庆 400715
基金项目: 国家自然科学基金青年科学基金41601230
中国博士后科学基金2017M611265
公益性行业(农业)科研专项基金201503118-10

详细信息
作者简介:李少博, 主要研究方向为土壤胶体与界面化学。E-mail:bobshaoli@163.com
通讯作者:高晓丹, 主要研究方向为土壤化学。E-mail:wataxi221@126.com
中图分类号:S153.3

计量

文章访问数:684
HTML全文浏览量:4
PDF下载量:638
被引次数:0
出版历程

收稿日期:2018-04-12
录用日期:2018-05-30
刊出日期:2018-11-01

The role of ionic interfacial behaviors in formation of soil organic-inorganic complexes

LI Shaobo1,,
XU Yingde1,
GAO Xiaodan1,,,
ZHANG Yun1,
ZHANG Guangcai1,
LI Song1,
XU Chenyang2,
TIAN Rui3,
WANG Jingkuan1
1. College of Land and Environment, Shenyang Agricultural University/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources/Northeast Key Laboratory of Arable Land Conservation and Improvement, Ministry of Agriculture, Shenyang 110866, China
2. College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
3. College of Resources and Environment, Southwest University/Chongqing Key Laboratory of Soil Multi-scale Interfacial Process and Control, Chongqing 400715, China
Funds: the National Natural Science Foundation of China41601230
the Postdoctoral Science Foundation of China2017M611265
the Special Fund for Agro-scientific Research in the Public Interest of China201503118-10

More Information
Corresponding author:GAO Xiaodan,E-mail:wataxi221@126.com


摘要
HTML全文
(1)(0)
参考文献(87)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:土壤有机物质与土壤矿物质表面之间的相互作用普遍存在,有关土壤有机无机复合体形成理论的研究倍受关注,土壤有机质与矿物质结合的紧密程度直接关系到土壤碳库的稳定性,在环境科学与农业资源利用领域有重要意义。但关于土壤有机无机复合体形成机制还不完善,土壤宏观、介观及微观各尺度间的作用机制未能衔接。本文综述了土壤有机无机复合胶体的形成(形成学说、作用机制与影响因子)及此过程中离子的界面行为;系统地梳理了离子在土壤有机无机复合体形成中的作用机制;回顾了土壤有机无机组分相互作用的研究方法;最后强调了离子特异性效应在土壤有机无机复合体形成中的作用,特别是化合价相同的不同离子对土壤系统的性质与过程具有不同的影响。即离子电子层数和外层电子排布的微小差异在土壤表面附近的强电场中被放大,通过极化作用提高离子的有效电荷,增强离子所受的库仑作用力。离子的有效电荷数可以定量表征该土壤胶体复合过程中界面上离子作用的强弱程度。结论不断完善土壤有机无机复合体形成理论,为土壤培肥和污染土壤修复提供理论依据,对促进土壤有机无机复合体环境化学和微粒污染物迁移动力学的研究具有重要的科学意义与实践意义。
关键词:土壤有机无机复合体/
离子吸附/
离子键/
离子特异性效应/
土壤有机质
Abstract:Interactions between soil organic matter and mineral surfaces are ubiquitous. Research on soil organic-inorganic complexes has received much attention. The association of soil organic matter and mineral has been related to the stability of soil carbon pool directly, and this is of great significance to the environmental sciences and agricultural resource utilization. However, the mechanism of the formation of soil organic-inorganic complexes has far remained from perfect, and the link of interaction mechanism at the macroscopic, mesoscopic, and microscopic scales of soil have not been reasonably explained. Therefore, this paper discussed the formation of organic-inorganic composite colloids (formation theory, action mechanism and influencing factors) and the interfacial behavior of ions in this process. It systematically combed the mechanism of ions in the formation of soil organic-inorganic complexes and recalled advanced technologies of studying the interaction between soil organic and inorganic components. Finally, the paper summarized the role of ion-specific effects on the formation of soil organic-inorganic complexes. In particular, different ions with the same valence had different effects on the properties and processes of soil systems. This meant that slight differences between the number and arrangement of the outer electrons were amplified in the strong electric field near the soil surface, which enhanced effective charge of ions and coulombic force on ions by polarization. The effective charge number of ions was used to quantify the strength of ion interaction at the interface during soil colloids association. The conclusions were that soil organic-inorganic complexes improved the complex formation theory of soil organic-inorganic aggregates, provided theoretical basis for soil fertility and bioremediation, promoted environmental chemistry regarding soil organic-inorganic complexes and advanced research on particulate pollutant migration dynamics.
Key words:Organic-inorganic complex of soil/
Ion adsorption/
Ionic bond/
Ion specificity effects/
Soil organic matter

HTML全文


图1几种典型的土壤有机无机复合作用示意图
Figure1.Diagrams of several typical soil organic-inorganic complex interactions


下载: 全尺寸图片幻灯片


参考文献(87)
[1]史吉平, 张夫道, 林葆.长期定位施肥对土壤有机无机复合状况的影响[J].植物营养与肥料学报, 2002, 8(2):131-136 doi: 10.3321/j.issn:1008-505X.2002.02.001
SHI J P, ZHANG F D, LIN B. Effects of long-term fertilization on organo-mineral complex status in soils[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2):131-136 doi: 10.3321/j.issn:1008-505X.2002.02.001
[2]熊毅, 蒋剑平.土壤胶体:土壤胶体的物质基础(第一册)[M].北京:科学出版社, 1983
XIONG Y, JIANG J P. The Physical Basis of Soil Colloids (Soil Colloids Volume 1)[M]. Beijing:Science Press, 1983
[3]魏朝富, 谢德体, 李保国.土壤有机无机复合体的研究进展[J].地球科学进展, 2003, 18(2):221-227 doi: 10.3321/j.issn:1001-8166.2003.02.011
WEI C F, XIE D T, LI B G. Progress in research on soil organo-mineral complexes[J]. Advances in Earth Sciences, 2003, 18(2):221-227 doi: 10.3321/j.issn:1001-8166.2003.02.011
[4]HUFSCHMID Y, NEWCOMB C J, GRATE J W, et al. Direct visualization of aggregate morphology and dynamics in a model soil organic-mineral system[J]. Environmental Science & Technology Letters, 2017, 4(5):186-191 doi: 10.1021/acs.estlett.7b00068
[5]EDWARDS A P, BREMNER J M. Microaggregates in soils[J]. Journal of Soil Science, 1967, 18(1):64-73 doi: 10.1111/ejs.1967.18.issue-1
[6]TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2):141-163 doi: 10.1111/ejs.1982.33.issue-2
[7]RIMMEN M, MATTHIESEN J, BOVET N, et al. Interactions of Na+, K+, Mg2+, and Ca2+ with benzene self-assembled monolayers[J]. Langmuir, 2014, 30(30):9115-9122 doi: 10.1021/la5018664
[8]HU F N, XU C Y, LI H, et al. Particles interaction forces and their effects on soil aggregates breakdown[J]. Soil and Tilliage Research, 2015, 147:1-9 doi: 10.1016/j.still.2014.11.006
[9]GU B H, SCHMITT J, CHEN Z H, et al. Adsorption and desorption of natural organic matter on iron oxide:Mechanisms and models[J]. Environmental Science & Technology, 1994, 28(1):38-46 doi: 10.1021/es00050a007
[10]MURPHY E M, ZACHARA J M, SMITH S C, et al. Interaction of hydrophobic organic compounds with mineral-bound humic substances[J]. Environmental Science & Technology, 1994, 28(7):1291-1299 doi: 10.1021-es00056a017/
[11]PENG X J, LUAN Z K, ZHANG H M. Montmorillonite-Cu(Ⅱ)/Fe(Ⅲ) oxides magnetic material as adsorbent for removal of humic acid and its thermal regeneration[J]. Chemosphere, 2006, 63(2):300-306 doi: 10.1016/j.chemosphere.2005.07.019
[12]HIEMSTRA T, VAN RIEMSDIJK W H. A surface structural approach to ion adsorption:The charge distribution (CD) model[J]. Journal of Colloid and Interface Science, 1996, 179(2):488-508 doi: 10.1006/jcis.1996.0242
[13]SCHULTEN H R, LEINWEBER P. New insights into organic-mineral particles:Composition, properties and models of molecular structure[J]. Biology and Fertility of Soils, 2000, 30(5/6):399-432 http://www.cabdirect.org/abstracts/20001910247.html
[14]GAO X D, YANG G, TIAN R, et al. Formation of sandwich structure through ion adsorption at the mineral and humic interfaces:A combined experimental computational study[J]. Journal of Molecular Structure, 2015, 1093:96-100 doi: 10.1016/j.molstruc.2015.03.060
[15]RENNERT T, TOTSCHE K U, HEISTER K, et al. Advanced spectroscopic, microscopic, and tomographic characterization techniques to study biogeochemical interfaces in soil[J]. Journal of Soils and Sediments, 2012, 12(1):3-23 doi: 10.1007/s11368-011-0417-5
[16]侯雪莹, 韩晓增.土壤有机无机复合体的研究进展[J].农业系统科学与综合研究, 2008, 24(1):61-67 doi: 10.3969/j.issn.1001-0068.2008.01.014
HOU X Y, HAN X Z. Research review on soil organo-mineral complexes[J]. System Sciences and Comprehensive Studies in Agriculture, 2008, 24(1):61-67 doi: 10.3969/j.issn.1001-0068.2008.01.014
[17]荣兴民, 黄巧云, 陈雯莉, 等.土壤矿物与微生物相互作用的机理及其环境效应[J].生态学报, 2008, 28(1):376-387 doi: 10.3321/j.issn:1000-0933.2008.01.044
RONG X M, HUANG Q Y, CHEN W L, et al. Interaction mechanisms of soil minerals with microorganisms and their environmental significance[J]. Acta Ecologica Sinica, 2008, 28(1):376-387 doi: 10.3321/j.issn:1000-0933.2008.01.044
[18]TYULIN A T. The composition and structure of soil organo-mineral gels1 and soil fertility[J]. Soil Science, 1938, 45(4):343-358 doi: 10.1097/00010694-193804000-00016
[19]袁勇智, 熊海灵, 李航, 等.重力场和电解质浓度对胶体凝聚体分形结构的影响[J].物理化学学报, 2007, 23(5):688-694 http://d.old.wanfangdata.com.cn/Periodical/wlhxxb200705013
YUAN Y Z, XIONG H L, LI H, et al. Effect of gravity and electrolyte concentration on the fractal structure of colloidal aggregates[J]. Acta Physico-Chimica Sinica, 2007, 23(5):688-694 http://d.old.wanfangdata.com.cn/Periodical/wlhxxb200705013
[20]胡纪华, 杨兆禧, 郑忠.胶体与界面化学[M].广州:华南理工大学出版社, 1997:254-330
HU J H, YANG Z X, ZHENG Z. Colloid and Interface Chemistry[M]. Guangzhou:South China University of Technology Press, 1997:254-330
[21]朱华玲, 李航, 贾明云, 等.土壤有机/无机胶体凝聚的光散射研究[J].土壤学报, 2012, 49(3):409-416 http://cdmd.cnki.com.cn/Article/CDMD-10635-2010048456.htm
ZHU H L, LI H, JIA M Y, et al. Light scattering studies of aggregation of organic/inorganic colloids in soil[J]. Acta Pedologica Sinica, 2012, 49(3):409-416 http://cdmd.cnki.com.cn/Article/CDMD-10635-2010048456.htm
[22]WANG K J, XING B S. Structural and sorption characteristics of adsorbed humic acid on clay minerals[J]. Journal of Environmental Quality, 2005, 34(1):342-329 doi: 10.2134/jeq2005.0342
[23]李学垣.土壤化学[M].北京:高等教育出版社, 2001
LI X Y. Soil Chemistry[M]. Beijing:Higher Education Press, 2001
[24]MA J C, DOUGHERTY D A. The cation-π interaction[J]. Chemical Reviews, 1997, 97(5):1303-1324 doi: 10.1021/cr9603744
[25]KIM K S, TARAKESHWAR P, LEE J Y. Molecular clusters of π-systems:Theoretical studies of structures, spectra, and origin of interaction energies[J]. Chemical Reviews, 2000, 100(11):4145-4186 doi: 10.1021/cr990051i
[26]TIAN R, YANG G, LI H, et al. Activation energies of colloidal particle aggregation:Towards a quantitative characterization of specific ion effects[J]. Physical Chemistry Chemical Physics, 2014, 16(19):8828-8836 doi: 10.1039/c3cp54813a
[27]胡岳华, 邱冠周, 王淀佐.细粒浮选体系中扩展的DLVO理论及应用[J].中南矿冶学院学报, 1994, 25(3):310-314 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400626838
HU Y H, QIU G Z, WANG D Z. Extended DLVO theory and its applications in flotation of fine particles[J]. Journal of Central-South Institute of Mining and Metallurgy, 1994, 25(3):310-314 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400626838
[28]MORTLAND M M. Clay-organic complexes and interactions[M]//SPARKS D L. Advances in Agronomy. New York: Academic Press, 1970: 75-114
[29]GREENLAND D J. Interactions between humic and fulvic acids and clays[J]. Soil science, 1971, 111(1):34-41 doi: 10.1097/00010694-197101000-00004
[30]李力, 陆宇超, 刘娅, 等.玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J].农业环境科学学报, 2012, 31(11):2277-2283 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205303101
LI L, LU Y C, LIU Y, et al. Adsorption mechanisms of cadmium (Ⅱ) on biochars derived from corn straw[J]. Journal of Agro-Environment Science, 2012, 31(11):2277-2283 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205303101
[31]KEILUWEIT M, KLEBER M. Molecular-level interactions in soils and sediments:The role of aromatic π-systems[J]. Environmental Science & Technology, 2009, 43(10):3421-3429 doi: 10.1021/es8033044
[32]VARADACHARI C, BISWAS N K, GHOSH K. Studies on decomposition of humus in clay-humus complexes[J]. Plant and Soil, 1984, 78(3):295-300 doi: 10.1007/BF02450363
[33]王继红, 赵兰坡, 王宇, 等.吉林省主要耕作土壤胶散复合体的组成特征[J].吉林农业大学学报, 2001, 23(3):72-77 doi: 10.3969/j.issn.1000-5684.2001.03.019
WANG J H, ZHAO L P, WANG Y, et al. Study on the composition of organic-mineral complex of major cultivated soil from Jilin Province[J]. Journal of Jilin Agricultural University, 2001, 23(3):72-77 doi: 10.3969/j.issn.1000-5684.2001.03.019
[34]周广业, 丁宁平.旱塬黑垆土肥料长期定位研究[J].土壤肥料, 1991, (1):10-13 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003125466
ZHOU G Y, DING N P. Study on long-term location of fertilizers in black loessial soils[J]. Soils and Fertilizers, 1991, (1):10-13 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003125466
[35]熊毅.土壤胶体的组成及复合[J].土壤通报, 1979, (5):1-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004696840
XIONG Y. Soil colloid composition and compound[J]. Chinese Journal of Soil Science, 1979, (5):1-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004696840
[36]高晓丹, 李航, 朱华玲, 等.特定pH条件下Ca2+/Cu2+引发胡敏酸胶体凝聚的比较研究[J].土壤学报, 2012, 49(4):698-707 http://d.wanfangdata.com.cn/Periodical/trxb201204009
GAO X D, LI H, ZHU H L, et al. Aggregation of humic colloidal particles as affected by electrolyte and pH[J]. Acta Pedologica Sinica, 2012, 49(4):698-707 http://d.wanfangdata.com.cn/Periodical/trxb201204009
[37]张桂银, 董元彦, 李学垣, 等.有机酸对几种土壤胶体吸附-解吸镉离子的影响[J].土壤学报, 2004, 41(4):558-563 doi: 10.3321/j.issn:0564-3929.2004.04.010
ZHANG G Y, DONG Y Y, LI X Y, et al. Sorption-desorption of Cd2+ ion in several soil colloids in the presence of oxalic acid and citric acid[J]. Acta Pedologica Sinica, 2004, 41(4):558-563 doi: 10.3321/j.issn:0564-3929.2004.04.010
[38]文启孝.土壤有机质研究法[M].北京:农业出版社, 1984
WEN Q X. Soil Organic Matter Research Method[M]. Beijing:China Agriculture Press, 1984
[39]中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科学出版社, 1982
Soil Science Society of China. Soil Agricultural Chemical Analysis Method[M]. Beijing:China Agriculture Press, 1982
[40]JIA M Y, LI H, ZHOU H L, et al. An approach for the critical coagulation concentration estimation of polydisperse colloidal suspensions of soil and humus[J]. Journal of Soils and Sediments, 2013, 13(2):325-335 doi: 10.1007/s11368-012-0608-8
[41]TIAN R, LI H, ZHU H L, et al. Ca2+ and Cu2+ induced aggregation of variably charged soil particles:A comparative study[J]. Soil Science Society of America Journal, 2013, 77(3):774-781 doi: 10.2136/sssaj2012.0240
[42]EDWARDS D G, POSNER A M, QUIRK J P. Repulsion of chloride ions by negatively charged clay surfaces[J]. Transactions of the Faraday Society, 1965, 61:2808-2815 doi: 10.1039/TF9656102808
[43]NANNIPIERI P, ASCHER J, CECCHERINI M T, et al. Microbial diversity and soil functions[J]. European Journal of Soil Science, 2003, 54(4):655-670 doi: 10.1046/j.1351-0754.2003.0556.x
[44]SEN B C. Bacterial decomposition of humic acid in clay-humus mixtures[J]. Journal of the Indian Chemical Society, 1961, 38:737-740
[45]GRAMSS G, ZIEGENHAGEN D, SORGE S. Degradation of soil humic extract by wood-and soil-associated fungi, bacteria, and commercial enzymes[J]. Microbial Ecology, 1999, 37(2):140-151 doi: 10.1007/s002489900138
[46]KAISER K, GUGGENBERGER G, ZECH W. Sorption of DOM and DOM fractions to forest soils[J]. Geoderma, 1996, 74(3/4):281-303 doi: 10.1016-S0016-7061(96)00071-7/
[47]于天仁.土壤电化学的建立与发展[J].土壤, 1999, 31(5):231-235 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901075647
YU T R. Soil electrochemistry establishment and development[J]. Soils, 1999, 31(5):231-235 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901075647
[48]周健民.新世纪土壤学的社会需求与发展[J].中国科学院院刊, 2003, 18(5):348-352 doi: 10.3969/j.issn.1000-3045.2003.05.008
ZHOU J M. Social demand and development of soil science in Early 21st Century[J]. Bulletin of the Chinese Academy of Sciences, 2003, 18(5):348-352 doi: 10.3969/j.issn.1000-3045.2003.05.008
[49]李航, 薛家骅.土壤中离子扩散的动力学研究[J].土壤学报, 1996, 33(4):327-336 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600816802
LI H, XUE J H. Study onion diffusion kinetics in soil systems[J]. Acta Pedologica Sinica, 1996, 33(4):327-336 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600816802
[50]LI H, WU L S. A generalized linear equation for non-linear diffusion in external fields and non-ideal systems[J]. New Journal of Physics, 2007, 9(10):357 doi: 10.1088/1367-2630/9/10/357
[51]LI H, WU L S. A new approach to estimate ion distribution between the exchanger and solution phases[J]. Soil Science Society of America Journal, 2007, 71(6):1694-1698 doi: 10.2136/sssaj2007.0004
[52]LIU F, HE J Z, COLOMBO C, et al. Competitive adsorption of sulfate and oxalate on goethite in the absence or presence of phosphate[J]. Soil Science, 1999, 164(3):180-189 doi: 10.1097/00010694-199903000-00004
[53]熊建军, 董长勋. pH值对水稻土Cu2+静电吸附与专性吸附的影响[J].哈尔滨商业大学学报:自然科学版, 2008, 24(3):309-312 http://d.old.wanfangdata.com.cn/Periodical/hljsxyxb200803014
XIONG J J, DONG C X. Effect of pH value on electrostatic and specific adsorptions of Cu2+ by paddy soils[J]. Journal of Harbin University of Commerce:Natural Sciences Edition, 2008, 24(3):309-312 http://d.old.wanfangdata.com.cn/Periodical/hljsxyxb200803014
[54]BROGOWSKI Z, GLINSKI J, WILGAT M. The distribution of some trace elements in size fractions of two profiles of soils formed from boulder loams[J]. Zeszyty Problemowe Postepow Nauk Rolniczych, 1977, (197):309-318 http://agris.fao.org/openagris/search.do?recordid=us201302404700
[55]丁昌璞.中国土壤电化学的发展历程[J].土壤, 2013, 45(5):780-784 doi: 10.3969/j.issn.1674-5906.2013.05.009
DING C P. Developmental course of soil electrochemistry in China[J]. Soils, 2013, 45(5):780-784 doi: 10.3969/j.issn.1674-5906.2013.05.009
[56]SPOSTO G. On the surface complexation model of the oxide-aqueous solution interface[J]. Journal of Colloid Interface Science, 1983, 91(2):329-340 doi: 10.1016/0021-9797(83)90345-4
[57]LEIWEBER P, PAETSCH C, SCHULTEN H R. Heavy metal retention by organo-mineral particle-size fractions from soils in long-term agricultural experiments[J]. Archives of Agronomy and Soil Science, 1995, 39(4):271-285 doi: 10.1080/03650349509365907
[58]LIVENS F R, BAXTER M S. Particle size and radionuclide levels in some west Cumbrian soils[J]. Science of the Total Environment, 1988, 70:1-17 doi: 10.1016/0048-9697(88)90248-3
[59]GERZABEK M H, MOHAMAD S A, MUCK K. Cesium-137 in soil texture fractions and its impact on cesium-137 soil-to-plant transfer[J]. Communications in Soil Science and Plant Analysis, 1992, 23(3/4):321-330 https://www.researchgate.net/publication/249072912_Cesium-137_in_Soil_Texture_Fractions_and_its_Impact_on_Cesium-137_Soil-To-Plant_Transfer
[60]DAVIES K S, SHAW G. Fixation of 137Cs by soils and sediments in the Esk Estuary, Cumbria, UK[J]. Science of the Total Environment, 1993, 132(1):71-92 doi: 10.1016/0048-9697(93)90262-5
[61]刘大中, 王锦.物理吸附与化学吸附[J].山东轻工业学院学报, 1999, 13(2):22-25 http://d.old.wanfangdata.com.cn/Periodical/yzyfzwlxb200906012
LIU D Z, WANG J. Physisorption and chemisorption[J]. Journal of Shandong Institute of Light Industry, 1999, 13(2):22-25 http://d.old.wanfangdata.com.cn/Periodical/yzyfzwlxb200906012
[62]PARSONS D F, NINHAM B W. Ab initio molar volumes and Gaussian radii[J]. The Journal of Physical Chemistry A, 2009, 113(6):1141-1150 doi: 10.1021/jp802984b
[63]CHURAEV N V, DERJAGUIN B V. Inclusion of structural forces in the theory of stability of colloids and films[J]. Journal of Colloid and Interface Science, 1985, 103(2):542-553 doi: 10.1016/0021-9797(85)90129-8
[64]ISRAELACHVILI J N, ADAMS G E. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm[J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1978, 74:975-1001 https://pubs.rsc.org/en/Content/ArticleLanding/1978/F1/f19787400975?_escaped_fragment_=divAbstract
[65]黄昌勇, 徐建明.土壤学[M].第3版.北京:中国农业出版社, 2010
HUANG C Y, XU J M. Soil Science[M]. 3rd ed. Beijing:China Agricultural University Press, 2010
[66]温元凯, 邵俊.离子极化导论[M].合肥:安徽教育出版社, 1985
WEN Y K, SHAO J. Introduction to Ion Polarization[M]. Hefei:Anhui Education Press, 1985
[67]LIU X M, LI H, LI R, et al. Strong non-classical induction forces in ion-surface interactions:General origin of Hofmeister effects[J]. Scientific Reports, 2014, 4:5047 http://europepmc.org/abstract/med/24854224
[68]LI S, LI H, XU C Y, et al. Particle interaction forces induce soil particle transport during rainfall[J]. Soil Science Society of America Journal, 2013, 77(5):1563-1571 doi: 10.2136/sssaj2013.01.0009
[69]李航, 杨刚.基础土壤学研究的方法论思考:基于土壤化学的视角[J].土壤学报, 2017, 54(4):819-826 http://d.old.wanfangdata.com.cn/Periodical/trxb201704002
LI H, YANG G. Rethink the methodologies in basic soil science research:From the perspective of soil chemistry[J]. Acta Pedologica Sinica, 2017, 54(4):819-826 http://d.old.wanfangdata.com.cn/Periodical/trxb201704002
[70]SHARMA Y C, SRIVASTAVA V, WENG C H, et al. Removal of Cr(Ⅵ) from wastewater by adsorption on iron nanoparticles[J]. The Canadian Journal of Chemical Engineering, 2009, 87(6):921-929 doi: 10.1002/cjce.v87:6
[71]HU J, CHEN G H, LO I M C. Removal and recovery of Cr (Ⅵ) from wastewater by maghemite nanoparticles[J]. Water Research, 2005, 39(18):4528-4536 doi: 10.1016/j.watres.2005.05.051
[72]DE D, MANDAL S M, BHATTACHARYA J, et al. Iron oxide nanoparticle-assisted arsenic removal from aqueous system[J]. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances and Environmental Engineering, 2009, 44(2):155-162 doi: 10.1080/10934520802539756
[73]LIN K S, CHANG N B, CHUANG T D. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater[J]. Science and Technology of Advanced Materials, 2008, 9(2):025015 doi: 10.1088/1468-6996/9/2/025015
[74]ZHOU J G, FANG H T, HU Y F, et al. Immobilization of RuO2 on carbon nanotube:An X-ray absorption near-edge structure study[J]. The Journal of Physical Chemistry C, 2009, 113(24):10747-10750 doi: 10.1021/jp902871b
[75]YARIV S, CROSS H. Organo-clay Complexes and Interactions[M]. New York:Marcel Dekker, Inc., 2002
[76]HU J, CHEN G H, LO I M C. Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle:Performance and mechanisms[J]. Journal of Environmental Engineering, 2006, 132(7):709-715 doi: 10.1061/(ASCE)0733-9372(2006)132:7(709)
[77]LI X L, PAN G, QIN Y W, et al. EXAFS studies on adsorption-desorption reversibility at manganese oxides-water interfaces:Ⅱ. Reversible adsorption of zinc on δ-MnO2[J]. Journal of Colloid and Interface Science, 2004, 271(1):35-40 doi: 10.1016/j.jcis.2003.11.029
[78]LI C B, ZHAO A Z, FRIEDMAN S P. A new method to estimate adsorption energies between cations and soil particles via wien effect measurements in dilute suspensions and an approximate conductivity-activity analogy[J]. Environmental Science & Technology, 2005, 39(17):6757-6764 doi: 10.1021/es050070b
[79]LEHMANN J, KINYANGI J, SOLOMON D. Organic matter stabilization in soil microaggregates:Implications from spatial heterogeneity of organic carbon contents and carbon forms[J]. Biogeochemistry, 2007, 85(1):45-57 doi: 10.1007/s10533-007-9105-3
[80]PARSONS D F, BOSTR?M M, LO NOSTRO P, et al. Hofmeister effects:Interplay of hydration, nonelectrostatic potentials, and ion size[J]. Physical Chemistry Chemical Physics, 2011, 13(27):12352-12367 doi: 10.1039/c1cp20538b
[81]高晓丹.矿物/腐殖质凝聚的离子特异性效应[D].重庆: 西南大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10635-1015547742.htm
GAO X D. Specific ion effects on mineral and humus aggregation[D]. Chongqing: Southwest University, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10635-1015547742.htm
[82]LIU X M, LI X, DU W, et al. Hofmeister effects on cation exchange equilibrium:Quantification of ion exchange selectivity[J]. The Journal of Physical Chemistry C, 2013, 117(12):6245-6251 doi: 10.1021/jp312682u
[83]HU F N, LI H, LIU X M, et al. Quantitative characterization of non-classic polarization of cations on clay aggregate stability[J]. PLoS One, 2015, 10(4):e0122460 doi: 10.1371/journal.pone.0122460
[84]高晓丹, 李航, 田锐, 等.利用基于Gouy-Chapman模型的离子有效电荷定量表征离子特异性效应[J].物理化学学报, 2014, 30(12):2272-2282 doi: 10.3866/PKU.WHXB201410231
GAO X D, LI H, TIAN R, et al. Quantitative characterization of specific ion effects using an effective charge number based on the gouy-chapman model[J]. Acta Physico-Chimica Sinica, 2014, 30(12):2272-2282 doi: 10.3866/PKU.WHXB201410231
[85]KUNZ W, NEUEDER R. An attempt of a general overview[M]. KUNZ W. Specific Ion Effects. World Scientific Publishing Co Pte Ltd, 2010: 3-54
[86]TIAN R, YANG G, ZHU C, et al. Specific anion effects for aggregation of colloidal minerals:A joint experimental and theoretical study[J]. The Journal of Physical Chemistry C, 2015, 119(9):4856-4864 doi: 10.1021/jp512078v
[87]傅强, 郭霞, 田锐, 等.不同阴离子对负电荷胶体(蒙脱石)凝聚的影响[J].西南大学学报:自然科学版, 2016, 38(4):28-34 http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201604004
FU Q, GUO X, TIAN R, et al. Effects of different anions on negatively charged colloidal aggregation of Montmorillonite[J]. Journal of Southwest University:Natural Science Edition, 2016, 38(4):28-34 http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201604004

相关话题/土壤 化学 农业 北京 系统