陈柔1,
吴昊玥1,
徐杰1,
宋艺2
1.四川农业大学管理学院 成都 611130
2.西南科技大学城市学院 绵阳 621000
基金项目: 国家自然科学基金青年项目71704127
国家社会科学基金青年项目16CJL35
四川省社会科学“十三五”规划项目SC17TJ014
详细信息
作者简介:何艳秋, 研究方向为农业资源环境。E-mail:linxiatingqiu@126.com
中图分类号:F323计量
文章访问数:1013
HTML全文浏览量:3
PDF下载量:1031
被引次数:0
出版历程
收稿日期:2017-11-28
录用日期:2018-02-22
刊出日期:2018-09-01
Spatial dynamics of agricultural carbon emissions in China and the related driving factors
HE Yanqiu1,,,CHEN Rou1,
WU Haoyue1,
XU Jie1,
SONG Yi2
1. College of Management, Sichuan Agricultural University, Chengdu 611130, China
2. City College, Southwest University of Science and Technology, Mianyang 621000, China
Funds: the National Natural Science Foundation of China71704127
the National Social Science Foundation of China16CJL35
the Social Science "Thirteenth Five-Year Plan" Project of Sichuan ProvinceSC17TJ014
More Information
Corresponding author:HE Yanqiu, E-mail: linxiatingqiu@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:研究农业碳排放空间格局及影响因素对中国制定农业分区碳减排政策意义重大。为弥补以往研究中静态分析法难以考察动态影响的缺陷,将动态灰色关联法和回归模型结合,应用2001-2016年统计数据,从分析农业碳排放空间格局入手,深入探讨省际农业碳排放空间格局成因和影响因素与空间差异的数量关系。研究发现:中国农业碳排放强度省际差异大,中部排放等级有所降低,西部排放等级有所升高,农业碳排放省际差异随农业经济水平、农业机械化、农业产业结构和农业人力资本等差异扩大而增加;大部分排放等级上升的省市农业碳排放的长期主导因素为农地利用和农业生产技术(机械),且种植业和畜牧业双发展;大部分排放等级下降的省市农业碳排放的长期主导因素为反刍动物饲养和农业生产技术(人力),且着重发展优势产业。因此,中国未来较长时间内仍应重点关注农地利用减排,进一步推动反刍动物饲养减排技术发展和充分发挥农业产业结构调整对减排的抑制作用等建议。
关键词:农业碳排放/
主导因素/
空间格局演变/
动态灰色关联法/
非线性分析/
分区减排
Abstract:The reduction of carbon emission in agricultural lands is not only important in sustainable agriculture, but also inevitable for China to achieve an overall emission reduction targets and carbon emission control. It is also of great significance to conduct research into the spatial distribution and the driving factors of carbon emissions in agricultural lands in China. Studies that have focused on regional distributions of carbon emissions in agricultural lands adopted different measurement methods and used inconsistent driving indicators, therefore had reached different conclusions in different researches. Moreover, in order to compensate for the deficiency with static analysis methods in dealing with dynamic effects, we combined dynamic grey correlation method with regression model. It not only analyzed the non-linear impacts of carbon emission in agricultural lands and the influencing factors, but also analyzed the dynamic impacts of carbon emission in agricultural lands and the influencing factors. Based on the preceding researches, our study started by analyzing the spatial distribution of carbon emissions in agricultural lands in China, including total amount of carbon emission, carbon emission intensity, carbon emission structure and carbon emission level in agricultural lands. It then discussed in detail the causes of the spatial patterns of inter-provincial carbon emissions in agricultural lands and quantitative relationship between the influencing factors and spatial distribution. The study was a critical source of reference on zonal carbon emission reduction that could be useful in formulating carbon emission policies in China. The main conclusions of this paper were as follows:inter-provincial differences in carbon emission intensities in agricultural lands had increased with time. There was no significant reduction in structural differences in carbon emission among provinces or cities. The polarization of carbon emission level in agricultural lands was ever more severe. The level of carbon emissions in agricultural lands fell in the central region, but increased in the west. In contrast, farmland utilization and mechanization of agricultural production were more important factors driving carbon emission in agricultural lands. Some achievements were made in reducing ruminant emissions, with a widening gap among provinces or cities due to differences in agro-economic level, agricultural mechanization, agricultural structure and agro-human capital. The differences in inter-provincial carbon emissions of agricultural lands increased. Agriculture and animal husbandry, farmland utilization and mechanization of agricultural production technology were the leading factors driving the improvement in carbon emission in agricultural lands in most of the provinces and cities with more attention on agricultural development. In these regions, the development of superior industries, ruminant feeding and agricultural production techniques (human capital) were the dominant factors reducing carbon emissions. Finally, we forwarded three recommendations:First, there was need to focus on long-term carbon emission reduction in farmlands. Specifically, major grain-producing areas were to strengthen innovation of emission reduction technology and push forward with progress in emission reduction projects. Second, there was need for further attention on promoting technology of emission reduction in feeding ruminants and in exploring agricultural development models that combined farming with breeding, especially in pastoral areas. Third, there was need to fully exert the role of agro-economic structure in reducing carbon emission. The eastern, central and western regions were to adjust industrial structure in accordance with the level of development.
Key words:Carbon emission in agricultural land/
Dominant factor/
Spatial evolution pattern/
Dynamic Gray Correlation Method/
Nonlinear analysis/
Zonal carbon emission reduction
HTML全文
图12000—2015年中国农业碳排放总量和强度的标准差系数
Figure1.Standard deviation coefficients of total emission and emission intensity of agricultural carbon emission in China from 2000 to 2015
下载: 全尺寸图片幻灯片
图22015年中国不同区域不同排放源的农业碳排放比重
NE、NC、EC、SC、MY、MC、SW和NW分别为东北、北部沿海、东部沿海、南部沿海、黄河中游、长江中游、西南和西北区域。
Figure2.Proportions of different emission sources of agricultural carbon emissions in different regions of China in 2000 and 2015
NE, NC, EC, SC, MY, MC, SW and NW are areas of Northeast, Northern Coast, Eastern Coast, Southern Coast, the Midstream of Yellow River, the Midstream of Changjiang River, Southwest and Northwest of China.
下载: 全尺寸图片幻灯片
表1农地利用中各类排放源的碳排放因子
Table1.Carbon emission coefficients of different emission sources in farming land utilization
排放源Emission source | 排放因子Emission coefficient | 参考文献Reference |
化肥Fertilizer | 0.895 6 kg(C)·kg-1 | [20] |
农药Pesticide | 4.934 1 kg(C)·kg-1 | [20] |
农膜Mulching film | 5.18 kg(C)·kg-1 | [21] |
柴油Diesel | 0.592 7 kg(C)·kg-1 | [22] |
翻耕Ploughing | 312.6 kg(C)·hm-2 | [9] |
农业灌溉Agricultural irrigation | 266.48 kg(C)·hm-2 | [10] |
下载: 导出CSV
表2中国各省市水稻种植的碳排放因子
Table2.Carbon emission coefficients of rice cultivation of various provinces and cities in China
g(C)·m-2 | |
区域 Area | 排放因子 Emission coefficient |
北京Beijing | 13.23 |
天津Tianjin | 11.34 |
河北Hebei | 15.33 |
山西Shanxi | 6.62 |
内蒙古Inner Mongolia | 8.93 |
辽宁Liaoning | 9.24 |
吉林Jilin | 5.57 |
黑龙江Heilongjiang | 8.31 |
上海Shanghai | 31.26 |
江苏Jiangsu | 32.40 |
浙江Zhejiang | 35.60 |
安徽Anhui | 31.91 |
福建Fujian | 34.62 |
江西Jiangxi | 42.20 |
山东Shandong | 21.02 |
河南Henan | 17.85 |
湖北Hubei | 38.23 |
湖南Hunan | 35.01 |
广东Guangdong | 41.22 |
广西Guangxi | 36.44 |
海南Hainan | 38.43 |
— | — |
四川Sichuan | 16.91 |
重庆Chongqing | 16.91 |
贵州Guizhou | 16.12 |
云南Yunnan | 5.73 |
西藏Xizang | 6.83 |
陕西Shaanxi | 12.51 |
甘肃Gansu | 6.83 |
青海Qinghai | 0.00 |
宁夏Ningxia | 7.35 |
新疆Xinjiang | 10.52 |
— | — |
下载: 导出CSV
表3各类反刍动物饲养的碳排放因子表
Table3.Carbon emission coefficients of various types of ruminants
kg(C)·head-1·a-1 | ||
反刍动物 Ruminant | 肠道发酵排放因子 Emission coefficient of intestinal fermentation | 粪便管理排放因子 Emission coefficient of feces management |
牛Cow | 395.56 | 24.55 |
马Horse | 122.76 | 11.18 |
驴Donkey | 68.21 | 6.14 |
骡Mule | 68.21 | 6.14 |
猪Pig | 6.82 | 27.28 |
山羊Goat | 34.11 | 1.16 |
绵羊Sheep | 34.11 | 1.02 |
— | — | — |
下载: 导出CSV
表4主要农作物秸秆燃烧的碳排放因子表
Table4.Carbon emission coefficients of main crops straw combustion
kg(C)·kg-1 | |
作物 Crop | 排放因子 Emission coefficient |
水稻 Rice | 0.18 |
小麦 Wheat | 0.16 |
玉米 Corn | 0.17 |
油菜 Rape | 0.22 |
大豆 Soybean | 0.15 |
棉花 Cotton | 0.13 |
下载: 导出CSV
表5中国各省市农业碳排放空间等级划分标准
Table5.Space classification criteria of agricultural carbon emissions in China
排放水平 Emission level | 分区标准 Zoning standard |
高排放 High emission | $T > ({\mu _1} + 0.44{\sigma _1})$; $E > ({\mu _2} + 0.44{\sigma _2})$ |
中高排放 Medium-high emission | 1) $T > ({\mu _1} + 0.44{\sigma _1})$; $({\mu _2}-0.44{\sigma _2}) < E < ({\mu _2} + 0.44{\sigma _2})$ |
2) $({\mu _1}-0.44{\sigma _1}) < T < ({\mu _1} + 0.44{\sigma _1})$; $E > ({\mu _2} + 0.44{\sigma _2})$ | |
中等排放 Medium emission | 1) $({\mu _1}-0.44{\sigma _1}) < T < ({\mu _1} + 0.44{\sigma _1})$; $({\mu _2}-0.44{\sigma _2}) < E < ({\mu _2} + 0.44{\sigma _2})$ |
2) $T < ({\mu _1}-0.44{\sigma _1})$; $E > ({\mu _2} + 0.44{\sigma _2})$ | |
3) $T > ({\mu _1} + 0.44{\sigma _1})$; $E < ({\mu _2}-0.44{\sigma _2})$ | |
中低排放 Medium-low emission | 1) $T < ({\mu _1} + 0.44{\sigma _1})$; $({\mu _2}-0.44{\sigma _2}) < E < ({\mu _2} + 0.44{\sigma _2})$ |
2) $({\mu _1}-0.44{\sigma _1}) < T < ({\mu _1} + 0.44{\sigma _1})$; $E < ({\mu _2} + 0.44{\sigma _2})$ | |
低排放 Low emission | $T < ({\mu _1}-0.44{\sigma _1})$; $E < ({\mu _2}-0.44{\sigma _2})$ |
T:农业碳排放总量; E:农业碳排放强度; μ1:农业碳排放总量均值; μ2:农业碳排放强度均值; σ1:农业碳排放总量标准差; σ2:农业碳排放强度标准差。T: total amount of agricultural carbon emission; E: agricultural carbon emission intensity; μ1: average of total amount of agricultural carbon emission; μ2: average of agricultural carbon emission intensity; σ1: standard deviation of total amount of agricultural carbon emission; σ1: standard deviation of agricultural carbon emission intensity. |
下载: 导出CSV
表62000—2015年中国各省市农业碳排放等级演变表
Table6.Changes in agricultural carbon emission level of various provinces and cities in China from 2000 to 2015
排放等级升高省(市) Provinces and cities with increased emission level | 排放等级升高情况 Increased situation | 排放等级降低省(市) Provinces and cities with decreased emission level | 排放等级降低情况 Decreased situation | |||||
北京Beijing | 低—中低Low-medium-low | 安徽Anhui | 中高—中Medium-high-medium | |||||
天津Tianjin | 低—中低Low-medium-low | 山东Shandong | 中高—中Medium-high-medium | |||||
上海Shanghai | 低—中Low-medium | 贵州Guizhou | 中高—中Medium-high-medium | |||||
江西Jiangxi | 中低—中Medium low-medium | 陕西Shaanxi | 中高—中低Medium-high-medium-low | |||||
河南Henan | 中高—高Medium-high-high | 广西Guangxi | 中高—中低Medium-high-medium-low | |||||
新疆Xinjiang | 中高—高Medium-high-high | 江苏Jiangsu | 中—中低Medium-medium-low | |||||
比重Proportion (%) | 19.4 | 比重Proportion (%) | 19.4 | |||||
排放等级不变省(市) Provinces and cities with no change in emission level | 排放水平 Emission level | 排放等级不变省(市) Provinces and cities with no change in emission level | 排放水平 Emission level | 排放等级不变省(市) Provinces and cities with no change in emission level | 排放水平 Emission level | |||
内蒙Inner Mongolia | 高High | 山西Shanxi | 中Medium | 辽宁Liaoning | 中低Medium-low | |||
云南Yunnan | 高High | 吉林Jilin | 中Medium | 广东Guangdong | 中低Medium-low | |||
河北Hebei | 中高Medium-high | 湖北Hubei | 中Medium | 浙江Zhejiang | 低Low | |||
黑龙江Heilongjiang | 中高Medium-high | 湖南Hunan | 中Medium | 福建Fujian | 低Low | |||
四川Sichuan | 中高Medium-high | 西藏Tibet | 中Medium | 海南Hainan | 低Low | |||
重庆Chongqing | 中高Medium-high | 青海Qinghai | 中Medium | 比重Proportion (%) | 61.2 | |||
甘肃Gansu | 中高Medium-high | 宁夏Ningxia | 中Medium |
下载: 导出CSV
表72001—2015年不同时期中国农业碳排放影响因素的动态灰色综合关联系数
Table7.Dynamic gray comprehensive correlation coefficients of influencing factors of agricultural carbon emission in China in different periods from 2001 to 2015
影响因素Influencing factor | 2001—2005 | 2006—2010 | 2011—2015 | 2001—2015 | |
内部 Internal | 农地利用Farmland utilization | 0.68 | 0.84 | 0.81 | 0.95 |
水稻种植Rice cultivation | 0.66 | 0.81 | 0.98 | 0.93 | |
外部External | 反刍动物饲养Ruminant | 0.62 | 0.81 | 0.60 | 0.91 |
秸秆燃烧Straw combustion | 0.65 | 0.77 | 0.64 | 0.92 | |
农业经济规模Agricultural economy scale | 0.62 | 0.78 | 0.72 | 0.93 | |
农业经济水平Agricultural economy level | 0.64 | 0.79 | 0.73 | 0.93 | |
农业经济结构Agricultural economic structure | 0.61 | 0.62 | 0.71 | 0.77 | |
农业生产技术(机械) Mechanization | 0.60 | 0.83 | 0.79 | 0.94 | |
农业生产技术(人力) Human capital | 0.63 | 0.74 | 0.89 | 0.91 |
下载: 导出CSV
表82001—2015年中国各省市中农业碳排放等级升高省市的排放主导因素
Table8.Dominant influencing factors of carbon emission of provinces and cities that agricultural carbon emission level increased in China from 2001 to 2015
省(市) Province (city) | 排放等级变动 Changes in emission level | 排放主导因素的变动 Change in dominant influencing factors of carbon emission | 重要性增加较快因素 Factor with fast-growing importance | 重要性减少较快因素 Factor with fast-reducing importance | 长期主导因素 Long-term dominant factor |
天津 Tianjin | 低—中低 Low-medium- low | 水稻种植、农业生产技术(机械)—农地利用、农业生产技术(机械) Rice cultivation, mechanization-farming land utilization, mechanization | 农业生产技术(机械) (+0.20) Mechanization (+0.20) | 秸秆燃烧(-0.11) Straw combustion (-0.11) | 农地利用、农业生产技术(人力) Farming land utilization, human capital |
北京 Beijing | 低—中低 Low-medium- low | 水稻种植、农业生产技术(机械)—农地利用、农业经济水平 Rice cultivation, mechanization-farming land utilization, agricultural economy level | 农业经济水平(+0.16) Agricultural economy level (+0.16) | 农业生产技术(人力) (-0.22) Human capital (-0.22) | 水稻种植、农业生产技术(机械) Rice cultivation, mechanization |
上海 Shanghai | 低—中低 Low-medium- low | 反刍动物、农业生产技术(机械)—秸秆燃烧、农业经济水平 Ruminant, mechanization-straw combustion, agricultural economy level | 农业生产技术(机械) (+0.08) Mechanization (+0.08) | 农业经济规模(-0.23) Agricultural economy scale (-0.23) | 水稻种植、农业生产技术(机械) Rice cultivation, mechanization |
河南 Henan | 中高—高 Medium-high- high | 反刍动物、农业经济结构—农地利用、农业生产技术(机械) Ruminant, agricultural economic structure-farming land cultivation, mechanization | 反刍动物(+0.11) Ruminant (+0.11) | 秸秆燃烧(-0.10) Straw combustion (-0.10) | 农地利用、农业生产技术(机械) Farming land utilization, mechanization |
江西 Jiangxi | 中低—中 Medium-low- medium | 农地利用、农业生产技术(人力) Farming land utilization, human capital | 反刍动物(+0.26) Ruminant (+0.26) | 秸秆燃烧(-0.21) Straw combustion (-0.21) | 反刍动物、农业生产技术(机械) Ruminant, mechanization |
新疆 Xinjiang | 中高—高 Medium-high- high | 反刍动物、农业经济结构—农地利用、农业生产技术(人力) Ruminant, agricultural economy structure-farming land utilization, human capital | 反刍动物(+0.11) Ruminant (+0.11) | 农业生产技术(人力) (-0.11) Human capital (-0.11) | 农地利用、农业生产技术(机械) Farming land utilization, mechanization |
表中括号内的数字带“+”表示2001—2015年各因素与农业碳排放灰色关联系数增加, 带“-”表示该期间各因素与农业碳排放灰色关联系数减少。“+” means an increase of the gray correlation coefficient, “-” means a reduction of the grey correlation coefficient. |
下载: 导出CSV
表92001—2015年中国各省市农业碳排放等级降低省市的排放主导因素
Table9.Dominant influencing factors of carbon emission of provinces and cities that agricultural carbon emission level decreased in China from 2001 to 2015
省(市) Province (city) | 排放等级变动 Changes in emission level | 排放主导因素的变动 Change in dominant influencing factors of carbon emission | 重要性增加较快因素 Factor with fast-growing importance | 重要性减少较快因素 Factor with fast-reducing importance | 长期主导因素 Long-term dominant factor |
山东 Shandong | 中高—中 Medium-high- medium | 秸秆燃烧、农业经济水平—反刍动物、农业生产技术(人力) Straw combustion, agricultural economy level-ruminant, human capital | 水稻种植(+0.17)、农业生产技术(人力) (+0.10) Rice cultivation (+0.17), human capital (+0.10) | 农地利用(-0.12) Farming land utilization (-0.12) | 反刍动物、农业经济规模 Ruminant, agricultural economy scale |
江苏 Jiangsu | 中—中低 Medium- medium-low | 农地利用、农业经济结构—农地利用、农业生产技术(人力) Farming land utilization, agricultural economic structure-farming land utilization, human capital | 反刍动物(+0.04) Ruminant (+0.04) | 秸秆燃烧(-0.14) Straw combustion (-0.14) | 反刍动物、农业生产技术(人力) Ruminant, human capital |
陕西 Shaanxi | 中高—中 Medium-high- medium | 反刍动物、农业生产技术(机械)—反刍动物、农业生产技术(人力) Ruminant, mechanization-ruminant, human capital | 农业生产技术(人力) (+0.17)、农地利用(+0.11) Human capital (+0.17), farming land utilization (+0.11) | 反刍动物(-0.06) Ruminant (-0.06) | 反刍动物、农业生产技术(人力) Ruminant, human capital |
安徽 Anhui | 中高—中 Medium-high- medium | 水稻种植、农业经济结构—反刍动物、农业经济结构 Rice cultivation, agricultural economic structure-ruminant, agricultural economic structure | 反刍动物(+0.18)、农业生产技术(人力)(+0.12) Ruminant (+0.18), human capital (+0.12) | 农地利用(-0.11) Farming land utilization (-0.11) | 反刍动物、农业生产技术(机械) Ruminant, mechanization |
贵州 Guizhou | 中高—中 Medium-high- medium | 农地利用、农业生产技术(人力) Farming land utilization, human capital | 反刍动物(+0.30)、农业生产技术(人力) (+0.14) Ruminant (+0.30), human capital (+0.14) | 农地利用(-0.14) Farming land utilization (-0.14) | 农地利用、农业生产技术(人力) Farming land utilization, human capital |
广西 Guangxi | 中高—中低 Medium-high- Medium-low | 反刍动物、农业经济水平—农地利用、农业生产技术(人力) Ruminant, agricultural economy level-farming land utilization, human capital | 反刍动物(+0.02) Ruminant (+0.02) | 农地利用(-0.13) Farming land utilization (-0.13) | 反刍动物、农业生产技术(人力) Ruminant, Human capital |
表中括号内的数字带“+”表示2001—2015年各因素与农业碳排放灰色关联系数增加, 带“-”表示该期间各因素与农业碳排放灰色关联系数减少。“+” means an increase of the gray correlation coefficient, “-” means a reduction of the grey correlation coefficient. |
下载: 导出CSV
表102001—2015年中国各省市农业碳排放等级不变省市的排放主导因素
Table10.Dominant influencing factors of carbon emission of provinces and cities that no changes in agricultural carbon emission level in China from 2001 to 2015
排放等级 Emission level | 省(市) Province (city) | 排放主导因素的变动 Changes in dominant factor of carbon emission | 重要性增加较快因素 Factor with fast-growing importance | 重要性减少较快因素 Factor with fast-reducing importance | 长期主导因素 Long-term dominant factor | 平均灰色综合关联度 Average gray correlation |
高 High | 内蒙古 Inner Mongolia | 农地利用、农业生产技术(人力)—反刍动物、农业生产技术(人力) Farming land utilization, human capital-ruminant, human capital | 反刍动物(+0.17)、农业生产技术(机械)(+0.08) Ruminant (+0.17), mechanization (+0.08) | 农地利用(-0.26) Farming land utilization (-0.26) | 反刍动物、农业生产技术(人力) Ruminant, human capital | 0.94 |
云南 Yunnan | 反刍动物、农业生产技术(机械)—农地利用、农业生产技术(机械) Ruminant, mechanization- Farmland, mechanization | 农地利用(+0.16) Farmland (+0.16) | 反刍动物(-0.15) Ruminant (-0.15) | 农地利用、农业生产技术(机械) Farming land utilization, mechanization | 0.95 | |
中高 Medium high | 黑龙江 Heilong- jiang | 农地利用、农业经济水平—农地利用、农业生产技术(机械) Farming land utilization, Level-farming land utilization, mechanization | 水稻种植(+0.21)、农地利用(+0.10) Rice cultivation (+0.21), farming land utilization (+0.10) | 反刍动物(-0.17) Ruminant (-0.17) | 农地利用、农业生产技术(机械) Farming land utilization, mechanization | 0.92 |
河北 Hebei | 农地利用、农业生产技术(机械)—农地利用、农业经济结构 Farming land utilization, mechanization-farming land utilization, agricultural economic structure | 农地利用(+0.20) Farming land utilization (+0.20) | 农业经济水平(-0.19) Agricultural economy level (-0.19) | 农地利用、农业生产技术(机械) Farming land utilization, mechanization | 0.92 | |
四川 Sichuan | 农地利用、农业经济水平—水稻种植、农业经济结构 Farming land utilization, agricultural economy level-rice cultivation, agricultural economy structure | 反刍动物(+0.13) Ruminant (+0.13) | 农地利用 Farming land utilization (-0.14) | 水稻种植、农业生产技术(机械) Rice cultivation, mechanization | 0.91 | |
重庆 Chong- qing | 农地利用、农业生产技术(机械)—反刍动物、农地利用、农业生产技术(人力) Farming land utilization, mechanization- ruminant, farming land utilization, human capital | 反刍动物(+0.08) Ruminant (+0.08) | 农地利用(-0.15) Farming land utilization (-0.15) | 农地利用、农业生产技术(机械) Farming land utilization, mechanization | 0.92 | |
甘肃 Gansu | 农地利用、农业生产技术(机械)—反刍动物、农业经济规模 Farming land utilization, mechanization-ruminant, agricultural economy scale | 反刍动物(+0.09) Ruminant (+0.09) | 农业生产技术(人力)(-0.16) Human capital (-0.16) | 农地利用、农业经济规模 Farming land utilization, agricultural economy scale | 0.93 | |
中 Medium | 吉林 Jilin | 农地利用、农业生产技术(人力)—农地利用、农业经济水平 Farming land utilization, human capital-farming land utilization, agricultural economy level | 农业经济水平(+0.15) Agricultural economy level (+0.15) | 农地利用(-0.12) Farming land utilization (-0.12) | 农地利用、农业经济结构 Farming land utilization, agricultural economic structure | 0.86 |
山西 Shanxi | 农地利用、农业经济结构—农地利用、农业经济规模 Farming land utilization, agricultural economic structure-farming land utilization, agricultural economy scale | 反刍动物(+0.06) Ruminant (+0.06) | 农地利用(-0.13) Farming land utilization (-0.13) | 反刍动物、农业生产技术(人力) Ruminant, human capital | 0.76 | |
湖南 Hunan | 水稻种植、农业生产技术(人力)—水稻种植、农业生产技术(机械) Rice cultivation, human capital-rice cultivation, mechanization | 水稻种植(+0.15)、农业生产技术(机械) (+0.21) Rice cultivation (+0.15), mechanization (+0.21) | 反刍动物(-0.24) Ruminant (-0.24) | 农地利用、农业生产技术(机械) Farming land utilization, mechanization | 0.88 | |
湖北 Hubei | 水稻种植、农业经济结构—水稻种植、农业经济规模 Rice cultivation, agricultural economic structure-rice cultivation, agricultural economy scale | 水稻种植(+0.11) Rice cultivation (+0.11) | 农业经济结构(-0.08) Agricultural economic structure (-0.08) | 水稻种植、农业生产技术(人力) Rice cultivation, human capital | 0.86 | |
青海Qinghai | 农地利用、农业经济规模—反刍动物、农业生产技术(人力) Farming land utilization, agricultural economy scale-ruminant, human capital | — | 农地利用(-0.16) Farming land utilization (-0.16) | 反刍动物、农业生产技术(人力) Ruminant, human capital | 0.86 | |
宁夏Ningxia | 农地利用、农业生产技术(人力)—反刍动物、农业生产技术(机械) Farming land utilization, human capital-ruminant, mechanization | 反刍动物(+0.22) Ruminant (+0.22) | 农地利用(-0.14) Farming land utilization (-0.14) | 反刍动物、农业生产技术(机械) Ruminant, mechanization | 0.85 | |
西藏Tibet | 农地利用、农业经济结构—农地利用、农业经济水平 Farming land utilization, agricultural economic structure-farming land utilization, agricultural economy level | 农地利用(+0.10)、反刍动物(+0.19) Farming land utilization (+0.10), ruminant (+0.19) | 农业经济结构(-0.23) Agricultural economic structure (-0.23) | 反刍动物、农业生产技术(机械) Ruminant, mechanization | 0.87 | |
中低 Medium low | 辽宁 Liaoning | 农地利用、农业经济规模 Farming land utilization, agricultural economy scale | 水稻种植(+0.05) Rice cultivation (+0.05) | 反刍动物(-0.14) Ruminant (-0.14) | 农地利用、农业生产技术(机械) Farming land utilization, mechanization | 0.82 |
广东 Guangdong | 农地利用、农业生产技术(机械) Farming land utilization, mechanization | 农业生产技术(人力) (+0.06) Human capital (+0.06) | 农地利用(-0.12) Farming land utilization (-0.12) | 农地利用、农业生产技术(机械) Farming land utilization, mechanization | 0.81 | |
低 Low | 浙江Zhejiang | 农地利用、农业生产技术(机械)—农地利用、农业经济水平 Farming land utilization, mechanization-farming land utilization, agricultural economy level | 农业经济水平(+0.06) Agricultural economy level (+0.06) | 反刍动物(-0.10) Ruminant (-0.10) | 农地利用、农业生产技术(机械) Farming land utilization, mechanization | 0.80 |
海南 Hainan | 农地利用、农业生产技术(机械)—秸秆燃烧、农业经济水平 Farming land utilization, mechanization-straw combustion, agricultural economy level | 农业经济水平(+0.05) Agricultural economy level (+0.05) | 农地利用(-0.26) Farming land utilization (-0.26) | 农地利用、农业生产技术(机械) Farming land utilization, mechanization | 0.82 | |
福建 Fujian | 农地利用、农业生产技术(机械) Farming land utilization, mechanization | 农业生产技术(机械) (+0.07) Mechanization (+0.07) | 农地利用(-0.14) Farming land utilization (-0.14) | 农地利用、农业生产技术(机械) Farming land utilization, mechanization | 0.81 | |
表中括号内的数字带“+”表示“十五”期间到“十二五”期间各因素与各地区农业碳排放灰色关联系数的增加, 带“-”表示该期间各因素与各地区农业碳排放灰色关联系数的减少。“+” means an increase of the gray correlation coefficient, “-” means the reduction of the grey correlation coefficient. |
下载: 导出CSV
表11中国农业碳排放区域格局影响因素的回归结果表
Table11.Regional pattern influencing factors regression results of agricultural carbon emissions in China
回归系数 Regression coefficient | 估计结果 Estimated coefficient | T值 T value | P值 P value |
α | 0.63 | 5.03 | 0.000 5 |
β1 | 0.17 | 4.12 | 0.008 6 |
Β2 | 0.73 | 3.41 | 0.003 1 |
β3 | 1.10 | 3.94 | 0.002 8 |
β4 | 0.61 | 3.18 | 0.009 4 |
调整拟合优度 Adjusted R2 | 0.84 | 自相关检 验值DW | 1.871 5 |
下载: 导出CSV
参考文献
[1] | MOSIER A R, DUXBURY J M, FRENEY J R, et al. Mitigating agricultural emissions of methane[J]. Climatic Change, 1998, 40(1):39-80 doi: 10.1023/A:1005338731269 |
[2] | TUBIELLO F N, SALVATORE M, GOLEC R D C, et al. Agriculture, forestry and other land use emissions by sources and removals by sinks:1990-2011 analysis[J]. FAO Statistics Division, 2014, 4(2):375-376 http://cn.bing.com/academic/profile?id=3ff2cf0157633f4a073767fcb680dfc4&encoded=0&v=paper_preview&mkt=zh-cn |
[3] | 李波, 张俊飚, 李海鹏.中国农业碳排放时空特征及影响因素分解[J].中国人口·资源与环境, 2011, 21(8):80-86 doi: 10.3969/j.issn.1002-2104.2011.08.013 LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8):80-86 doi: 10.3969/j.issn.1002-2104.2011.08.013 |
[4] | 冉光和, 王建洪, 王定祥.我国现代农业生产的碳排放变动趋势研究[J].农业经济问题, 2011, 32(2):32-38 http://d.old.wanfangdata.com.cn/Periodical/nyjjwt201102005 RAN G H, WANG J H, WANG D X. Study on the changing tendency and counter-measures of carbon emission produced by agricultural production in China[J]. Issues in Agricultural Economy, 2011, 32(2):32-38 http://d.old.wanfangdata.com.cn/Periodical/nyjjwt201102005 |
[5] | 谭秋成.中国农业温室气体排放:现状及挑战[J].中国人口·资源与环境, 2011, 21(10):69-75 doi: 10.3969/j.issn.1002-2104.2011.10.011 TAN Q C. Greenhouse gas emission in China's agriculture:Situation and challenge[J]. China Population, Resources and Environment, 2011, 21(10):69-75 doi: 10.3969/j.issn.1002-2104.2011.10.011 |
[6] | 田云, 张俊飚, 李波.中国农业碳排放研究:测算、时空比较及脱钩效应[J].资源科学, 2012, 34(11):2097-2105 http://d.old.wanfangdata.com.cn/Periodical/zgrkzyyhj201108013 TIAN Y, ZHANG J B, LI B. Agricultural carbon emissions in China:Calculation, spatial-temporal comparison and decoupling effects[J]. Resources Science, 2012, 34(11):2097-2105 http://d.old.wanfangdata.com.cn/Periodical/zgrkzyyhj201108013 |
[7] | 吴贤荣, 张俊飚, 田云, 等.中国省域农业碳排放:测算、效率变动及影响因素研究——基于DEA-Malmquist指数分解方法与Tobit模型运用[J].资源科学, 2014, 36(1):129-138 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201605154 WU X R, ZHANG J B, TIAN Y, et al. Provincial agricultural carbon emissions in China:Calculation, performance change and influencing factors[J]. Resources Science, 2014, 36(1):129-138 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201605154 |
[8] | 闵继胜, 胡浩.中国农业生产温室气体排放量的测算[J].中国人口·资源与环境, 2012, 22(7):21-27 doi: 10.3969/j.issn.1002-2104.2012.07.004 MIN J S, HU H. Calculation of greenhouse gases emission from agricultural production in China[J]. China Population, Resources and Environment, 2012, 22(7):21-27 doi: 10.3969/j.issn.1002-2104.2012.07.004 |
[9] | 伍芬琳, 李琳, 张海林, 等.保护性耕作对农田生态系统净碳释放量的影响[J].生态学杂志, 2007, 26(12):2035-2039 http://d.old.wanfangdata.com.cn/Periodical/stxzz200712021 WU F L, LI L, ZHANG H L, et al. Effects of conservation tillage on net carbon flux from farmland ecosystems[J]. Chinese Journal of Ecology, 2007, 26(12):2035-2039 http://d.old.wanfangdata.com.cn/Periodical/stxzz200712021 |
[10] | 段华平, 张悦, 赵建波, 等.中国农田生态系统的碳足迹分析[J].水土保持学报, 2011, 25(5):203-208 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201105043 DUAN H P, ZHANG Y, ZHAO J B, et al. Carbon footprint analysis of farmland ecosystem in China[J]. Journal of Soil and Water Conservation, 2011, 25(5):203-208 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201105043 |
[11] | 刘丽华, 蒋静艳, 宗良纲.农业残留物燃烧温室气体排放清单研究:以江苏省为例[J].环境科学, 2011, 32(5):1242-1248 http://d.old.wanfangdata.com.cn/Periodical/hjkx201105005 LIU L H, JIANG J Y, ZONG L G. Emission inventory of greenhouse gases from agricultural residues combustion:A case study of Jiangsu Province[J]. Environmental Science, 2011, 32(5):1242-1248 http://d.old.wanfangdata.com.cn/Periodical/hjkx201105005 |
[12] | LIN H W, JIN Y F, GIGLIO L, et al. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires[J]. Ecological Applications, 2012, 22(4):1345-1364 doi: 10.1890/10-2362.1 |
[13] | NEUMAYER E. Can natural factors explain any cross-country differences in carbon dioxide emissions?[J]. Energy Policy, 2002, 30(1):7-12 doi: 10.1016/S0301-4215(01)00045-3 |
[14] | LANTZ V, FENG Q. Assessing income, population, and technology impacts on CO2 emissions in Canada:Where's the EKC?[J]. Ecological Economics, 2006, 57(2):229-238 doi: 10.1016/j.ecolecon.2005.04.006 |
[15] | UCHIYAMA K. Environmental Kuznets Curve Hypothesis and Carbon Dioxide Emissions[M]. Tokyo:Springer, 2016 |
[16] | 杨钧.中国农业碳排放的地区差异和影响因素分析[J].河南农业大学学报, 2012, 46(3):336-342 doi: 10.3969/j.issn.1000-2340.2012.03.021 YANG J. Analysis on regional difference and affecting factors of agriculture carbon emission in China[J]. Journal of Henan Agricultural University, 2012, 46(3):336-342 doi: 10.3969/j.issn.1000-2340.2012.03.021 |
[17] | 刘华军, 鲍振, 杨骞.中国农业碳排放的地区差距及其分布动态演进——基于Dagum基尼系数分解与非参数估计方法实证研究[J].农业技术经济, 2013, (3):72-81 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjsjj201303008 LIU H J, BAO Z, YANG Q. Region disparities of agricultural carbon emissions in China and the dynamic evolution of their distribution-Empirical study on decomposition an monparametric estimation based on Dagum Gini coefficient[J]. Journal of Agrotechnical Economics, 2013, (3):72-81 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjsjj201303008 |
[18] | 田云, 张俊飚, 尹朝静, 等.中国农业碳排放分布动态与趋势演进——基于31个省(市、区)2002-2011年的面板数据分析[J].中国人口·资源与环境, 2014, 24(7):91-98 doi: 10.3969/j.issn.1002-2104.2014.07.014 TIAN Y, ZHANG J B, YIN C J, et al. Distributional dynamics and trend evolution of China's agricultural carbon emission-An analysis on panel data of 31 provinces from 2002 to 2011[J]. China Population, Resources and Environment, 2014, 24(7):91-98 doi: 10.3969/j.issn.1002-2104.2014.07.014 |
[19] | 庞丽.我国农业碳排放的区域差异与影响因素分析[J].干旱区资源与环境, 2014, 28(12):1-7 http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201412001 PANG L. Empirical study of regional carbon emissions of agriculture in China[J]. Journal of Arid Land Resources and Environment, 2014, 28(12):1-7 http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201412001 |
[20] | 赵欣, 龙如银.考虑全要素生产率的中国碳排放影响因素分析[J].资源科学, 2010, 32(10):1863-1870 http://d.old.wanfangdata.com.cn/Periodical/zykx201010005 ZHAO X, LONG R Y. Analysis of factors of China's carbon emissions considering the total factor productivity[J]. Resources Science, 2010, 32(10):1863-1870 http://d.old.wanfangdata.com.cn/Periodical/zykx201010005 |
[21] | DYER J A, KULSHRESHTHA S N, MCCONKEY B G, et al. An assessment of fossil fuel energy use and CO2 emissions from farm field operations using a regional level crop and land use database for Canada[J]. Energy, 2010, 35(5):2261-2269 doi: 10.1016/j.energy.2010.02.013 |
[22] | IPCC. Climate Change 2007:The Physical Science Basis:Working Group Ⅰ Contribution to the Fourth Assessment Report of The Intergovernmental Panel on Climate Change[M]. New York:Cambridge University Press, 2007 |
[23] | GROSSMAN G M, KRUEGER A B. Economic growth and the environment[J]. The Quarterly Journal of Economics, 1995, 110(2):353-377 doi: 10.2307/2118443 |
[24] | EHRLICH P R, WOLFF G, DAILY G C, et al. Knowledge and the environment[J]. Ecological Economics, 1999, 30(2):267-284 doi: 10.1016/S0921-8009(98)00130-X |
[25] | 钱雪亚, 张小蒂.农村人力资本积累及其收益特征[J].中国农村经济, 2000, (3):25-31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200001148653 QIAN X Y, ZHANG X D. The accumulation of rural human capital and its profit characteristics[J]. Chinese Rural Economy, 2000, (3):25-31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200001148653 |
[26] | 河南日报农村版. 河南: 推进农业机械化农民耕种轻松化[EB/OL]. https://www.tuliu.com/read-26830.html, 2016-04-19 Henan Daily Rural Edition. Henan: Promoting agricultural mechanization Farmers' cultivation is easy[EB/OL]. https://www.tuliu.com/read-26830.html, 2016-04-19 |