删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

闽西南崩岗侵蚀区芒萁叶片生态化学计量特征

本站小编 Free考研考试/2022-01-01

陈俊佳,
陈志彪,,
陈志强,
姜超,
陈海滨,
梁美霞
福建师范大学湿润亚热带生态地理过程教育部重点实验室/福建师范大学地理科学学院 福州 350007
基金项目: 福建省社会发展引导性(重点)项目2016Y0024
国家自然科学基金项目41171232
国家重点研发计划项目2016YFC0502905
泉州市科技计划项目2018Z025

详细信息
作者简介:陈俊佳, 主要研究方向为侵蚀过程与生态调控。E-mail:chenjunjia666666@163.com
通讯作者:陈志彪, 主要研究方向为水土保持与资源环境。E-mail:chenzhib408@vip.163.com
中图分类号:S153

计量

文章访问数:574
HTML全文浏览量:4
PDF下载量:632
被引次数:0
出版历程

收稿日期:2018-05-31
录用日期:2018-06-22
刊出日期:2018-11-01

Dicranopteris dichotoma leaf stoichiometry in collapsing erosion areas in Southwest Fujian

CHEN Junjia,
CHEN Zhibiao,,
CHEN Zhiqiang,
JIANG Chao,
CHEN Haibin,
LIANG Meixia
Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University/School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
Funds: the Guiding Project for Social Development of Fujian Province2016Y0024
the National Natural Science Foundation of China41171232
the National Key Research and Development Project of China2016YFC0502905
the Science and Technology Project of Quanzhou City2018Z025

More Information
Corresponding author:CHEN Zhibiao, E-mail:chenzhib408@vip.163.com


摘要
HTML全文
(5)(4)
参考文献(38)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为了阐明极度退化的崩岗生态系统内芒萁的生长状态和养分储存特征,对闽西南3处不同侵蚀强度的典型崩岗内芒萁叶片C、N、P含量及C/N、C/P、N/P特征进行研究,对比分析不同侵蚀强度下崩壁部位和崩岗不同侵蚀部位中芒萁叶片的生态化学计量特征。结果表明:崩岗内芒萁叶片的C、N、P平均含量分别为477.10 g·kg-1、6.45 g·kg-1、0.25 g·kg-1,芒萁叶片的N、P养分含量极低;而C/N、C/P、N/P平均值分别为96.82、2 097.20、27.67,芒萁生长受P限制。不同侵蚀强度下的崩壁内芒萁叶片的C、N、P含量及C/P、N/P均存在显著差异(P < 0.05),C含量、C/P和N/P均随着侵蚀强度的增强而减小,N含量在中度侵蚀的崩壁内较高,而P含量则随着侵蚀强度的增强而增加,表明芒萁对土壤侵蚀严重的崩岗生态系统具有很强的适应能力。在崩岗的不同侵蚀部位中芒萁叶片的P含量、C/P和N/P均存在显著差异(P < 0.05),P含量在集水坡面最高,在崩壁最低;而C/P、N/P均表现为崩壁显著大于其他各侵蚀部位。可见,在崩岗的不同侵蚀部位,崩壁中芒萁对C的同化能力强于其他侵蚀部位,且对P利用效率也显著高于其他侵蚀部位。综上,在侵蚀严重的崩岗生态系统中,芒萁有较强的同化C能力和较高的对P利用效率,能通过调节自身C、N、P元素含量很好地适应土壤侵蚀严重、养分极度贫瘠的生境。
关键词:生态化学计量学/
芒萁叶片/
崩岗/
土壤侵蚀强度/
侵蚀部位
Abstract:Collapse mound is a form of widespread and severe soil erosion in granite areas in South China. As a typical pioneer plant in collapse mound areas, Dicranopreris dichotoma is critical for soil and water conservation in collapsing erosion areas in South China. Plant stoichiometric characteristics reflect the capacity of plants to absorb and store mineral nutrients from the soil. They also reflect the long-term stoichiometric distribution formed during plant adaptation to the environment. Therefore, analysis of the characteristics of ecological stoichiometry of D. dichotoma in collapsing erosion areas can provide an important guidance for ecological restoration in collapsing erosion areas. In order to clarify the characteristics of nutrient storage of D. dichotoma in extremely degraded collapse mound ecosystems, the characteristics of carbon (C), nitrogen (N), phosphorus (P) contents and C/N, C/P and N/P ratios for D. dichotoma leaf in three typical collapse mound areas with different erosion intensities in Southwest Fujian Province were analyzed. The ecological stoichiometry characteristics of D. dichotoma leaves in different erosion intensities of collapsing wall and collapse mound under the same erosion intensity in different erosion positions were also comparatively analyzed. The results showed that the average contents of C, N and P in the leaves of D. dichotoma in collapse mounds were 477.10 g·kg-1, 6.45 g·kg-1 and 0.25 g·kg-1, respectively. The N and P contents were generally extremely low. The average ratios of C/N, C/P and N/P were 96.82, 2 097.20 and 27.67, respectively. Thus D. dichotoma growth was primary limited by P content. On the other hand, there were significant differences in C, N and P contents, and C/P and N/P ratios in collapsing wall leaves under different erosion intensities (P < 0.05). All the C content along with C/P and N/P ratios decreased with increasing erosion intensity. While N content was higher in collapsing walls with moderate erosion, P content increased with increasing erosion intensity. This showed that D. dichotoma had strong ability to adapt to collapse mound ecosystems with severe soil erosion. On the other hand, there were significant differences in P content, and C/P and N/P ratios in D. dichotom a leaves in different erosion positions of collapse mounds under the same erosion intensity (P < 0.05). P content was highest in the upper catchment and lowest on collapsing walls. All the C/P and N/P ratios on collapsing walls were significantly larger than in other erosion positions. Obviously, it was evident that the ability of D. dichotom a to assimilate carbon in collapsing walls was stronger than in other erosion positions of collapse mounds. In addition, P utilization efficiency in collapsing walls was significantly higher than that in other erosion positions. In conclusion, D. dichotom a had strong ability to assimilate C and use P efficiently in severely eroded gully ecosystems and was adaptive to environments with severe soil erosion and extreme nutrient deficiency by regulating C, N and P contents in its cells.
Key words:Ecological stoichiometry/
Dicranopreris dichotoma leaf/
Collapse mound/
Soil erosion intensity/
Erosion position

HTML全文


图1不同侵蚀强度崩岗侵蚀区的地貌特征
Figure1.Geomorphological characteristics of the collapse mounds with different erosion intensities


下载: 全尺寸图片幻灯片


图2不同侵蚀强度下崩壁内芒萁叶片的C、N、P含量
SL:微度侵蚀; MO:中度侵蚀; ST:强度侵蚀。不同小写字母表示不同侵蚀强度间差异显著(P < 0.05)。
Figure2.Leaf C, N and P contents of Dicranopteris dichotoma on collapsing wall with different erosion intensities
SL: slight erosion; MO: moderate erosion; ST: strong erosion. Different lowercase letters in the figure indicate significant differences among different erosion intensities at 0.05 level.


下载: 全尺寸图片幻灯片


图3不同土壤侵蚀强度崩壁内芒萁叶片的C/N、C/P和N/P比值
SL:微度侵蚀; MO:中度侵蚀; ST:强度侵蚀。不同小写字母表示不同侵蚀强度间差异显著(P < 0.05)。
Figure3.Leaf C/N, C/P and N/P ratios of Dicranopteris dichotoma in collapsing wall with different soil erosion intensities
SL: slight erosion; MO: moderate erosion; ST: strong erosion. Different lowercase letters in the figure indicate significant differences among different erosion intensities at 0.05 level.


下载: 全尺寸图片幻灯片


图4崩岗不同侵蚀部位芒萁叶片C、N和P含量
UC:集水坡面; CW:崩壁; CD:崩积体; CO:沟道。不同小写字母表示不同侵蚀部位间差异显著(P < 0.05)。
Figure4.Leaf C, N and P contents in Dicranopteris dichotoma in different erosion positions in collapse mound
UC: upper catchment; CW: collapsing wall; CD: colluvial deposit; CO: channel. Different lowercase letters in the figure indicate significant differences among different erosion positions at 0.05 level.


下载: 全尺寸图片幻灯片


图5崩岗不同侵蚀部位芒萁叶片C/N、C/P和N/P比值
UC:集水坡面; CW:崩壁; CD:崩积体; CO:沟道。不同小写字母表示不同侵蚀部位间差异显著(P < 0.05)。
Figure5.Leaf C/N, C/P and N/P ratios in Dicranopteris dichotoma in different erosion positions in collapse mound
UC: upper catchment; CW: collapsing wall; CD: colluvial deposit; CO: channel. Different lowercase letters in the figure indicate significant differences among different erosion positions at 0.05 level.


下载: 全尺寸图片幻灯片

表1不同侵蚀强度崩岗区的基本概况
Table1.General situations of three collapse mounds with different erosion intensities
崩岗Collapse mound
侵蚀强度Erosion intensity 微度Slight 中度Moderate 强度Strong
总面积Total area (m2) 146 705 542
侵蚀面积Erosion area (m2) 96 686 520
植被覆盖度Vegetation coverage (%) 95 20 2
侵蚀模数Erosion modulus (t·km-2·a-1) < 500 4 500~5 000 6 000~6 500
集水坡面Upper catchment 海拔Altitude (m) 318 324 359
坡度Slope (°) 15° 18°
坡向Aspect (°) SE 26° SW 19° SW 18°
崩壁Collapsing wall 高度Height (m) 6.30 11.80 9.43
宽度Width (m) 2.70~3.42 4.62~6.02 3.55~5.09
主沟Main channel 长度Length (m) 16.48 15.10 13.83
宽度Breadth (m) 0.71~1.54 1.83~4.45 2.20~4.50


下载: 导出CSV
表2不同侵蚀强度崩壁芒萁叶片的C、N和P含量与其比值间的关系
Table2.Relationship among C, N and P contents and their ratios in leaf of Dicranopreris dichotoma on collapsing wall with different erosion intensities
y x 回归方程
Regression equation
R2及显著性
R2 & sig.
N C y=0.132x-56.813 0.327
P C y=-0.003x+1.866 0.476*
C/N C y=5.337x+2 671.237 0.468*
C/P C y=65.402x-28 851.448 0.480*
N/P C y=1.366x-621.319 0.750**
P N y=-0.001x+0.210 0.002
C/N N y=-28.757x+291.864 0.722**
C/P N y=21.959x+2 496.491 0.003
N/P N y=4.280x+7.951 0.305
C/N P y=375.594x+24.550 0.058
C/P P y=-18 461.890x+6 406.309 0.957**
N/P P y=-250.928x+87.503 0.633**
C/P C/N y=-2.859x+2 931.225 0.056
N/P C/N y=-0.137x+50.212 0.460*
N/P C/P y=0.014x+0.531 0.658**
??**表示P≤0.01; *表示P≤0.05; n=9。** means significant correlation at 0.01 level. * means significant correlation at 0.05 level. n = 9.


下载: 导出CSV
表3崩岗不同侵蚀部位芒萁叶片的C、N和P含量与其比值间的关系
Table3.Relationship among C, N and P contents and their ratios in leaf of Dicranopreris dichotoma in different erosion positions of collapse mound
y x 回归方程
Regression equation
R2及显著性
R2 & sig.
N C y=-0.002x+7.757 0.002
P C y=-0.002x+1.210 0.171
C/N C y=-0.173x-14.506 0.221
C/P C y=-38.603x-16 202.526 0.275
N/P C y=0.460x-187.637 0.167
P N y=0.070x-0.247 0.246
C/N N y=-9.500x+135.254 0.809**
C/P N y=-799.163x+7 893.606 0.144
N/P N y=-7.257x+83.787 0.074
C/N P y=-45.049x+79.436 0.357*
C/P P y=-14 373.149x+5 748.546 0.913**
N/P P y=-180.464x+76.348 0.894**
C/P C/N y=109.315x-5 212.076 0.300
N/P C/N y=1.104x-42.848 0.157
N/P C/P y=0.013x-4.149 0.981**
??**表示P≤0.01;*表示P≤0.05; n=12。** means significant correlation at 0.01 level. * means significant correlation at 0.05 level. n = 12.


下载: 导出CSV
表4闽西南崩岗侵蚀区内芒萁叶片中C、N和P含量与其比值间的关系
Table4.Relationship among C, N and P contents and their ratios in leaf of Dicranopreris dichotoma in the area of collapsing erosion in Southwestern Fujian
y x 回归方程
Regression equation
R2及显著性
R2 & sig.
N C y=0.048x-16.446 0.114
P C y=-0.001x+0.710 0.053
C/N C y=2.430x+1 256.190 0.229*
C/P C y=21.442x-8 132.946 0.160
N/P C y=0.437x-180.872 0.250*
P N y=0.009x+0.194 0.086
C/N N y=-31.202x+297.952 0.764**
C/P N y=-46.300x+2 395.747 0.015
N/P N y=3.560x+4.715 0.335**
C/N P y=-248.529x+158.987 0.042
C/P P y=-11 536.557x+4 983.039 0.818**
N/P P y=-115.123x+56.462 0.275**
C/P C/N y=0.003x+91.550 0.001
N/P C/N y=-0.097x+37.043 0.316**
N/P C/P y=0.012x+2.624 0.515**
??**表示P≤0.01;*表示P≤0.05; n=24。** means significant correlation at 0.01 level. * means significant correlation at 0.05 level. n = 24.


下载: 导出CSV

参考文献(38)
[1]陈志彪, 朱鹤健, 刘强, 等.根溪河小流域的崩岗特征及其治理措施[J].自然灾害学报, 2006, 15(5):83-88 doi: 10.3969/j.issn.1004-4574.2006.05.013
CHEN Z B, ZHU H J, LIU Q, et al. Slump gully characteristic of small watershed of Genxi River and its control measures[J]. Journal of Natural Disasters, 2006, 15(5):83-88 doi: 10.3969/j.issn.1004-4574.2006.05.013
[2]姜超, 陈志彪, 陈志强, 等.闽西南崩岗土壤重金属含量、分布、来源及生态风险[J].中国生态农业学报, 2016, 24(3):373-383 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016312&flag=1
JIANG C, CHEN Z B, CHEN Z Q, et al. Content, distribution, source and ecological risk of heavy metals in soils of Benggang areas in Southwest Fujian[J]. Chinese Journal of Eco-Agriculture, 2016, 24(3):373-383 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016312&flag=1
[3]福建省科学技术委员会《福建植物志》编写组.福建植物志第一卷[M].福州:福建科学技术出版社, 1982:33-35
《Flora Fujian》 Drafting Group of Science and Technology Committee in Fujian Province. Flora Fujian Tomus 1[M]. Fuzhou:Fujian Science and Technology Publishing House, 1982:33-35
[4]邓恢, 林沁文, 滕华卿, 等.强度水土流失区芒萁生长规律分析[J].福建林学院学报, 2004, 24(3):262-264 doi: 10.3969/j.issn.1001-389X.2004.03.017
DENG H, LIN Q W, TENG H Q, et al. Analysis on the growth regularity of Dicranopteris dichotoma in areas of intensive soil erosion[J]. Journal of Fujian College of Forestry, 2004, 24(3):262-264 doi: 10.3969/j.issn.1001-389X.2004.03.017
[5]曾月娥, 陈志强.南方红壤丘陵区微地形对芒萁生长特征及其土壤肥力的影响[J].广西植物, 2018, 38(6):687-695 http://d.old.wanfangdata.com.cn/Periodical/gxzw201806002
ZENG Y E, CHEN Z Q. Effects of microtopography on Dicranopteris dichotoma growth characteristics and soil fertility in an experiment plot in red soil hilly region of South China[J]. Guihaia, 2018, 38(6):687-695 http://d.old.wanfangdata.com.cn/Periodical/gxzw201806002
[6]张欣影, 宁秋蕊, 李守中, 等.亚热带红壤侵蚀区马尾松针叶生态化学计量特征[J].水土保持研究, 2017, 24(2):156-161 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201702028
ZHANG X Y, NING Q R, LI S Z, et al. Stoichiometric characteristics of Pinus massoniana plantation in the subtropical red soil erosion region[J]. Research of Soil and Water Conservation, 2017, 24(2):156-161 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201702028
[7]沈艳, 谢应忠, 甄研, 等.不同恢复措施对典型草原优势植物碳、氮、磷化学计量特征的影响[J].农业科学研究, 2013, 34(3):5-9 doi: 10.3969/j.issn.1673-0747.2013.03.002
SHEN Y, XIE Y Z, ZHEN Y, et al. Study on the carbon, nitrogen and phosphorus stoichiometry of dominant plants under different recovery measures in typical steppe[J]. Journal of Agricultural Sciences, 2013, 34(3):5-9 doi: 10.3969/j.issn.1673-0747.2013.03.002
[8]YANG Y H, LUO Y Q. Carbon:Nitrogen stoichiometry in forest ecosystems during stand development[J]. Global Ecology and Biogeography, 2011, 20(2):354-361 doi: 10.1111/j.1466-8238.2010.00602.x
[9]任书杰, 于贵瑞, 姜春明, 等.中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征[J].应用生态学报, 2012, 23(3):581-586 http://d.old.wanfangdata.com.cn/Periodical/yystxb201203001
REN S J, YU G R, JIANG C M, et al. Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the North-South Transect of East China[J]. Chinese Journal of Applied Ecology, 2012, 23(3):581-586 http://d.old.wanfangdata.com.cn/Periodical/yystxb201203001
[10]周国新.会同杉木林生态系统C: N: P生态化学计量的季节动态特征[D].长沙: 中南林业科技大学, 2015: 1-44 http://cdmd.cnki.com.cn/Article/CDMD-10538-1015654254.htm
ZHOU G X. Seasonal dynamics of C: N: P ecological stoichiometry of Chinese fir in Huitong[D]. Changsha: Central South University of Forestry and Technology, 2015: 1-44 http://cdmd.cnki.com.cn/Article/CDMD-10538-1015654254.htm
[11]韩华.崇明滩涂湿地不同水盐梯度下植物群落碳氮磷生态化学计量学特征[D].上海: 华东师范大学, 2014: 1-72 http://cdmd.cnki.com.cn/Article/CDMD-10269-1014322091.htm
HAN H. Carbon, nitrogen and phosphorus ecological stoichiometry of vegetation community under the gradients of soil water-salt in Chongming Wetlands[D]. Shanghai: East China Normal University, 2014: 1-72 http://cdmd.cnki.com.cn/Article/CDMD-10269-1014322091.htm
[12]胡伟芳, 章文龙, 张林海, 等.中国主要湿地植被氮和磷生态化学计量学特征[J].植物生态学报, 2014, 38(10):1041-1052 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410002
HU W F, ZHANG W L, ZHANG L H, et al. Stoichiometric characteristics of nitrogen and phosphorus in major wetland vegetation of China[J]. Chinese Journal of Plant Ecology, 2014, 38(10):1041-1052 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410002
[13]赵美霞, 李德志, 潘宇, 等.崇明东滩湿地芦苇和互花米草N、P利用策略的生态化学计量学分析[J].广西植物, 2012, 32(6):715-722 doi: 10.3969/j.issn.1000-3142.2012.06.001
ZHAO M X, LI D Z, PAN Y, et al. Ecological stoichiometrical analysis on the strategies of utilization of nitrogen and phosphorus in Phragmites australis and Spartina alterniflora in Chongming Dongtan wetland[J]. Guihaia, 2012, 32(6):715-722 doi: 10.3969/j.issn.1000-3142.2012.06.001
[14]张文彦, 樊江文, 钟华平, 等.中国典型草原优势植物功能群氮磷化学计量学特征研究[J].草地学报, 2010, 18(4):503-509 http://d.old.wanfangdata.com.cn/Periodical/cdxb201004005
ZHANG W Y, FAN J W, ZHONG H P, et al. The nitrogen:Phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China[J]. Acta Agrestia Sinica, 2010, 18(4):503-509 http://d.old.wanfangdata.com.cn/Periodical/cdxb201004005
[15]刘旻霞, 王刚.高山草甸坡向梯度上植物群落与土壤中的N, P化学计量学特征[J].兰州大学学报:自然科学版, 2012, 48(3):70-75 http://d.old.wanfangdata.com.cn/Periodical/lzdxxb201203012
LIU M X, WANG G. N and P stoichiometry of plant and soil on slope direction gradient of sub-alpine meadows[J]. Journal of Lanzhou University:Natural Sciences, 2012, 48(3):70-75 http://d.old.wanfangdata.com.cn/Periodical/lzdxxb201203012
[16]宋彦涛, 周道玮, 李强, 等.松嫩草地80种草本植物叶片氮磷化学计量特征[J].植物生态学报, 2012, 36(3):222-230 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201203004
SONG Y T, ZHOU D W, LI Q, et al. Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China[J]. Chinese Journal of Plant Ecology, 2012, 36(3):222-230 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201203004
[17]林朝晖.赣抚平原农田沟渠植物多样性及生态化学计量特征研究[D].南昌: 南昌大学, 2015: 1-48 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D691596
LIN C H. Study on diversity and ecological stoichiometry characteristics of plants grown in farmland ditches of Ganfu Plain[D]. Nanchang: Nanchang University, 2015: 1-48 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D691596
[18]罗艳, 贡璐, 李杨梅.塔里木河上游绿洲农田不同生育期玉米根茎叶生态化学计量特征[J].水土保持研究, 2018, 25(2):112-119 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201802018
LUO Y, GONG L, LI Y M. Stoichiometry characteristics of root, stem and leaf of maize in different growth stages in the upper reaches of the Tarim River[J]. Research of Soil and Water Conservation, 2018, 25(2):112-119 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201802018
[19]蔡丽平, 刘明新, 侯晓龙, 等.长汀县崩岗侵蚀区不同治理模式植物多样性的比较[J].福建农林大学学报:自然科学版, 2012, 41(4):524-528 http://d.old.wanfangdata.com.cn/Periodical/fjnydxxb201204015
CAI L P, LIU M X, HOU X L, et al. Comparison of plant diversity among different governance models in collapsing gully erosion area of Changting County[J]. Journal of Fujian Agriculture and Forestry University:Natural Science Edition, 2012, 41(4):524-528 http://d.old.wanfangdata.com.cn/Periodical/fjnydxxb201204015
[20]姜超.崩岗系统土壤理化性质及化学计量特征的空间分异[D].福州: 福建师范大学, 2016: 1-78 http://cdmd.cnki.com.cn/Article/CDMD-10394-1017024620.htm
JIANG C. Spatial variation of soil physical-chemical properties and stoichiometric characteristics in Benggang system[D]. Fuzhou: Fujian Normal University, 2016: 1-78 http://cdmd.cnki.com.cn/Article/CDMD-10394-1017024620.htm
[21]李从娟, 雷加强, 徐新文, 等.塔克拉玛干沙漠腹地人工植被及土壤C N P的化学计量特征[J].生态学报, 2013, 33(18):5760-5767 http://d.old.wanfangdata.com.cn/Periodical/stxb201318039
LI C J, LEI J Q, XU X W, et al. The stoichiometric characteristics of C, N, P for artificial plants and soil in the hinterland of Taklimakan Desert[J]. Acta Ecologica Sinica, 2013, 33(18):5760-5767 http://d.old.wanfangdata.com.cn/Periodical/stxb201318039
[22]常云妮, 钟全林, 程栋梁, 等.尤溪天然米槠林植物碳氮磷的化学计量特征及其分配格局[J].植物资源与环境学报, 2013, 22(3):1-10 doi: 10.3969/j.issn.1674-7895.2013.03.01
CHANG Y N, ZHONG Q L, CHENG D L, et al. Stoichiometric characteristics of C, N, P and their distribution pattern in plants of Castanopsis carlesii natural forest in Youxi[J]. Journal of Plant Resources and Environment, 2013, 22(3):1-10 doi: 10.3969/j.issn.1674-7895.2013.03.01
[23]ELSER J J, STERNER R W, GOROKHOVA E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6):540-550 doi: 10.1046/j.1461-0248.2000.00185.x
[24]任书杰, 于贵瑞, 陶波, 等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学, 2007, 28(12):2665-2673 doi: 10.3321/j.issn:0250-3301.2007.12.001
REN S J, YU G R, TAO B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science, 2007, 28(12):2665-2673 doi: 10.3321/j.issn:0250-3301.2007.12.001
[25]HAN W X, FANG J Y, GUO D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2):377-385 doi: 10.1111/j.1469-8137.2005.01530.x
[26]宋蒙亚, 李忠佩, 刘明, 等.不同林地凋落物组合对土壤速效养分和微生物群落功能多样性的影响[J].生态学杂志, 2014, 33(9):2454-2461 http://d.old.wanfangdata.com.cn/Periodical/stxzz201409026
SONG M Y, LI Z P, LIU M, et al. Effects of mixture of forest litter on nutrient contents and functional diversity of microbial community in soil[J]. Chinese Journal of Ecology, 2014, 33(9):2454-2461 http://d.old.wanfangdata.com.cn/Periodical/stxzz201409026
[27]赵纪涛, 陈志彪, 陈志强, 等.不同侵蚀强度下崩岗表层土壤稀土元素分布特征及影响因素[J].海南师范大学学报:自然科学版, 2016, 29(1):65-69 http://d.old.wanfangdata.com.cn/Periodical/hainansfxyxb201601015
ZHAO J T, CHEN Z B, CHEN Z Q, et al. Distribution characteristics and influential factors of ree in the surface soil of the different erosion intensities of benggang[J]. Journal of Hainan Normal University:Natural Science, 2016, 29(1):65-69 http://d.old.wanfangdata.com.cn/Periodical/hainansfxyxb201601015
[28]姜超, 陈志彪, 陈志强, 等.崩岗侵蚀对土壤速效养分质量分数及化学计量比的影响[J].中国水土保持科学, 2016, 14(2):31-40 http://d.old.wanfangdata.com.cn/Periodical/zgstbckx201602005
JIANG C, CHEN Z B, CHEN Z Q, et al. Effects of collapse mound erosion on soil available nutrient contents and their stoichiometry ratios[J]. Science of Soil and Water Conservation, 2016, 14(2):31-40 http://d.old.wanfangdata.com.cn/Periodical/zgstbckx201602005
[29]徐星凯, 王子健, 刘琰.土壤-植物系统中稀土元素与氮磷养分的交互作用[J].应用生态学报, 2002, 13(6):750-752 doi: 10.3321/j.issn:1001-9332.2002.06.026
XU X K, WANG Z J, LIU Y. Interaction between rare earths and nitrogen and phosphorus in soil-plant system[J]. Chinese Journal of Applied Ecology, 2002, 13(6):750-752 doi: 10.3321/j.issn:1001-9332.2002.06.026
[30]丁士明, 梁涛, 张自立, 等.稀土对土壤的生态效应研究进展[J].土壤, 2004, 36(2):157-163 http://d.old.wanfangdata.com.cn/Periodical/tr200402009
DING S M, LIANG T, ZHANG Z L, et al. Advances of ecological effect of rare earths on soil[J]. Soils, 2004, 36(2):157-163 http://d.old.wanfangdata.com.cn/Periodical/tr200402009
[31]徐星凯, 王子健.稀土对玉米根际土壤P形态分布及生物有效性的影响[J].农业环境科学学报, 2006, 25(1):148-151 doi: 10.3321/j.issn:1672-2043.2006.01.030
XU X K, WANG Z J. Effect of rare earth elements on the distribution of P forms in the rhizosphere soil and P uptake by maize plant[J]. Journal of Agro-Environment Science, 2006, 25(1):148-151 doi: 10.3321/j.issn:1672-2043.2006.01.030
[32]STERNER R W, ELSER J J. Ecological Stoichiometry:The Biology of Elements from Molecules to the Biosphere[M]. Princeton:Princeton University Press, 2002
[33]张珂, 何明珠, 李新荣, 等.阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征[J].生态学报, 2014, 34(22):6538-6547 http://d.old.wanfangdata.com.cn/Periodical/stxb201422016
ZHANG K, HE M Z, LI X R, et al. Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert[J]. Acta Ecologica Sinica, 2014, 34(22):6538-6547 http://d.old.wanfangdata.com.cn/Periodical/stxb201422016
[34]皮发剑, 袁丛军, 喻理飞, 等.黔中天然次生林主要优势树种叶片生态化学计量特征[J].生态环境学报, 2016, 25(5):801-807 http://d.old.wanfangdata.com.cn/Periodical/tryhj201605011
PI F J, YUAN C J, YU L F, et al. Ecological stoichiometry characteristics of plant leaves from the main dominant species of natural secondary forest in the central of Guizhou[J]. Ecology and Environmental Sciences, 2016, 25(5):801-807 http://d.old.wanfangdata.com.cn/Periodical/tryhj201605011
[35]阎凯, 付登高, 何峰, 等.滇池流域富磷区不同土壤磷水平下植物叶片的养分化学计量特征[J].植物生态学报, 2011, 35(4):353-361 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201104001
YAN K, FU D G, HE F, et al. Leaf nutrient stoichiometry of plants in the phosphorus-enriched soils of the Lake Dianchi watershed, southwestern China[J]. Chinese Journal of Plant Ecology, 2011, 35(4):353-361 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201104001
[36]李征, 韩琳, 刘玉虹, 等.滨海盐地碱蓬不同生长阶段叶片C、N、P化学计量特征[J].植物生态学报, 2012, 36(10):1054-1061 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201210005
LI Z, HAN L, LIU Y H, et al. C, N and P stoichiometric characteristics in leaves of Suaeda salsa during different growth phase in coastal wetlands of China[J]. Chinese Journal of Plant Ecology, 2012, 36(10):1054-1061 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201210005
[37]羊留冬, 杨燕, 王根绪, 等.短期增温对贡嘎山峨眉冷杉幼苗生长及其CNP化学计量学特征的影响[J].生态学报, 2011, 31(13):3668-3676 http://d.old.wanfangdata.com.cn/Periodical/stxb201113012
YANG L D, YANG Y, WANG G X, et al. Short-term effects of warming on growth and stoichiometrical characteristics of Abies fabiri (Mast.) Craib seedling in Gongga mountain[J]. Acta Ecologica Sinica, 2011, 31(13):3668-3676 http://d.old.wanfangdata.com.cn/Periodical/stxb201113012
[38]KOERSELMAN W, MEULEMAN A F M. The vegetation N:P ratio:A new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6):1441-1450 doi: 10.2307/2404783

相关话题/生态 化学 土壤 植物 图片