删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

保护性耕作下蚕豆/玉米/甘薯三熟制农田土壤呼吸、碳平衡及经济-环境效益特征

本站小编 Free考研考试/2022-01-01

熊瑛1, 2,,
王龙昌1,,,
赵琳璐1,
杜娟1,
张赛1,
周泉1
1.西南大学农学与生物科技学院/三峡库区生态环境教育部重点实验室/南方山地农业教育部工程研究中心 重庆 400716
2.河南科技大学农学院 洛阳 471003
基金项目: 国家自然科学基金项目31271673
公益性行业(农业)科研专项201503127

详细信息
作者简介:熊瑛, 主要研究方向为农业资源高效利用。E-mail:amber1109@126.com
通讯作者:王龙昌, 主要研究方向为农业生态与高效农作制度。E-mail:wanglc2003@163.com
中图分类号:S344.3

计量

文章访问数:672
HTML全文浏览量:12
PDF下载量:593
被引次数:0
出版历程

收稿日期:2018-02-11
录用日期:2018-05-18
刊出日期:2018-11-01

Soil respiration, carbon balance, and economic and environmental benefits of triple intercropping system of fava bean, maize and sweet potato under conservation tillage

XIONG Ying1, 2,,
WANG Longchang1,,,
ZHAO Linlu1,
DU Juan1,
ZHANG Sai1,
ZHOU Quan1
1. College of Agronomy and Biotechnology, Southwest University/Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400716, China
2. College of Agriculture, Henan University of Science and Technology, Luoyang 471003, China
Funds: the National Natural Science Foundation of China31271673
the Special Fund for Agro-scientific Research in the Public Interest of China201503127

More Information
Corresponding author:WANG Longchang, E-mail:wanglc2003@163.com


摘要
HTML全文
(3)(3)
参考文献(39)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:垄作和秸秆覆盖是实现西南丘陵区旱地农田稳产高产和固碳的适宜保护性耕作模式。为探讨该保护性耕作模式下蚕豆/玉米/甘薯三熟制农田土壤碳排放的特征,对平作无覆盖(T)、垄作无覆盖(R)、平作+秸秆半量覆盖(TS1)、垄作+秸秆半量覆盖(RS1)、平作+秸秆全量覆盖(TS2)、垄作+秸秆全量覆盖(RS2)6种耕作模式下西南紫色土丘陵区蚕豆/玉米/甘薯三熟制农田土壤呼吸、粮食产量特征进行测定,分析农田碳平衡及经济-环境效益,为量化评估农田生态系统碳收支提供理论依据。结果表明:在整个间套作系统内,蚕豆、玉米和甘薯全生育期内土壤呼吸速率均值分别为3.704 μmol·m-2·s-1、4.847 μmol·m-2·s-1和4.606 μmol·m-2·s-1,垄作降低了3种作物的农田土壤呼吸速率(P < 0.05),秸秆覆盖则增加了土壤呼吸(P < 0.05),垄作和秸秆覆盖配合使用后土壤呼吸总量和微生物呼吸总量增加(P < 0.05)。保护性耕作促进三熟制农田生态系统内作物固碳;土壤-作物系统碳平衡表现为碳汇,RS2、TS2、RS1、TS1、R分别较T高25.41%、25.37%、9.84%、26.74%、13.26%。与平作相比,垄作和秸秆覆盖提高了粮食产量,以RS2(17 460.45 kg·hm-2)最高,TS2(16 498.73 kg·hm-2)次之。蚕豆/玉米/甘薯三熟制农田生产每千克籽粒释放CO2量处理间表现为T(1.88 kg·kg-1)> TS1(1.83 kg·kg-1)> R(1.76 kg·kg-1)> TS2(1.75 kg·kg-1)> RS1(1.69 kg·kg-1)> RS2(1.68 kg·kg-1)。垄作和秸秆覆盖提高了套作的经济-环境效益,秸秆覆盖量越高,经济-环境效益越好。从农田碳平衡和经济-环境效益综合考虑,垄作结合秸秆全量覆盖(RS2)具有最大的碳汇能力和最优的经济-环境效益,可以优先作为该地区农田实现固碳增汇减排的耕作措施。
关键词:土壤呼吸/
碳平衡/
碳汇/
经济-环境效益/
蚕豆/玉米/甘薯三熟制/
保护性耕作
Abstract:Ridge tillage and straw mulching are suitable modes of conservation tillage that increase crop productivity and sequestrate carbon in the purple hilly region of Southwest China. A field experiment was conducted with six treatments-traditional tillage without straw mulching (T), ridge tillage without straw mulching (R), traditional tillage with straw mulching at 3 750 kg·hm-2 (TS1), ridge tillage with straw mulching at 3 750 kg·hm-2 (RS1), traditional tillage with straw mulching at 7 500 kg·hm-2 (TS2) and ridge tillage with straw mulching at 7 500 kg·hm-2 (RS2). The characteristics of soil respiration, carbon balance, crop yield, and economic and environmental benefits for the triple intercropping system of fava bean, maize and sweet potato were evaluated. The study provided the theoretical basis for quantifying carbon budget of farmland ecosystems in the region. It was noted that mean soil respiration rates during growth period of fava bean, maize and sweet potato were 3.704 μmol·m-2·s-1, 4.847 μmol·m-2·s-1 and 4.606 μmol·m-2·s-1, respectively. Ridge tillage reduced soil respiration rate during growth period of three crops, whereas straw mulching increased it (P < 0.05). Ridge tillage with straw mulching increased cumulative soil respiration and cumulative microbial respiration (P < 0.05). All treatments of conservation tillage improved carbon sequestration of crops in the triple intercropping system. The soil-crop system exhibited carbon sink and the treatments of RS2, TS2, RS1, TS1 and R significantly increased carbon sequestration respectively by 25.41%, 25.37%, 9.84%, 26.74% and 13.26%, compared with treatment T. Ridge tillage and straw mulching treatments increased total crop yield of the triple intercropping system, which was highest under RS2 (17 460.45 kg·hm-2) and next TS2 (16 498.73 kg·hm-2). The amount of CO2 released from soil per 1 kg grain in the triple intercropping system was in the order of:T (1.88 kg·kg-1) > TS1 (1.83 kg·kg-1) > R (1.76 kg·kg-1) > TS2 (1.75 kg·kg-1) > RS1 (1.69 kg·kg-1) > RS2 (1.68 kg·kg-1). This meant that both ridge tillage and straw mulching increased the economic and environmental benefit index. The more straw was added during mulching, the more was the economic and environmental benefits. In conclusion, the RS2 treatment (ridge tillage + straw mulching at 7 500 kg·hm-2) had the largest carbon sink capacity and the optimal economic and environmental benefits. Thus, it was recommended for adoption as tillage pattern to increase carbon sequestration and reduce carbon release in the study area.
Key words:Soil respiration/
Carbon balance/
Carbon sequestration/
Economic and environmental benefits/
Fava bean, maize and sweet potato triple intercropping system/
Conservation tillage

HTML全文


图1垄作和平作的蚕豆/玉米/甘薯套作田间试验示意图
Figure1.Schematic illustrations of ridge or traditional tillage patterns of intercropping of fabe bean/maize/sweet potato


下载: 全尺寸图片幻灯片


图2测定土壤呼吸用的PVC环在田间的安放位置
图内小圆圈代表一个1 m条带内布置的PVC环, 从左到右依次为行间、株间和条带边缘。The small circles in the chart represent PVC collars arranged in a 1 m belt, being placed successively at interline, interplant and belt edge from left to right.
Figure2.Installed positions of PVC collars for soil respiration measurement in the test plot


下载: 全尺寸图片幻灯片


图3不同保护性耕作处理下蚕豆/玉米/甘薯三熟制系统农田土壤呼吸速率动态变化
T:平作无覆盖; R:垄作无覆盖; TS1:平作+秸秆半量覆盖; RS1:垄作+秸秆半量覆盖; TS2:平作+秸秆全量覆盖; RS2:垄作+秸秆全量覆盖。T: traditional tillage without straw mulching; R: ridge tillage without straw mulching; TS1: traditional tillage with straw mulching at 3 750 kg·hm-2; RS1: ridge tillage with straw mulching at 3 750 kg·hm-2; TS2: traditional tillage with straw mulching at 7 500 kg·hm-2; RS2: ridge tillage with straw mulching at 7 500 kg·hm-2.
Figure3.Dynamics of soil respiration rates in field of triple intercropping system of fava bean, maize and sweet potato under different conservation tillage treatments


下载: 全尺寸图片幻灯片

表1不同保护性耕作处理下蚕豆/玉米/甘薯三熟制系统的作物固碳量
Table1.Amount of carbon sequestration by each crop in the triple intercropping system of fava bean, maize and sweet potato under different conservation tillage treatments
kg(C)?hm-2
作物
Crop
处理
Treatment
秸秆
Straw
根系
Root
籽粒(块根)
Grain (tuber)
总量
Total
蚕豆
Fava bean
T 1 926.75±69.41b 825.70±68.66c 1 253.63±103.10d 4 006.08±146.12d
TS1 1 816.09±6.91b 1 274.82±87.35b 1 791.11±84.79abc 4 882.02±47.89b
TS2 2 431.11±150.23a 1 228.95±80.29b 1 967.76±68.07ab 5 627.82±269.95a
R 1 895.86±89.01b 782.03±30.90c 1 678.27±53.09c 4 356.16±53.72c
RS1 1 820.60±191.31b 1 182.07±50.78b 1 749.15±75.88bc 4 751.82±156.68b
RS2 2 311.75±164.33a 1 582.80±129.39a 2 062.09±198.27a 5 956.64±286.54a
玉米
Maize
T 6 155.96±227.02bc 570.44±33.66d 4 541.14±40.47b 11 005.42±187.66d
TS1 7 446.33±248.31a 1 481.31±99.37a 5 044.14±39.68a 13 468.78±127.62a
TS2 5 780.23±252.74c 846.46±22.21c 4 279.02±123.86c 11 670.83±131.16c
R 5 470.18±287.80c 1 263.56±152.18b 3 868.12±93.36d 10 601.86±90.47d
RS1 7 095.51±199.28ab 1 324.89±108.72ab 4 895.37±280.17a 12 756.09±182.92b
RS2 6 450.24±234.32b 1 288.09±67.11b 4 335.69±87.56bc 12 633.70±122.42b
甘薯
Sweat potato
T 1 967.92±33.21e 154.58±14.47c 3 860.30±7.34e 5 982.82±44.71e
TS1 3 094.36±48.90a 256.87±9.72a 4 771.54±65.20c 8 122.78±79.80c
TS2 2 150.32±66.64d 178.49±17.59bc 5 612.98±176.68b 7 941.80±195.01c
R 2 595.89±28.03c 180.01±25.82bc 4 231.07±104.88d 7 006.99±111.95d
RS1 2 768.55±73.55b 209.82±27.41b 5 482.83±122.62b 8 461.21±86.12b
RS2 2 100.15±115.41d 104.32±9.70d 7 878.85±187.08a 10 083.34±127.27a
T:平作无覆盖; R:垄作无覆盖; TS1:平作+秸秆半量覆盖; RS1:垄作+秸秆半量覆盖; TS2:平作+秸秆全量覆盖; RS2:垄作+秸秆全量覆盖。同列不同小写字母表示处理间差异显著(P < 0.05)。T: traditional tillage without straw mulching; R: ridge tillage without straw mulching; TS1: traditional tillage with straw mulching at 3 750 kg·hm-2; RS1: ridge tillage with straw mulching at 3 750 kg·hm-2; TS2: traditional tillage with straw mulching at 7 500 kg·hm-2; RS2: ridge tillage with straw mulching at 7 500 kg·hm-2. Different letters in the same column show significant differences among treatments at 5% level.


下载: 导出CSV
表2不同保护性耕作处理下蚕豆/玉米/甘薯三熟制农田土壤呼吸总量、微生物呼吸总量与碳平衡
Table2.Cumulative soil respiration, cumulative microbial respiration and carbon balance in the triple intercropping system of fava bean, maize and sweet potato under different conservation tillage treatments
kg(C)·hm-2
作物Crop 项目Item T TS1 TS2 R RS1 RS2
蚕豆
Fava bean
CRs 5 297.21±412.42c 5 996.09±96.09eb 8 138.05±479.88a 4 932.01±32.01ec 5 241.64±236.13c 6 224.10±114.89b
CRm 2 921.83±154.70a 2 855.69±186.42a 3 013.76±219.54a 2 613.90±155.16a 3 563.65±176.60a 3 139.49±274.10a
NPP 4 006.08±146.12d 4 882.01±47.89b 5 627.82±269.94a 4 356.15±53.71c 4 751.83±156.68b 5 956.63±286.54a
NEP 1 084.25±146.12c 2 026.32±47.89b 2 614.06±269.94a 1 742.25±53.71b 1 188.18±156.68c 2 817.14±286.54a
玉米
Maize
CRs 4 147.85±83.03b 6 509.51±602.76a 6 454.36±547.41a 3 611.25±353.80b 5 912.33±321.24a 6 516.75±670.51a
CRm 2 396.01±131.19b 4 116.06±664.41a 4 530.67±781.75a 2 408.46±69.58b 4 471.48±579.54a 4 498.88±581.75a
NPP 11 005.42±175.14d 13 468.78±173.44a 11 670.83±171.07c 10 601.86±348.91d 12 756.09±378.95b 12 633.70±252.90b
NEP 8 609.41±175.14b 9 352.72±173.44a 7 140.16±171.07c 8 193.40±348.91b 8 284.60±378.95b 8 134.82±252.90b
甘薯
Sweat potato
CRs 7 725.66±237.06b 8 089.31±555.99b 7 814.70±468.07b 7 770.08±158.14b 8 041.70±518.96b 8 965.38±157.36a
CRm 5 186.50±190.58b 6 169.31±228.89a 5 238.08±487.80b 4 929.33±434.72b 6 028.12±287.29a 6 190.24±169.55a
NPP 5 982.82±44.71e 8 122.78±79.80c 7 941.80±195.01c 7 006.99±111.95d 8 461.21±86.12b 10 083.34±127.27a
NEP 796.32±44.71e 1 953.47±79.80d 2 755.30±195.01b 2 077.66±111.95cd 2 270.97±86.12c 4 055.22±127.27a
空闲
Unplanted
CRs 6 634.25±134.31b 6 597.04±468.22b 6 706.11±308.35b 6 414.39±387.17b 6 593.09±463.23b 7 745.56±207.07a
CRm 3 304.99±262.89b 4 226.26±309.45b 3 449.70±365.70b 3 875.40±220.34b 4 013.96±332.27b 5 834.07±381.59a
NPP
NEP
总量Total CRs 23 804.97±760.78d 27 191.95±497.57b 29 113.22±633.16a 22 727.73±472.12d 25 788.76±756.60c 29 451.79±465.26a
CRm 13 809.33±558.90d 17 392.32±142.07b 16 232.20±532.80c 13 827.09±186.91d 18 077.20±742.07b 19 712.67±363.62a
NPP 20 994.31±363.67e 26 473.58±231.05b 25 240.45±115.97c 21 965.00±327.74d 25 969.13±573.87b 28 673.67±463.77a
NEP 7 184.98±85.69c 9 106.26±70.61a 9 008.24±19.16a 8 137.92±186.87b 7 891.92±149.02b 9 010.99±219.47a
T:平作无覆盖; R:垄作无覆盖; TS1:平作+秸秆半量覆盖; RS1:垄作+秸秆半量覆盖; TS2:平作+秸秆全量覆盖; RS2:垄作+秸秆全量覆盖。CRs:土壤呼吸总量; CRm:土壤微生物呼吸总量; NPP:净初级生产力; NEP:净生态系统生产力。同行不同小写字母表示不同处理在0.05水平上差异显著。T: traditional tillage without straw mulching; R: ridge tillage without straw mulching; TS1: traditional tillage with straw mulching at 3 750 kg·hm-2; RS1: ridge tillage with straw mulching at 3 750 kg·hm-2; TS2: traditional tillage with straw mulching at 7 500 kg·hm-2; RS2: ridge tillage with straw mulching at 7 500 kg·hm-2. CRs: cumulative soil respiration; CRm: cumulative microbial respiration; NPP: net primary productivity; NEP: net ecosystem productivity. Different letters in the same line represent significant differences among different treatments at 0.05 level.


下载: 导出CSV
表3不同保护性耕作处理下蚕豆/玉米/甘薯三熟制农田粮食产量和经济-环境效益值
Table3.Crop yield and economic-environmental benefit value of the triple intercropping system of fava bean, maize and sweet potato under different conservation tillage treatments
处理
Treatment
粮食产量Crop yield (kg·hm-2) 土壤呼吸总量
Cumulative soil respiration
[kg(C)·hm-2]
经济-环境效益
Economic-environmental benefit value (kg·kg-1)
蚕豆Fava bean 玉米Maize 甘薯Sweet potato 总量Total
T 1 905.81±53.86d 7 088.90±405.11de 3 637.08±112.25e 12 631.79±295.74d 23 804.97±760.78d 1.88±0.05a
TS1 2 072.84±128.01cd 8 221.48±394.01bc 4 585.14±175.05c 14 879.45±295.42c 27 191.95±497.57b 1.83±0.01b
TS2 2 137.95±99.33c 9 133.56±769.93a 5 227.22±90.92b 16 498.73±690.96b 29 113.22±633.16a 1.75±0.02c
R 2 150.73±140.19c 6 701.72±239.69e 4 230.83±225.84d 13 083.29±210.31d 22 727.73±472.12d 1.76±0.02c
RS1 2 407.44±91.92b 7 529.31±679.24cd 5 325.42±260.50b 15 262.17±460.75c 25 788.76±756.60c 1.69±0.02d
RS2 2 792.53±88.81a 8 396.25±311.15ab 6 271.67±267.58a 17 460.45±425.72a 29 451.79±465.26a 1.68±0.01d
T:平作无覆盖; R:垄作无覆盖; TS1:平作+秸秆半量覆盖; RS1:垄作+秸秆半量覆盖; TS2:平作+秸秆全量覆盖; RS2:垄作+秸秆全量覆盖。同列不同小写字母表示不同处理间差异显著(P < 0.05)。甘薯产量按照块根鲜重乘以1/5折算成粮食产量。T: traditional tillage without straw mulching; R: ridge tillage without straw mulching; TS1: traditional tillage with straw mulching at 3 750 kg·hm-2; RS1: ridge tillage with straw mulching at 3 750 kg·hm-2; TS2: traditional tillage with straw mulching at 7 500 kg·hm-2; RS2: ridge tillage with straw mulching at 7 500 kg·hm-2. Different lowercase letters in the same column show significant differences among different treatments at 0.05 level. The yield of fresh tubes of sweet potato was converted into grain yield by multiplying 1/5.


下载: 导出CSV

参考文献(39)
[1]韩广轩, 周广胜, 许振柱.中国农田生态系统土壤呼吸作用研究与展望[J].植物生态学报, 2008, 32(3):719-733 doi: 10.3773/j.issn.1005-264x.2008.03.022
HAN G X, ZHOU G S, XU Z Z. Research and prospects for soil respiration of farmland ecosystems in China[J]. Journal of Plant Ecology, 2008, 32(3):719-733 doi: 10.3773/j.issn.1005-264x.2008.03.022
[2]SCHLESINGER W, ANDREWS J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 2000, 48(1):7-20 doi: 10.1023/A:1006247623877
[3]SENAPATI N, CHABBI A, SMITH P. Modelling daily to seasonal carbon fluxes and annual net ecosystem carbon balance of cereal grain-cropland using DailyDayCent:A model data comparison[J]. Agriculture, Ecosystems & Environment, 2018, 252:159-177
[4]李军.农作学[M].第2版.北京:科学出版社, 2016:222-225
LI J. Science of Farming System[M]. 2nd edition. Beijing:Science Press, 2016:222-225
[5]王龙昌, 邹聪明, 张云兰, 等.西南"旱三熟"地区不同保护性耕作措施对农田土壤生态效应及生产效益的影响[J].作物学报, 2013, 39(10):1880-1890 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201310021
WANG L C, ZOU C M, ZHANG Y L, et al. Influences of conservation tillage practices on farmland soil ecological factors and productive benefits in dryland region with triple cropping system in Southwest China[J]. Acta Agronomica Sinica, 2013, 39(10):1880-1890 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201310021
[6]WIESMEIER M, HüBNER R, K?GEL-KNABNER Ⅰ. Stagnating crop yields:An overlooked risk for the carbon balance of agricultural soils?[J]. Science of the Total Environment, 2015, 536:1045-1051 doi: 10.1016/j.scitotenv.2015.07.064
[7]孟磊, 丁维新, 蔡祖聪, 等.长期定量施肥对土壤有机碳储量和土壤呼吸影响[J].地球科学进展, 2005, 20(6):687-692 doi: 10.3321/j.issn:1001-8166.2005.06.013
MENG L, DING W X, CAI Z C, et al. Storage of soil organic C and soil respiration as effected by long-term quantitative fertilization[J]. Advances in Earth Science, 2005, 20(6):687-692 doi: 10.3321/j.issn:1001-8166.2005.06.013
[8]崔凤娟.免耕秸秆覆盖对旱作农田土壤呼吸和碳平衡的影响[D].呼和浩特: 内蒙古农业大学, 2011
CUI F J. Effects of zero tillage and mulching on soil resperation and carbon balance in rainfed field[D]. Hohhot: Inner Mongolia Agricultural University, 2011
[9]涂纯, 王俊, 官情, 等.秸秆覆盖对旱作冬小麦农田土壤呼吸、作物产量及经济环境效益的影响[J].中国生态农业学报, 2013, 21(8):931-937 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013803&flag=1
TU C, WANG J, GUAN Q, et al. Effect of straw mulching on soil respiration, crop yield, economy-environment benefit in rainfed winter wheat fields[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8):931-937 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013803&flag=1
[10]张赛, 张晓雨, 王龙昌, 等.西南丘陵区保护性耕作下小麦农田土壤呼吸及影响因素分析[J].环境科学, 2013, 34(7):2815-2820 http://d.old.wanfangdata.com.cn/Periodical/hjkx201307045
ZHANG S, ZHANG X Y, WANG L C, et al. Analysis of soil respiration and influence factors in wheat farmland under conservation tillage in southwest hilly region[J]. Environmental Science, 2013, 34(7):2815-2820 http://d.old.wanfangdata.com.cn/Periodical/hjkx201307045
[11]张赛, 王龙昌, 周航飞, 等.西南丘陵区不同耕作模式下玉米田土壤呼吸及影响因素[J].生态学报, 2014, 34(21):6244-6255 http://d.old.wanfangdata.com.cn/Periodical/stxb201421024
ZHANG S, WANG L C, ZHOU H F, et al. Analysis of soil respiration and influencing factors in maize farmland under different tillage patterns in hilly area in southwest China[J]. Acta Ecologica Sinica, 2014, 34(21):6244-6255 http://d.old.wanfangdata.com.cn/Periodical/stxb201421024
[12]张赛, 罗海秀, 王龙昌, 等.保护性耕作下大豆农田土壤呼吸及影响因素分析[J].中国生态农业学报, 2013, 21(8):913-920 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013801&flag=1
ZHANG S, LUO H X, WANG L C, et al. Analysis of soil respiration and the influencing factors in soybean fields under conservation tillage[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8):913-920 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013801&flag=1
[13]RAICH J W, TUFEKCIOGUL A. Vegetation and soil respiration:Correlations and controls[J]. Biogeochemistry, 2000, 48(1):71-90 doi: 10.1023/A:1006112000616
[14]张俊丽, SIKANDER K T, 温晓霞, 等.不同耕作方式下旱作玉米田土壤呼吸及其影响因素[J].农业工程学报, 2012, 28(18):192-199 doi: 10.3969/j.issn.1002-6819.2012.18.028
ZHANG J L, SIKANDER K T, WEN X X, et a1. Soil respiration and its affecting factors in dry-land maize field under different tillage systems[J]. Transactions of the CSAE, 2012, 28(18):192-199 doi: 10.3969/j.issn.1002-6819.2012.18.028
[15]WOODWELL G M, WHITTAKER R H, REINERS W A, et al. The biota and the world carbon budget[J]. Science, 1978, 199(4325):141-146 doi: 10.1126/science.199.4325.141
[16]骆亦其, 周旭辉, 姜丽芬, 等.土壤呼吸与环境[M].北京:高等教育出版社, 2007
LUO Y Q, ZHOU X H, JIANG L F, et al. Soil Respiration and the Environment[M]. Beijing:Higher Education Press, 2007
[17]江国福, 刘畅, 李金全, 等.中国农田土壤呼吸速率及驱动因子[J].中国科学:生命科学, 2014, 44(7):725-735 http://d.old.wanfangdata.com.cn/Thesis/Y2863705
JIANG G F, LIU C, LI J Q, et al. Soil respiration and driving factors of farmland ecosystems in China[J]. Scientia Sinica Vitae, 2014, 44(7):725-735 http://d.old.wanfangdata.com.cn/Thesis/Y2863705
[18]REICHSTEIN M, REY A, FREIBAUER A, et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices[J]. Global Biogeochemical Cycles, 2003, 17(4):1104-1104 doi: 10.1029-2003GB002035/
[19]LOHILA A, AURELA M, REGINA K, et al. Soil and total ecosystem respiration in agricultural fields:Effect of soil and crop type[J]. Plant and Soil, 2003, 251(2):303-317 doi: 10.1023/A:1023004205844
[20]孙文娟, 黄耀, 陈书涛, 等.作物生长和氮含量对土壤-作物系统CO2排放的影响[J].环境科学, 2004, 25(3):1-6 http://d.old.wanfangdata.com.cn/Periodical/hjkx200403001
SUN W J, HUANG Y, CHEN S T, et al. CO2 emission from soil-crop system as influenced by crop growth and tissue N content[J]. Environmental Science, 2004, 25(3):1-6 http://d.old.wanfangdata.com.cn/Periodical/hjkx200403001
[21]郑聚锋, 张旭辉, 潘根兴, 等.水稻土基底呼吸与CO2排放强度的日动态及长期不同施肥下的变化[J].植物营养与肥料学报, 2006, 12(4):485-494 doi: 10.3321/j.issn:1008-505X.2006.04.005
ZHENG J F, ZHANG X H, PAN G X, et al. Diurnal variation of soil basal respiration and CO2 emission from a typical paddy soil after rice harvest under long-term different fertilizations[J]. Plant Nutrition and Fertilizer Science, 2006, 12(4):485-494 doi: 10.3321/j.issn:1008-505X.2006.04.005
[22]张前兵, 杨玲, 孙兵, 等.干旱区灌溉及施肥措施下棉田土壤的呼吸特征[J].农业工程学报, 2012, 28(14):77-84 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201214013
ZHANG Q B, YANG L, SUN B, et al. Respiration characteristics of cotton soil under irrigation and fertilization measures in arid region[J]. Transactions of the CSAE, 2012, 28(14):77-84 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201214013
[23]GRAND S, RUBIN A, VERRECCHIA E P, et al. Variation in soil respiration across soil and vegetation types in an alpine valley[J]. PLoS One, 2016, 11(9):e0163968 doi: 10.1371/journal.pone.0163968
[24]王同朝, 卫丽, 田原, 等.冬小麦-夏玉米一体化垄作覆盖下农田土壤呼吸变化研究[J].农业环境科学学报, 2009, 28(9):1970-1974 doi: 10.3321/j.issn:1672-2043.2009.09.034
WANG T C, WEI L, TIAN Y, et al. Dynamic changes of soil respiration on mulched bed planting under winter wheat and summer maize double cropping integration[J]. Journal of Agro-Enivironment Science, 2009, 28(9):1970-1974 doi: 10.3321/j.issn:1672-2043.2009.09.034
[25]TAKIM F O. Advantages of maize-cowpea intercropping over sole cropping through competition indices[J]. Journal of Agriculture and Biodiversity Research, 2012, 1(4):53-59
[26]CHAI Q, QIN A Z, GAN Y T, et al. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas[J]. Agronomy for Sustainable Development, 2014, 34(2):535-543 doi: 10.1007/s13593-013-0161-x
[27]王维钰, 乔博, KASHIF A, 等.免耕条件下秸秆还田对冬小麦-夏玉米轮作系统土壤呼吸及土壤水热状况的影响[J].中国农业科学, 2016, 49(11):2136-2152 doi: 10.3864/j.issn.0578-1752.2016.11.010
WANG W Y, QIAO B, KASHIF A, et al. Effects of straw returning to field on soil respiration and soil water heat in winter wheat-summer maize rotation system under no tillage[J]. Scientia Agricultura Sinica, 2016, 49(11):2136-2152 doi: 10.3864/j.issn.0578-1752.2016.11.010
[28]YIN H J, ZHAO W Q, LI T, et al. Balancing straw returning and chemical fertilizers in China:Role of straw nutrient resources[J]. Renewable and Sustainable Energy Reviews, 2018, 81(2):2695-2702 http://www.sciencedirect.com/science/article/pii/S1364032117310158
[29]FUENTES M, HIDALGO C, ETCHEVERS J, et al. Conservation agriculture, increased organic carbon in the top-soil macro-aggregates and reduced soil CO2 emissions[J]. Plant and Soil, 2012, 355(1/2):183-197 doi: 10.1007/s11104-011-1092-4
[30]贾淑霞, 孙冰洁, 梁爱珍, 等.耕作措施对东北黑土微生物呼吸的影响[J].中国农业科学, 2015, 48(9):1764-1773 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201509010
JIA S X, SUN B J, LIANG A Z, et al. Effect of conservation tillage on microbial respiration of black soil[J]. Scientia Agricultura Sinica, 2015, 48(9):1764-1773 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201509010
[31]JACINTHE P A, LAL R, KIMBLE J M. Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment[J]. Soil and Tillage Research, 2002, 67(2):147-157 doi: 10.1016/S0167-1987(02)00058-2
[32]梁尧, 韩晓增, 乔云发, 等.小麦-玉米-大豆轮作下黑土农田土壤呼吸与碳平衡[J].中国生态农业学报, 2012, 20(4):395-401 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012402&flag=1
LIANG Y, HAN X Z, QIAO Y F, et al. Soil respiration and carbon budget in black soils of wheatmaize-soybean rotation system[J]. Chinese Journal OF Eco-Agriculture, 2012, 20(4):395-401 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012402&flag=1
[33]张庆忠, 吴文良, 王明新, 等.秸秆还田和施氮对农田土壤呼吸的影响[J].生态学报, 2005, 25(11):2883-2887 doi: 10.3321/j.issn:1000-0933.2005.11.013
ZHANG Q Z, WU W L, WANG M X, et al. The effects of crop residue amendment and N rate on soil respiration[J]. Acta Ecologica Sinica, 2005, 25(11):2883-2887 doi: 10.3321/j.issn:1000-0933.2005.11.013
[34]GAO X, GU F X, HAO W P, et al. Carbon budget of a rainfed spring maize cropland with straw returning on the Loess Plateau, China[J]. Science of the Total Environment, 2017, 586:1193-1203 doi: 10.1016/j.scitotenv.2017.02.113
[35]LIU S Y, ZHANG X P, LIANG A Z, et al. Ridge tillage is likely better than no tillage for 14-year field experiment in black soils:Insights from a 15 N-tracing study[J]. Soil and Tillage Research, 2018, 179:38-46 doi: 10.1016/j.still.2018.01.011
[36]GARCíA-ORENES F, CERDà A, MATAIX-SOLERA J, et al. Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain[J]. Soil and Tillage Research, 2009, 106(1):117-123 doi: 10.1016/j.still.2009.06.002
[37]BUYSSE P, ROISIN C, AUBINET M. Fifty years of contrasted residue management of an agricultural crop:Impacts on the soil carbon budget and on soil heterotrophic respiration[J]. Agriculture, Ecosystems & Environment, 2013, 167:52-59 http://europepmc.org/abstract/AGR/IND500630300
[38]WANG Y Y, HU C S, DONG W X, et al. Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain[J]. Agriculture, Ecosystems & Environment, 2015, 206:33-45 http://www.sciencedirect.com/science/article/pii/s0167880915001000
[39]LIU C, LU M, CUI J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils:A meta-analysis[J]. Global Change Biology, 2014, 20(5):1366-1381 doi: 10.1111/gcb.2014.20.issue-5

相关话题/土壤 农田 环境 作物 经济