黄成毅1, 2,,,
邓良基3,
方从刚4,
薛超5,
杨连心5,
雷永疆5
1.四川农业大学管理学院 成都 611130
2.四川农业大学水利水电学院 雅安 625014
3.四川农业大学资源学院 成都 611130
4.成都市国土资源信息中心 成都 610041
5.四川农业大学经济学院 成都 611130
基金项目: 国家科技支撑计划项目2017YFD030170402
四川省应用基础研究专项2015JY0059
详细信息
作者简介:田若蘅, 主要从事土地资源利用与生态风险评价研究。E-mail:ruohengtian@163.com
通讯作者:黄成毅, 主要研究方向为土地资源利用与可持续发展。E-mail:chengyihuang@sicau.edu.cn
中图分类号:X820.4计量
文章访问数:893
HTML全文浏览量:5
PDF下载量:573
被引次数:0
出版历程
收稿日期:2018-03-12
录用日期:2018-05-31
刊出日期:2018-11-01
Environmental risk assessment and trend simulation of non-point source pollution of chemical fertilization in Sichuan Province, China
TIAN Ruoheng1,,HUANG Chengyi1, 2,,,
DENG Liangji3,
FANG Conggang4,
XUE Chao5,
YANG Lianxin5,
LEI Yongjiang5
1. College of Management, Sichuan Agricultural University, Chengdu 611130, China
2. College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
3. College of Resources, Sichuan Agricultural University, Chengdu 611130, China
4. Chengdu Land and Resources Information Center, Chengdu 610041, China
5. College of Economics, Sichuan Agricultural University, Chengdu 611130, China
Funds: the National Key Technologies R & D Program of China2017YFD030170402
the Applied Basic Research Program of Sichuan Province2015JY0059
More Information
Corresponding author:HUANG Chengyi, E-mail:chengyihuang@sicau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:系统评估农业化肥过量施用对生态环境的潜在风险危害,可为制定下一阶段农业面源污染防治工作提供决策参考。本文基于2000-2015年化肥施用量和耕地面积等数据,采用化肥施用环境风险评价模型,探讨了四川省化肥施用及环境风险的时空变化特征;通过设置延续现状和政策干预两种情景,模拟了四川省2016-2018年执行化肥施用零增长行动期间的化肥施用环境风险变化趋势。结果表明:四川省化肥施用总量在2000-2015年间整体呈增加态势,2015年四川省化肥施用强度为376.63 kg·hm-2,超过了中国生态市建设的化肥施用强度250 kg·hm-2的生态标准。四川省2015年化肥施用的环境总风险指数为0.69,处于中等风险程度;氮、磷、钾肥施用的环境风险指数分别为0.69、0.72和0.46。钾肥施用的环境风险处于安全状态;氮肥和磷肥的环境风险区域集中在成都平原经济区、川南经济区和川东北经济区,呈现中等风险程度并有成片聚集特征。延续现状情景下,四川各地区化肥施用环境总风险指数处于0.48~0.69,存在不同程度增加。与延续现状情景相比,四川在完成化肥施用零增长行动的任务规划前提下,2016-2018年政策干预情景的化肥施用环境总风险呈现下降趋势。以关键时间点2018年来看,川东北经济区化肥施用环境总风险下降最明显,较2015年执行化肥零增长时下降4.24%。但四川省多数地区仍存在不同程度的化肥施用环境污染风险,当地生态环境具有明显压力。建议省级部门加强对成都平原经济区和川东北经济区的化肥面源污染监测,根据各地区差异特征制定不同施肥方案,协调粮食增产和生态保护间的关系。
Abstract:Fertilizer-based pollution has been an important part of agricultural non-point source pollution. Systematic assessment of potential risks and hazards of excessive application of chemical fertilizers to the ecological environment can provide the data base for decision-making of the prevention and control of agricultural non-point source pollution. Sichuan Province is not only a predominant grain production base, but also a region with severe agricultural non-point source pollution in China. Due to excessive long-term fertilizer application, the agro-ecological environment in Sichuan Province has had tremendous pressure. Based on data on fertilizer application, grain sowing and cultivated land area, the spatio-temporal variations in environmental risk due to fertilizer application were evaluated. In the adoption of environmental risk model for fertilizer application in Sichuan Province during 2000-2015, many factors were considered. These included fertilization intensity, environmental safety threshold, fertilization efficiency, multiple cropping index and fertilizer effect on the environment. Using two scenarios (extension and policy intervention), the variation trend in environmental risk associated with fertilizer application under zero-growth chemical fertilizer was simulated for Sichuan for the 2016-2018. The results showed that the total amount of chemical fertilizers in Sichuan Province increased during 2000-2015. The intensity of chemical fertilizer application in Sichuan Province was 376.63 kg·hm-2 in 2015, exceeding the ecological standard set for China's ecological city (250 kg·hm-2). Based on the application structures of nitrogen, phosphorus and potassium fertilizers in 2015, the application of nitrogen fertilizer in Sichuan Province accounted for 57% of the total amount of chemical fertilizers. In Chengdu, Mianyang and Zigong, the proportion of nitrogen fertilizer application was the highest in the whole province. The proportions of phosphate and potash fertilizers were low, accounting respectively for 28% and 15%. This indicated that nitrogen fertilizer still played a dominant role in agricultural production in the region. In 2015, total environmental risk index due to fertilizer use in Sichuan Province was 0.69, which was a medium risk level. Specifically, the environmental risk indexes of nitrogen, phosphate and potash applications were respectively 0.69, 0.72 and 0.46. Only potassium fertilizer application had a safe level of environmental risk. The environmental risk areas of nitrogen and phosphate fertilizers were concentrated in the Chengdu Plain Economic Zone, Southern Sichuan Economic Zone and Northeast Sichuan Economic Zone. Under the extension scenario, the environmental risk index of fertilizer application in various regions of Sichuan Province was in the range of 0.48-0.69, showing an increasing trend. Compared with the extension scenario, environmental risk due to fertilizer use under the policy intervention scenario declined across 2016-2018. In 2018, the environmental risk index of fertilizer application decreased most significantly in Northeast Sichuan Economic Zone, which was 4.24% lower than that in 2015. However, in most areas of Sichuan Province, there were still different levels of excessive chemical fertilizer application. The risk of environmental pollution caused by chemical fertilizer application had obvious pressure on the local ecological environment. We suggested that monitoring non-point source pollution of fertilizers should be improved in Chengdu Plain Economic Zone and Northeast Sichuan Economic Zone. Fertilization plan for each area should take the focus so as to ensure coordination between food production and ecological protection.
HTML全文
图1化肥施用的环境风险示意图
Figure1.Environmental risk of fertilizer application
下载: 全尺寸图片幻灯片
图22000—2015年四川省化肥施用情况
Figure2.Variations of fertilizers application in Sichuan Province during 2000-2015
下载: 全尺寸图片幻灯片
图32015年四川省化肥施用环境风险指数的空间分布
Figure3.Spatial distribution of environmental risks of total fertilizers and nitrogen, phosphorus, potash fertilizers application of Sichuan Province in 2015
下载: 全尺寸图片幻灯片
图42000—2018年四川省不同地区化肥施用环境风险指数
Figure4.Environmental risk indexes of fertilizer application in different areas of Sichuan Province from 2000 to 2018
下载: 全尺寸图片幻灯片
表1化肥施用的环境风险指数分类标准
Table1.Classification standards of environmental risk indexes of fertilizer application
环境风险程度 Type of environmental risk | 环境风险指数 Range of environmental risk index | 化肥施用强度 Fertilizer application intensity | 特征描述 Characterization |
安全 Safety | 0~0.50 | 小于或等于阈值 Less than the threshold | 生态系统状态稳定, 对化肥施用风险、危害有抵抗力, “生产-生活-生态”能够协调发展。 The state of ecosystem is stable. The ecosystem is resistant to the risks and hazards of chemical fertilizer application. Then, the coordinated development of “production-living- ecology” space is coordinated. |
低度风险 Low risk | 0.51~0.65 | 不超过阈值的2倍 No more than 2 times of the threshold | 生态系统结构基本完整, 生态恢复功能开始下降, 对化肥施用潜在或已面临的危害有一定抵抗力, “生产-生活-生态”的协调关系基本实现。 The ecosystem structure is basically intact, and the function of ecological restoration has begun to decline. The ecosystem has a certain resistance to the potential or existing hazards of chemical fertilizer application, and the coordination relationship between “production- living-ecology” is basically realized. |
中等风险 Medium risk | 0.66~0.75 | 不超过阈值的3倍 No more than 3 times of the threshold | 生态系统结构遭破坏, 化肥过量投入带来的风险和危害超出有效控制范围, 土壤肥力下降和环境污染加剧, “生产-生活-生态”协调发展受到影响。 The structure of ecosystem has been damaged. The risks and hazards brought by excessive input of fertilizer are beyond the effective control range, causing the degradation of cultivated land resources and the aggravation of environmental pollution. The “production- living-ecology” system is affected. |
严重风险 Serious risk | 0.76~0.80 | 不超过阈值的4倍 No more than 4 times of the threshold | 生态系统结构破坏程度严重, 化肥过量投入引起的风险、危害较难消除, 土壤肥力下降和环境污染严重, “生产-生活-生态”协调发展受到严重阻碍。 The damage degree of ecosystem structure is serious. The risks and hazards brought by excessive input of fertilizer are difficult to eliminate, causing the degradation of cultivated land resources and serious environmental pollution. The coordinated development of “production-living-ecology” has been seriously hindered. |
紧急风险 Extreme risk | 0.81~1.00 | 超过阈值的4倍 Four times greater than the threshold | 生态系统结构明显残缺, 化肥过量投入引起的风险、危害难以消除, 土壤肥力下降和环境污染严重, “生产-生活-生态”协调发展不能实现。 The structure of ecosystem is obviously incomplete. It is difficult to eliminate the risks and hazards caused by excessive input of fertilizers. The degradation of cultivated land resources and environmental pollution are serious. The coordinated development of “production-living-ecology” cannot be realized. |
下载: 导出CSV
表2灰色预测精度的后验差检验判别表
Table2.After-test residue checking distinguish list of accuracy about grey prediction
方差比 Variance ratio | 小残差概率 Probability of residual error | 预测精度 Accuracy of results |
> 0.65 | < 0.70 | 不合格Unqualified |
< 0.65 | > 0.70 | 基本合格Basically qualified |
< 0.50 | > 0.80 | 合格Qualified |
< 0.35 | > 0.95 | 优Excellent |
下载: 导出CSV
表32015年四川省各市(州)化肥使用强度和耕地复种指数
Table3.Fertilization intensity and multiple cropping index in each city (prefecture) of Sichuan Province in 2015
发展区划 Development division | 市(州) City (prefecture) | 施氮强度 Nitrogen intensity (kg·hm-2) | 施磷强度 Phosphorus intensity (kg·hm-2) | 施钾强度 Potassium intensity (kg·hm-2) | 总强度 Chemical fertilizer intensity (kg·hm-2) | 氮磷钾比例 N:P:K | 耕地复种指数 Multiple cropping index |
成都平原经济区Chengdu Plain Economic Zone | 成都市Chengdu | 172.38 | 109.99 | 79.15 | 361.77 | 1:0.64:0.46 | 2.13 |
德阳市Deyang | 452.40 | 193.85 | 110.60 | 756.85 | 1:0.43:0.24 | 1.84 | |
绵阳市Mianyang | 267.72 | 164.32 | 59.79 | 491.83 | 1:0.61:0.22 | 1.49 | |
乐山市Leshan | 227.69 | 88.80 | 43.00 | 359.49 | 1:0.39:0.19 | 1.31 | |
眉山市Meishan | 301.52 | 148.21 | 159.37 | 609.50 | 1:0.49:0.53 | 1.80 | |
资阳市Ziyang | 134.26 | 54.12 | 14.87 | 203.47 | 1:0.40:0.11 | 1.20 | |
遂宁市Suining | 305.12 | 147.82 | 76.19 | 529.13 | 1:0.48:0.25 | 1.52 | |
雅安市Ya’an | 289.18 | 115.08 | 99.25 | 503.51 | 1:0.40:0.34 | 1.70 | |
川南经济区South Sichuan Economic Zone | 自贡市Zigong | 227.22 | 144.09 | 68.81 | 440.59 | 1:0.63:0.30 | 1.44 |
泸州市Luzhou | 154.83 | 75.42 | 39.86 | 270.11 | 1:0.49:0.26 | 1.18 | |
内江市Neijiang | 314.32 | 121.28 | 29.50 | 464.74 | 1:0.39:0.09 | 1.63 | |
宜宾市Yibin | 90.43 | 53.11 | 35.06 | 178.60 | 1:0.59:0.39 | 1.12 | |
川东北经济区Northeast Sichuan Economic Zone | 广元市Guangyuan | 186.82 | 88.31 | 46.99 | 322.11 | 1:0.47:0.25 | 1.21 |
南充市Nanchong | 243.60 | 127.88 | 47.11 | 418.59 | 1:0.52:0.19 | 1.70 | |
广安市Guang’an | 233.88 | 86.99 | 33.36 | 354.23 | 1:0.37:0.14 | 1.59 | |
达州市Dazhou | 253.73 | 90.84 | 53.75 | 398.32 | 1:0.36:0.21 | 1.50 | |
巴中市Bazhong | 248.12 | 113.85 | 75.04 | 436.70 | 1:0.46:0.30 | 1.39 | |
攀西经济区Panxi Economic Zone | 攀枝花市Panzhihua | 192.13 | 97.40 | 97.40 | 386.92 | 1:0.51:0.51 | 0.90 |
凉山彝族自治州Liangshan Yi Autonomous Prefecture | 128.67 | 66.66 | 40.31 | 235.64 | 1:0.52:0.31 | 1.19 | |
川西北生态经济区Northwest Sichuan Eco-economic Zone | 甘孜藏族自治州Ganzi Tibetan Autonomous Prefecture | 24.86 | 5.49 | 2.58 | 31.97 | 1:0.22:0.10 | 0.83 |
阿坝藏族羌族自治州Aba Tibetan and Qiang Autonomous Prefecture | 79.59 | 53.33 | 22.29 | 155.21 | 1:0.67:0.28 | 0.97 | |
全省Province | 2015年平均值Average in 2015 | 215.64 | 102.23 | 58.78 | 376.63 | 1:0.48:0.27 | 1.37 |
下载: 导出CSV
表4延续现状情景下四川省不同区域化肥施用环境风险指数的灰色预测模型
Table4.Grey prediction models of environmental risk index of fertilizer application in extending scenario in different areas of Sichuan Province
地区 Area | 预测模型 Predictive model | 平均相对误差 Average relative error (%) | 方差比 Variance ratio | 小残差概率 Probability of residual error |
成都平原经济区Chengdu Plain Economic Zone | $x\left( {t + 1} \right) = 166.722{{\rm{e}}^{0.004t}} - 166.082$ | 0.86 | 0.34 | 0.82 |
川南经济区South Sichuan Economic Zone | $x(t + 1) = 15.790{{\rm{e}}^{0.021t}} - 15.433$ | 0.74 | 0.35 | 0.83 |
川东北经济区Northeast Sichuan Economic Zone | $x\left( {t + 1} \right) = 148.501{{\rm{e}}^{0.004t}} - 147.863$ | 0.49 | 0.31 | 0.88 |
攀西经济区Panxi Economic Zone | $x\left( {t + 1} \right) = 105.720{{\rm{e}}^{0.006t}} - 105.141$ | 1.00 | 0.40 | 0.80 |
川西北生态经济区Northwest Sichuan Eco-economic Zone | $x\left( {t + 1} \right) = 15.793{{\rm{e}}^{0.050t}} - 15.432$ | 0.12 | 0.14 | 1.00 |
下载: 导出CSV
表5四川省主要作物化肥推荐施用量
Table5.Recommended application rates of chemical fertilizers for major crops in Sichuan Province
农作物 Crop | 氮肥推荐用量 Optimal regional N fertilizer rate (kg·hm-2) | 磷肥推荐用量 Optimal regional P fertilizer rate (kg·hm-2) | 钾肥推荐用量 Optimal regional K fertilizer rate (kg·hm-2) | 化肥施用推荐量 Fertilizer application recommendation (kg·hm-2) | 化肥施用生态适宜量 Ecological rate of fertilizer application (kg·hm-2) | 氮磷钾推荐比例 Suitable proportion of N, P and K | 2000—2015年平均播种面积 Average sown area in 2000-2015 (104 hm2) |
水稻[27] Rice[27] | 159.0 | 81.0 | 72.5 | 312.5 | 280.7 | 1:0.51:0.46 | 200.48 |
玉米[28] Maize[28] | 184.0 | 80.0 | 60.0 | 324.0 | 287.2 | 1:0.44:0.32 | 128.19 |
小麦[39] Wheat[39] | 138.0 | 57.5 | 38.0 | 233.5 | 205.9 | 1:0.42:0.28 | 128.09 |
油菜[40] Oilseed rape[40] | 113.0 | 47.0 | 90.0 | 250.0 | 227.4 | 1:0.42:0.80 | 88.24 |
??化肥施用生态适宜量以化肥施用推荐量扣除20%的氮肥推荐用量计算得出。各作物化肥施用推荐量来自相应的文献。The ecological rate of fertilizer application is equal to the recommended rate minus 20% of the optimal regional rate of nitrogen fertilizer application. The recommended application rates of fertilizers for major crops come from literatures. |
下载: 导出CSV
表6四川省各地区2016年不同情景下的化肥施用环境风险指数结果检验
Table6.Results of environmental risk indexes of fertilizer application under different scenarios in each area of Sichuan Province in 2016
地区 Area | 实际值 Actual value | 延续现状情景预测值 Predictive value of extending scenario | 政策干预情景预测值 Predictive value of intervention scenario |
成都平原经济区Chengdu Plain Economic Zone | 0.67 | 0.69 | 0.68 |
川南经济区South Sichuan Economic Zone | 0.64 | 0.66 | 0.65 |
川东北经济区Northeast Sichuan Economic Zone | 0.67 | 0.69 | 0.67 |
攀西经济区Panxi Economic Zone | 0.65 | 0.67 | 0.64 |
川西北生态经济区Northwest Sichuan Eco-economic Zone | 0.44 | 0.46 | 0.44 |
??2016年环境风险指数实际值的计算中, 氮、磷、钾肥的利用率年均增长速度参照政策干预情景设定值。In 2016, the annual average growth rate of nitrogen, phosphorus and potassium utilization rate was calculated according to the setting value of fertilizer utilization rate in intervention scenario. |
下载: 导出CSV
参考文献
[1] | 李小云, 杨宇, 刘毅.中国人地关系演进及其资源环境基础研究进展[J].地理学报, 2016, 71(12):2067-2088 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DLXB201612002&dbname=CJFD&dbcode=CJFQ LI X Y, YANG Y, LIU Y. Research progress in man-land relationship evolution and its resource-environment base in China[J]. Acta Geographica Sinica, 2016, 71(12):2067-2088 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DLXB201612002&dbname=CJFD&dbcode=CJFQ |
[2] | 程锋, 王洪波, 郧文聚.中国耕地质量等级调查与评定[J].中国土地科学, 2014, 28(2):75-82 doi: 10.3969/j.issn.1001-8158.2014.02.010 CHENG F, WANG H B, YUN W J. Study on investigation and assessment of cultivated land quality grade in China[J]. China Land Sciences, 2014, 28(2):75-82 doi: 10.3969/j.issn.1001-8158.2014.02.010 |
[3] | 朱兆良, 金继运.保障我国粮食安全的肥料问题[J].植物营养与肥料学报, 2013, 19(2):259-273 http://d.old.wanfangdata.com.cn/Periodical/ncjjykj201804105 ZHU Z L, JIN J Y. Fertilizer use and food security in China[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2):259-273 http://d.old.wanfangdata.com.cn/Periodical/ncjjykj201804105 |
[4] | 骆世明.农业生态转型态势与中国生态农业建设路径[J].中国生态农业学报, 2017, 25(1):1-7 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170101&flag=1 LUO S M. Agroecology transition and suitable pathway for eco-agricultural development in China[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1):1-7 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170101&flag=1 |
[5] | 白由路.我国肥料产业面临的挑战与发展机遇[J].植物营养与肥料学报, 2017, 23(1):1-8 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201701001 BAI Y L. Challenges and opportunities of fertilizer industry in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1):1-8 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201701001 |
[6] | 中华人民共和国国家统计局.中国统计年鉴2016[M].北京:中国统计出版社, 2016:58-60 National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook 2016[M]. Beijing:China Statistics Press, 2016:58-60 |
[7] | GU B J, JU X T, CHANG J, et al. Integrated reactive nitrogen budgets and future trends in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28):8792-8797 doi: 10.1073/pnas.1510211112 |
[8] | 张维理, 武淑霞, 冀宏杰, 等.中国农业面源污染形势估计及控制对策Ⅰ. 21世纪初期中国农业面源污染的形势估计[J].中国农业科学, 2004, 37(7):1008-1017 doi: 10.3321/j.issn:0578-1752.2004.07.012 ZHANG W L, WU S X, JI H J, et al. Estimation of agricultural non-point source pollution in China and the alleviating strategies Ⅰ. Estimation of agricultural non-point source pollution in China in early 21 Century[J]. Scientia Agricultura Sinica, 2004, 37(7):1008-1017 doi: 10.3321/j.issn:0578-1752.2004.07.012 |
[9] | 农业部种植业管理司.农业部关于印发《到2020年化肥使用量零增长行动方案》和《到2020年农药使用量零增长行动方案》的通知[EB/OL].中华人民共和国农业部.[2015-03-18].http://jiuban.moa.gov.cn/zwllm/tzgg/tz/201503/t20150318_4444765.htm Crop Management Division of Agriculture Ministry. Notice of the Ministry of Agriculture on printing and distributing the "Action Plan for Zero Growth of Chemical Fertilizer Usage by 2020" and "Action Plan for Zero Growth of Pesticide Use by 2020"[EB/OL]. Ministry of Agriculture of the People's Republic of China.[2018-03-18]. http://jiuban.moa.gov.cn/zwllm/tzgg/tz/201503/t20150318_4444765.htm |
[10] | 杨林章, 冯彦房, 施卫明, 等.我国农业面源污染治理技术研究进展[J].中国生态农业学报, 2013, 21(1):96-101 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013112&flag=1 YANG L Z, FENG Y F, SHI W M, et al. Review of the advances and development trends in agricultural non-point source pollution control in China[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1):96-101 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013112&flag=1 |
[11] | 李颖, 王康, 周祖昊.基于SWAT模型的东北水稻灌区水文及面源污染过程模拟[J].农业工程学报, 2014, 30(7):42-53 doi: 10.3969/j.issn.1002-6819.2014.07.006 LI Y, WANG K, ZHOU Z H. Simulation of drainage and agricultural non-point source pollutions transport processes in paddy irrigation district in North-East China using SWAT[J]. Transactions of the CSAE, 2014, 30(7):42-53 doi: 10.3969/j.issn.1002-6819.2014.07.006 |
[12] | 涂宏志, 侯鹰, 陈卫平.基于AnnAGNPS模型的苇子沟流域非点源污染模拟研究[J].农业环境科学学报, 2017, 36(7):1345-1352 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201707017 TU H Z, HOU Y, CHEN W P. Simulation of non-point source pollution in Weizigou watershed with AnnAGNPS model[J]. Journal of Agro-Environment Science, 2017, 36(7):1345-1352 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201707017 |
[13] | 耿润哲, 张鹏飞, 庞树江, 等.不同气候模式对密云水库流域非点源污染负荷的影响[J].农业工程学报, 2015, 31(22):240-249 doi: 10.11975/j.issn.1002-6819.2015.22.033 GENG R Z, ZHANG P F, PANG S J, et al. Impact of different climate change scenarios on non-point source pollution losses in Miyun Reservoir watershed[J]. Transactions of the CSAE, 2015, 31(22):240-249 doi: 10.11975/j.issn.1002-6819.2015.22.033 |
[14] | 付永虎, 刘黎明, 任国平, 等.平原河网地区非点源污染风险差异化分区防控研究[J].长江流域资源与环境, 2017, 26(5):713-722 http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201705008 FU Y H, LIU L M, REN G P, et al. Differentiating spatial counter measure oriented to non-point source pollution risk in plain river network region[J]. Resources and Environment in the Yangtze Basin, 2017, 26(5):713-722 http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201705008 |
[15] | 高会然, 沈琳, 刘军志, 等.中国南方丘陵区非点源污染过程模拟研究进展[J].地球信息科学学报, 2017, 19(8):1080-1088 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201708009 GAO H R, SHEN L, LIU J Z, et al. Review on the simulation of non-point source pollution in the Hilly region of Southern China[J]. Journal of Geo-information Science, 2017, 19(8):1080-1088 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201708009 |
[16] | 王磊, 香宝, 苏本营, 等.京津冀地区农业面源污染风险时空差异研究[J].农业环境科学学报, 2017, 36(7):1254-1265 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201707006 WANG L, XIANG B, SU B Y, et al. Spatial-temporal variation of agricultural non-point source pollution risk in Beijing-Tianjin-Hebei Region, China[J]. Journal of Agro-Environment Science, 2017, 36(7):1254-1265 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201707006 |
[17] | 罗遵兰, 吕凤春, 孙光, 等.漳卫南流域种植业非点源污染径流流失评估及防治策略[J].干旱区资源与环境, 2014, 28(10):145-150 http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201410025 LUO Z L, LYU F C, SUN G, et al. Evaluation and prevention strategy of non-point source pollution runoff loss for farming in Zhangweinan river basin[J]. Journal of Arid Land Resources and Environment, 2014, 28(10):145-150 http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201410025 |
[18] | 刘俏, 张丽萍, 胡响明, 等.红壤丘陵区经济林坡地氮磷流失特征[J].水土保持学报, 2014, 28(3):185-190 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201403034 LIU Q, ZHANG L P, HU X M, et al. Losses characteristics of nitrogen and phosphorus of economic forest in the slope of red soil hilly region of South China[J]. Journal of Soil and Water Conservation, 2014, 28(3):185-190 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201403034 |
[19] | 马东, 杜志勇, 吴娟, 等.强降雨下农田径流中溶解态氮磷的输出特征——以崂山水库流域为例[J].中国环境科学, 2012, 32(7):1228-1233 doi: 10.3969/j.issn.1000-6923.2012.07.013 MA D, DU Z Y, WU J, et al. Characterization of dissolved nitrogen and phosphorus transportation in farmland runoff under heavy rain-Take Laoshan Reservoir watershed as example[J]. China Environmental Science, 2012, 32(7):1228-1233 doi: 10.3969/j.issn.1000-6923.2012.07.013 |
[20] | 冯小杰, 郑子成, 李廷轩.紫色土区坡耕地玉米季地表径流及其氮素流失特征[J].水土保持学报, 2017, 31(1):43-48 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201701008 FENG X J, ZHENG Z C, LI T X. Characteristics of runoff and nitrogen loss in sloping cropland of purple soil during corn growing season[J]. Journal of Soil and Water Conservation, 2017, 31(1):43-48 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201701008 |
[21] | 陈成龙, 高明, 倪九派, 等.三峡库区小流域不同土地利用类型对氮素流失影响[J].环境科学, 2016, 37(5):1707-1716 http://d.old.wanfangdata.com.cn/Periodical/hjkx201605015 CHEN C L, GAO M, NI J P, et al. Nitrogen losses under the action of different land use types of small catchment in Three Gorges Region[J]. Environmental Science, 2016, 37(5):1707-1716 http://d.old.wanfangdata.com.cn/Periodical/hjkx201605015 |
[22] | 刘钦普.中国化肥投入区域差异及环境风险分析[J].中国农业科学, 2014, 47(18):3596-3605 doi: 10.3864/j.issn.0578-1752.2014.18.008 LIU Q P. Distribution of fertilizer application and its environmental risk in different provinces of China[J]. Scientia Agricultura Sinica, 2014, 47(18):3596-3605 doi: 10.3864/j.issn.0578-1752.2014.18.008 |
[23] | 刘钦普, 林振山, 周亮.山东省化肥使用时空分异及潜在环境风险评价[J].农业工程学报, 2015, 31(7):208-214 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201507030 LIU Q P, LIN Z S, ZHOU L. Spatio-temporal differentiation and environmental risk assessment of fertilization in Shandong Province, China[J]. Transactions of the CSAE, 2015, 31(7):208-214 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201507030 |
[24] | 房珊琪, 杨珺, 强艳芳, 等.南水北调中线工程水源地化肥施用时空分布特征及其环境风险评价[J].农业环境科学学报, 2018, 37(1):124-136 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201801016 FANG S Q, YANG J, QIANG Y F, et al. Distribution and environmental risk assessment of fertilizer application on farmland in the water source of the middle route of the South-to-North Water Transfer Project[J]. Journal of Agro-Environment Science, 2018, 37(1):124-136 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201801016 |
[25] | 刘钦普.江苏氮磷钾化肥使用地域分异及环境风险评价[J].应用生态学报, 2015, 26(5):1477-1483 http://www.cjae.net/CN/Y2015/V26/I5/1477 LIU Q P. Regional difference of NPK fertilizers application and environmental risk assessment in Jiangsu Province, China[J]. Chinese Journal of Applied Ecology, 2015, 26(5):1477-1483 http://www.cjae.net/CN/Y2015/V26/I5/1477 |
[26] | 刘钦普.安徽省化肥面源污染环境风险分析[J].生态与农村环境学报, 2015, 31(6):876-881 http://d.old.wanfangdata.com.cn/Periodical/ncsthj201506013 LIU Q P. Environmental risk analyses of non-point source pollution from fertilization in Anhui Province, China[J]. Journal of Ecology and Rural Environment, 2015, 31(6):876-881 http://d.old.wanfangdata.com.cn/Periodical/ncsthj201506013 |
[27] | 吴良泉, 武良, 崔振岭, 等.中国水稻区域氮磷钾肥推荐用量及肥料配方研究[J].中国农业大学学报, 2016, 21(9):1-13 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201609001 WU L Q, WU L, CUI Z L, et al. Studies on recommended nitrogen, phosphorus and potassium application rates and special fertilizer formulae for different rice production regions in China[J]. Journal of China Agricultural University, 2016, 21(9):1-13 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201609001 |
[28] | 吴良泉, 武良, 崔振岭, 等.中国玉米区域氮磷钾肥推荐用量及肥料配方研究[J].土壤学报, 2015, 52(4):802-817 http://cdmd.cnki.com.cn/Article/CDMD-10019-1014221242.htm WU L Q, WU L, CUI Z L, et al. Basic NPK fertilizer recommendation and fertilizer formula for maize production regions in China[J]. Acta Pedologica Sinica, 2015, 52(4):802-817 http://cdmd.cnki.com.cn/Article/CDMD-10019-1014221242.htm |
[29] | 张福锁, 王激清, 张卫峰, 等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报, 2008, 45(5):915-924 doi: 10.3321/j.issn:0564-3929.2008.05.018 ZHANG F S, WANG J Q, ZHANG W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5):915-924 doi: 10.3321/j.issn:0564-3929.2008.05.018 |
[30] | 戴亚南, 贺新光.长株潭地区生态可持续性[J].生态学报, 2013, 33(2):595-602 http://d.old.wanfangdata.com.cn/Periodical/stxb201302031 DAI Y N, HE X G. Ecological sustainability in Chang-Zhu-Tan Region:a prediction study[J]. Acta Ecologica Sinica, 2013, 33(2):595-602 http://d.old.wanfangdata.com.cn/Periodical/stxb201302031 |
[31] | 顿耀龙, 王军, 白中科, 等.基于灰色模型预测的矿区生态系统服务价值变化研究——以山西省平朔露天矿区为例[J].资源科学, 2015, 37(3):494-502 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx201503009 DUN Y L, WANG J, BAI Z K, et al. Changes in Pingshuo opencast mining area ecosystem service values based on grey prediction modeling[J]. Resources Science, 2015, 37(3):494-502 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx201503009 |
[32] | 四川省人民政府.四川省人民政府关于印发《四川省农田水利基本建设总体规划纲要(2006-2020年)》的通知[EB/OL].四川省人民政府.[2007-06-10].http://www.sc.gov.cn/10462/10464/10684/13652/2007/6/10/10369388.shtml The People's Government of Sichuan Province. Notice of the People's Government of Sichuan Province on printing and distributing the "outline of the master plan for the construction of farmland and water conservancy in Sichuan Province (2006-2020)"[EB/OL].[2007-06-10]. http://www.sc.gov.cn/10462/10464/10684/13652/2007/6/10/10369388.shtml |
[33] | 穆叶赛尔·吐地, 吉力力·阿布都外力, 姜逢清.天山北坡土壤重金属含量的分布特征及其来源解释[J].中国生态农业学报, 2013, 21(7):883-890 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013715&flag=1 TURDI M, ABUDUWAILI J, JIANG F Q. Distribution characteristics of soil heavy metal content in northern slope of Tianshan Mountains and its source explanation[J]. Chinese Journal of Eco-Agriculture, 2013, 21(7):883-890 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013715&flag=1 |
[34] | 李启权, 张少尧, 代天飞, 等.成都平原农地土壤镉含量特征及来源研究[J].农业环境科学学报, 2014, 33(5):898-906 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201405012 LI Q Q, ZHANG S Y, DAI T F, et al. Contents and sources of cadmium in farmland soils of Chengdu Plain, China[J]. Journal of Agro-Environment Science, 2014, 33(5):898-906 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201405012 |
[35] | 陈克亮, 朱晓东, 朱波, 等.川中小流域地下水硝态氮的时空变化特征[J].农业环境科学学报, 2006, 25(4):1060-1064 doi: 10.3321/j.issn:1672-2043.2006.04.049 CHEN K L, ZHU X D, ZHU B, et al. Temporal and spatial variation of NO3--N pollution in groundwater in small watershed of central Sichuan Basin[J]. Journal of Agro-Environment Science, 2006, 25(4):1060-1064 doi: 10.3321/j.issn:1672-2043.2006.04.049 |
[36] | 田帅, 刘国东, 倪福全. BP与GIS耦合的地下水水质综合分析评价[J].水电能源科学, 2012, 30(2):38-40 doi: 10.3969/j.issn.1000-7709.2012.02.011 TIAN S, LIU G D, NI F Q. Comprehensive assessment of ground water quality based on coupling of BP and GIS[J]. Water Resources and Power, 2012, 30(2):38-40 doi: 10.3969/j.issn.1000-7709.2012.02.011 |
[37] | 宋明义, 周涛发, 蔡子华, 等.浙江典型癌症高发区地质环境[J].物探与化探, 2010, 34(3):382-385 http://d.old.wanfangdata.com.cn/Periodical/wtyht201003024 SONG M Y, ZHOU T F, CAI Z H, et al. Geological environment of a typical cancer high-incidence area in Zhejiang Province[J]. Geophysical and Geochemical Exploration, 2012, 34(3):382-385 http://d.old.wanfangdata.com.cn/Periodical/wtyht201003024 |
[38] | 骆世明.中国生态农业制度的构建[J].中国生态农业学报, 2018, 26(5):759-770 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0514&flag=1 LUO S M. Setting up policy system for eco-agriculture in China[J]. Chinese Journal of Eco-Agriculture, 2018, 26(5):759-770 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0514&flag=1 |
[39] | 吴良泉.基于"大配方、小调整"的中国三大粮食作物区域配肥技术研究[D].北京: 中国农业大学, 2014: 99-105 http://cdmd.cnki.com.cn/article/cdmd-10019-1014221242.htm WU L Q. Fertilizer recommendations for three major cereal crops based on regional fertilizer formula and site specific adjustment in China[J]. Beijing: China Agricultural University, 2014: 99-105 http://cdmd.cnki.com.cn/article/cdmd-10019-1014221242.htm |
[40] | 张福锁, 陈新平, 陈清.中国主要作物施肥指南[M].北京:中国农业大学出版社, 2009:70-74 ZHANG F S, CHEN X P, CHEN Q. Fertilizer Recommendations for Agricultural Crops in China[M]. Beijing:China Agricultural University Press, 2009:70-74 |
[41] | 张丽萍, 朱钟麟, 邓良基.四川省坡耕地资源及其治理对策[J].水土保持通报, 2004, 24(3):47-49 doi: 10.3969/j.issn.1000-288X.2004.03.013 ZHANG L P, ZHU Z L, DENG L J. Slope cultivated lands and management of Sichuan Province[J]. Bulletin of Soil and Water Conservation, 2004, 24(3):47-49 doi: 10.3969/j.issn.1000-288X.2004.03.013 |
[42] | 庄天慧, 余崇媛, 刘人瑜.西南民族贫困地区农业技术推广现状及其影响因素研究——基于西南4省1739户农户的调查[J].科技进步与对策, 2013, 30(9):37-40 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjjbydc201309009 ZHUANG T H, YU C Y, LIU R Y. Study on the status quo and its influencing factors of the agricultural technology promotion in southwest minority poverty areas:based on a survey of 1739 farmers in southwest of four provinces[J]. Science & Technology Progress and Policy, 2013, 30(9):37-40 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjjbydc201309009 |