删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同培肥方式对土壤有机碳与微生物群落结构的影响

本站小编 Free考研考试/2022-01-01

李倩1, 2, ?,,,
马琨2, ?,,,
冶秀香1,
杨金娟1,
牛红霞1,
马玲1
1.宁夏大学农学院 银川 750021
2.宁夏大学西北土地退化与生态恢复国家重点实验室培育基地 银川 750021
基金项目:
国家自然科学基金项目31660132
国家自然科学基金项目31160104
宁夏高等学校一流学科建设项目NXYLX2017B05

详细信息?同等贡献者:李倩, 主要研究方向为农作制度理论与技术, E-mail: 940380226@qq.com; 马琨, 主要研究方向为农业生态学, E-mail: makun0411@163.com
中图分类号:S182;S154.3

计量

文章访问数:941
HTML全文浏览量:0
PDF下载量:692
被引次数:0
出版历程

收稿日期:2017-12-25
录用日期:2018-07-20
刊出日期:2018-12-01

Effect of fertilization managements on soil organic carbon and microbial community structure

LI Qian1, 2, ?,,,
MA Kun2, ?,,,
YE Xiuxiang1,
YANG Jinjuan1,
NIU Hongxia1,
MA Ling1
1. College of Agronomy, Ningxia University, Yinchuan 750021, China
2. Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan 750021, China
Funds:
the National Natural Science Foundation of China31660132
the National Natural Science Foundation of China31160104
the First-Class Discipline Construction Project of Colleges and Universities in NingxiaNXYLX2017B05

More Information
Corresponding author:LI Qian, E-mail:940380226@qq.com;MA Kun, E-mail:makun0411@163.com
? Equal contributors


摘要
HTML全文
(2)(2)
参考文献(37)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为揭示旱作区耕地土壤有机碳累积规律及其与土壤微生物群落间的相互作用机制,试验采用磷脂脂肪酸(PLFA)指纹图谱及土壤腐殖质形态分组的方法,通过田间定位试验,研究了马铃薯-马铃薯-油用向日葵-马铃薯-油用向日葵轮作模式下,有机、无机肥配施(不施肥、单施化肥、化肥配施牛粪、化肥配施羊粪、化肥配施生物有机肥、化肥配施黄腐酸钾)对土壤有机碳累积、土壤腐殖质形态的影响及其与土壤微生物群落结构间的相互关系。结果表明:在连续培肥5年间,随培肥时间延长,土壤有机碳呈波动性上升趋势。与对照相比,化肥配施牛粪、化肥配施羊粪处理土壤有机碳以年6.61%和8.97%的增长率累积增加,不同处理外源有机碳含量及有机肥种类的差异影响了土壤有机碳的累积速率。化肥配施高量有机肥(化肥+羊粪、化肥+牛粪)处理显著提高了土壤稳结态、松结态腐殖质含量及松结态/紧结态腐殖质的比例,且以PLFA表征的土壤细菌、真菌、放线菌、原生动物、土壤微生物群落总生物量与对照处理间均有显著性差异(P < 0.05)。与对照相比,各施肥处理的革兰氏阳性菌/革兰氏阴性菌(G+/G-)值均呈降低趋势;但不同有机无机相结合的土壤培肥方式对土壤G+/G-的比例没有显著差异。多元分析表明,基于土壤微生物主要类群磷脂脂肪酸含量的排序轴与基于土壤有机碳、腐殖质形态的排序轴之间相关性(P1=0.568,P2=0.611)较好,累积变量在98.69%上揭示不同有机无机培肥措施影响下的土壤微生物群落生物量与环境因子间的相互关系。土壤松结态腐殖质含量与土壤G+/G-比值正相关。外源有机碳的施入促进了土壤紧结态腐殖碳向稳结态、松结态腐殖质转化;较高量外源有机碳施入有助于提升土壤细菌、真菌的生物量。总体而言,土壤微生物群落结构的变化是受有机无机培肥措施所引起的土壤有机碳含量、腐殖质形态变化驱动;化肥配施牛粪和化肥配施羊粪有利于土壤有机碳积累和松结态腐殖质的形成,促进土壤中微生物生物量提高。研究结果可为宁夏中部干旱区土壤合理培肥提供科学依据。
关键词:有机无机培肥/
土壤有机碳/
微生物群落/
松结态腐殖质/
紧结态腐殖质/
磷脂脂肪酸
Abstract:The Phospholipid Fatty Acids (PLFAs) fingerprint and humus fraction methods were used to determine the accumulation of soil organic carbon in cultivated farmlands and the interaction mechanisms of soil microbial communities with soil organic carbon. The combined effects of organic manure and chemical fertilizer on soil organic carbon accumulation, soil humus forms and their relationships with soil microbial community structures were studied in a 5-crop rotation mode of 'potato-potato-oil sunflower-potato-oil sunflower' over a period of five years. The experimental treatments were as follows-no fertilization, inorganic fertilizer application, combined application of inorganic fertilizer and cow dung, combined application of inorganic fertilizer and sheep manure, combined application of inorganic fertilizer and biological organic fertilizer, and then combined application of inorganic fertilizer and fulvic acid potassium. The results showed that soil organic carbon fluctuated with increasing tendency over the five-year period. Compared with the control (no fertilization), soil organic carbon increased at annual average rates of 6.61% and 8.97% under the treatments of combined application chemical fertilizer with cow dung or separately with sheep manure. The rate of accumulation of soil organic carbon was influenced by the amount and type of added exogenous organic matter to the soil. The contents of stable or tightly combined humus and ratio of loosely combined humus to tightly combined humus increased following the addition of high quantities of organic manure (chemical fertilizer plus cow dung or chemical fertilizer plus sheep manure) and inorganic fertilizer. Compared with no fertilization, there were significant differences in soil bacteria, fungi, actinomycetes, protozoa and total microbial biomass, marked by phospholipid fatty acids under combined application of inorganic fertilizer and sheep manure or cow dung. The biomass ratio of gram-positive bacteria to gram-negative bacteria (G+/G-) in the treatments with inorganic fertilizer plus organic fertilizers decreased. There was no obviously difference in the ratio of G+/G- among treatments of combined application of inorganic fertilizer and organic fertilizers. Multivariate analysis showed a good correlation between the first ordination axes based on soil microbial biomass marked by PLFAs and the second ordination based on combined soil organic carbon and humus (P1=0.568, P2=0.611). The relationship between soil microbial biomass and soil environmental factors was explained by the 98.69% cumulative variation in spatial scale. There was a positive correlation between the content of loosely combined humus and G+/G- of soil microbial community. It was concluded that the tightly combined humus fraction gained higher stability than the loosely combined humus when exogenous organic carbon was applied to the soil. The soil bacteria and fungi biomass marked by PLFAs were promoted with increasing amounts of exogenous organic carbon in the soil. The biomass ratio of fungi to bacteria was not influenced by fertilizer management and amount of exogenous organic carbon. Generally, the change in soil microbial community structure was driven by the change in soil organic carbon content and soil humus fraction. Combined inorganic fertilizer with cow manure and inorganic fertilizer with sheep manure supported the accumulation of soil organic carbon and the formation of loose combined humus, but also promoted an increase in soil microbial biomass. The research provided a reliable scientific basis for soil fertilization in semiarid areas in Ningxia.
Key words:Combined application of inorganic fertilizer and organic fertilizer/
Soil organic carbon/
Microbial community/
Loosely combined humus/
Tightly combined humus/
Phospholipid fatty acid (PLFA)
? Equal contributors

注释:
1) ?同等贡献者:李倩, 主要研究方向为农作制度理论与技术, E-mail: 940380226@qq.com; 马琨, 主要研究方向为农业生态学, E-mail: makun0411@163.com

HTML全文


图1不同有机无机肥配施处理对土壤有机碳的影响
T1、T2、T3、T4、T5、T6分别表示不施肥、单施化肥、化肥+牛粪、化肥+羊粪、化肥+生物有机肥、化肥+黄腐酸钾。不同小写字母表示不同处理间差异显著(P < 0.05)。T1, T2, T3, T4, T5 and T6 represent blank control, inorganic fertilizer application, combined application of inorganic fertilizer and cow dung, combined application of inorganic fertilizer and sheep manure, combined application of inorganic fertilizer and bioorganic fertilizer, and combined application of inorganic fertilizer and fulvic acid potassium. Different lowercase letters indicate significant differences among different treatments (P < 0.05).
Figure1.Effects of different treatments of combined application of inorganic fertilizer and organic manure on soil organic carbon content


下载: 全尺寸图片幻灯片


图2不同有机无机肥配施处理下土壤微生物群落结构组成(a)、有机碳及腐殖质形态(b)的多元分析
图中1、2、3为不施肥处理, 4、5、6为单施化肥处理, 7、8、9为化肥配施牛粪处理, 10、11、12为化肥配施羊粪处理, 13、14、15为化肥配施生物有机肥处理, 16、17、18为化肥配施黄腐酸钾处理。Bacteria:细菌; Fungi:真菌; Actinomycete:放线菌; Protozoa:原生动物; Gram Positive:革兰氏阳性菌; Gram Negative:革兰氏阴性菌; Tightly:紧结态腐殖质; Loosely:松结态腐殖质; Stably:稳结态腐殖质; Carbon:土壤有机碳; Total PLFA:总磷脂脂肪酸。In the figures, 1, 2, 3 are replicates of no fertilization treatments; 4, 5, 6 are replicates of chemical fertilizer treatment; 7, 8, 9 are replicates of treatment of combined application of chemical fertilizer and cow dung; 10, 11, 12 are replicates of treatment of combined application of chemical fertilizer and sheep manure; 13, 14, 15 are replicates of treatment of combined application of chemical fertilizer and bio-organic manure; 16, 17, 18 are replicates of treatment of combined application of chemical fertilizer and fulvic acid potassium. Gram Positive: gram positive bacteria; Gram Negative: gram negative bacteria; Tightly: tightly combined humus; Loosely: loosely combined humus; Stably: stably combined humus; Carbon: soil organic carbon; Total PLFA: total phospholipid fatty acids.
Figure2.Multivariate analysis of soil microbial communities structure based on the phospholipid fatty acids (a) and soil organic carbon, soil humic forms (b) under different treatments of combined application of inorganic fertilizer and organic manure


下载: 全尺寸图片幻灯片

表1不同有机无机肥配施处理对土壤腐殖质形态及组分数量的影响(2015年)
Table1.Contents and relative mass fractions of different forms of soil humus under different treatments of combined application of inorganic fertilizer and organic manure in 2015
处理
Treatment
含量Content (g·kg-1) 松结态腐殖质/紧结态腐殖质
Loosely combined humus / tightly combined humus
重组腐殖质
Recombinant combined humus (g·kg-1)
相对质量分数Relative mass fraction (%)
稳结态腐殖质
Stably combined humus
紧结态腐殖质
Tightly combined humus
松结态腐殖质
Loosely combined humus
稳结态腐殖质
Stably combined humus
紧结态腐殖质
Tightly combined humus
松结态腐殖质
Loosely combined humus
T1 0.24±0.01f 6.04±0.24b 0.40±0.05e 0.07 6.68d 3.59 90.42 5.99
T2 0.60±0.04e 6.19±0.36b 0.48±0.04e 0.08 7.27d 8.25 85.14 6.60
T3 1.02±0.02b 7.24±0.39a 1.64±0.02b 0.23 9.90b 10.30 73.13 16.57
T4 1.26±0.03a 7.91±0.78a 1.84±0.05a 0.23 11.01a 11.44 71.84 16.71
T5 0.96±0.01c 7.34±0.55a 1.21±0.03c 0.16 9.51b 10.09 77.18 12.72
T6 0.76±0.05d 6.38±0.33b 1.12±0.04d 0.18 8.26c 9.20 77.24 13.56
??T1、T2、T3、T4、T5、T6分别表示不施肥、单施化肥、化肥+牛粪、化肥+羊粪、化肥+生物有机肥、化肥+黄腐酸钾。同列不同小写字母表示处理间差异显著(P < 0.05)。T1, T2, T3, T4, T5 and T6 represent blank control, inorganic fertilizer application, combined application of inorganic fertilizer and cow dung, combined application of inorganic fertilizer and sheep manure, combined application of inorganic fertilizer and bioorganic fertilizer, and combined application of inorganic fertilizer and fulvic acid potassium. Different lowercase letters in the same column indicate significant differences among treatments at 0.05 level.


下载: 导出CSV
表2不同有机无机肥配施处理对土壤微生物群落结构组成的影响
Table2.Effects of different treatments of combined application of inorganic fertilizer and organic manure on soil microbial communities structure in 2015
nmol·g-1(dry soil)
处理
Treatment
细菌(B)
Bacterial
放线菌
Actinomycete
真菌(F)
Fungal
原生动物类
Protozoan
真菌/细菌
F/B
革兰氏阳性菌/革兰氏阴性菌
G+/G-
总磷酯脂肪酸
Total PLFA
T1 5.02±1.76c 1.07±0.44c 1.79±0.46c 0.00±0.00b 0.61±0.11abc 0.68±0.12a 8.40±2.76d
T2 10.17±0.97b 2.64±0.50b 3.82±0.02bc 0.05±0.09b 0.51±0.05bcd 0.56±0.05b 17.46±1.47bc
T3 17.17±1.83a 4.18±0.14a 5.98±0.60b 0.26±0.07a 0.47±0.03d 0.54±0.02b 28.58±3.09a
T4 18.78±4.16a 4.49±0.67a 8.69±2.87a 0.21±0.04a 0.66±0.07a 0.57±0.01b 33.57±7.74a
T5 11.67±0.89b 2.85±0.40b 5.00±0.68b 0.07±0.11b 0.62±0.02ab 0.51±0.03b 20.46±1.87b
T6 7.51±2.67bc 2.09±1.10bc 2.50±0.73c 0.00±0.00b 0.47±0.12cd 0.55±0.03b 12.90±3.59cd
??T1、T2、T3、T4、T5、T6分别表示不施肥、单施化肥、化肥+牛粪、化肥+羊粪、化肥+生物有机肥、化肥+黄腐酸钾。同列不同小写字母表示处理间差异显著(P < 0.05)。T1, T2, T3, T4, T5 and T6 represent blank control, inorganic fertilizer application, combined application of inorganic fertilizer and cow dung, combined application of inorganic fertilizer and sheep manure, combined application of inorganic fertilizer and bioorganic fertilizer, and combined application of inorganic fertilizer and fulvic acid potassium. Different lowercase letters in the same column indicate significant differences among treatments at 0.05 level.


下载: 导出CSV

参考文献(37)
[1]HAI L, LI X G, LI F M, et al. Long-term fertilization and manuring effects on physically-separated soil organic matter pools under a wheat-wheat-maize cropping system in an arid region of China[J]. Soil Biology and Biochemistry, 2010, 42(2):253-259 doi: 10.1016/j.soilbio.2009.10.023
[2]MOHARANA P C, SHARMA B M, BISWAS D R, et al. Long-term effect of nutrient management on soil fertility and soil organic carbon pools under a 6-year-old pearl millet-wheat cropping system in an Inceptisol of subtropical India[J]. Field Crops Research, 2012, 136:32-41 doi: 10.1016/j.fcr.2012.07.002
[3]李玮, 乔玉强, 陈欢, 等.秸秆还田和施肥对砂姜黑土理化性质及小麦-玉米产量的影响[J].生态学报, 2014, 34(17):5052-5061 http://d.old.wanfangdata.com.cn/Periodical/stxb201417028
LI W, QIAO Y Q, CHEN H, et al. Effects of combined straw and N application on the physicochemical properties of lime concretion black soil and crop yields[J]. Acta Ecologica Sinica, 2014, 34(17):5052-5061 http://d.old.wanfangdata.com.cn/Periodical/stxb201417028
[4]邓文悦, 柳开楼, 田静, 等.长期施肥对水稻土不同功能有机质库碳氮分布的影响[J].土壤学报, 2017, 54(2):468-479 http://d.old.wanfangdata.com.cn/Periodical/trxb201702017
DENG W Y, LIU K L, TIAN J, et al. Effects of long-term fertilization on distribution of carbon and nitrogen in different functional soil organic matter fractions in paddy soil[J]. Acta Pedologica Sinica, 2017, 54(2):468-479 http://d.old.wanfangdata.com.cn/Periodical/trxb201702017
[5]LIU E K, YAN C R, MEI X R, et al. Long-term effect of manure and fertilizer on soil organic carbon pools in dryland farming in northwest China[J]. PLoS One, 2013, 8(2):e56536 doi: 10.1371/journal.pone.0056536
[6]CHEN D M, YUAN L, LIU Y R, et al. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties[J]. European Journal of Agronomy, 2017, 90:34-42 doi: 10.1016/j.eja.2017.07.007
[7]DING J L, JIANG X, MA M C, et al. Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China[J]. Applied Soil Ecology, 2016, 105:187-195 doi: 10.1016/j.apsoil.2016.04.010
[8]SU J Q, DING L J, XUE K, et al. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil[J]. Molecular Ecology, 2015, 24(1):136-150 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea9e0e14aaf9ca8901b44121d3b5a3fc
[9]LI Y Y, CHEN L Q, WEN H Y, et al. 454 Pyrosequencing analysis of bacterial diversity revealed by a comparative study of soils from mining subsidence and reclamation areas[J]. Journal of Microbiology and Biotechnology, 2014, 24(3):313-323 doi: 10.4014/jmb.1309.09001
[10]ZHANG Q C, SHAMSI I H, XU D T, et al. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure[J]. Applied Soil Ecology, 2012, 57:1-8 doi: 10.1016/j.apsoil.2012.02.012
[11]WEI M, HU G Q, WANG H, et al. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China[J]. European Journal of Soil Biology, 2017, 82:27-34 doi: 10.1016/j.ejsobi.2017.08.002
[12]DEMOLING F, FIGUEROA D, B??TH E. Comparison of factors limiting bacterial growth in different soils[J]. Soil Biology and Biochemistry, 2007, 39(10):2485-2495 doi: 10.1016/j.soilbio.2007.05.002
[13]BLAGODATSKAYA E, KUZYAKOV Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:Critical review[J]. Biology and Fertility of Soils, 2008, 45(2):115-131 doi: 10.1007/s00374-008-0334-y
[14]郭芸, 孙本华, 王颖, 等.长期施用不同肥料土PLFA指纹特征[J].中国农业科学, 2017, 50(1):94-103 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201701009
GUO Y, SUN B H, WANG Y, et al. PLFA fingerprint characteristics of an anthropogenic loess soil under long-term different fertilizations[J]. Scientia Agricultura Sinica, 2017, 50(1):94-103 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201701009
[15]SHEN J P, ZHANG L M, GUO J F, et al. Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China[J]. Applied Soil Ecology, 2010, 46(1):119-124 doi: 10.1016/j.apsoil.2010.06.015
[16]鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000:30-34
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agriculture Press, 2000:30-34
[17]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000:121-122
LU R K. Soil Agrochemical Analysis Methods[M]. Beijing:China Agricultural Science and Technology Press, 2000:121-122
[18]魏常慧, 刘亚军, 冶秀香, 等.马铃薯/玉米间作栽培对土壤和作物的影响[J].浙江大学学报:农业与生命科学版, 2017, 43(1):54-64 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-nyysm201701007
WEI C H, LIU Y J, YE X X, et al. Effects of intercropping potato with maize on soil and crop[J]. Journal of Zhejiang University:Agriculture & Life Sciences, 2017, 43(1):54-64 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-nyysm201701007
[19]ZHAO J, NI T, LI J, et al. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system[J]. Applied Soil Ecology, 2016, 99:1-12 doi: 10.1016/j.apsoil.2015.11.006
[20]张电学, 韩志卿, 王秋兵, 等.不同施肥制度下褐土结合态腐殖质动态变化[J].沈阳农业大学学报, 2006, 37(4):597-601 doi: 10.3969/j.issn.1000-1700.2006.04.012
ZHANG D X, HAN Z Q, WANG Q B, et al. Dynamic change of soil combined humus in cinnamon soil under different fertilizer regimes[J]. Journal of Shenyang Agricultural University, 2006, 37(4):597-601 doi: 10.3969/j.issn.1000-1700.2006.04.012
[21]关文玲, 王旭东, 李利敏, 等.长期不同施肥条件下土壤腐殖质动态变化及存在状况研究[J].干旱地区农业研究, 2002, 20(2):32-35 doi: 10.3321/j.issn:1000-7601.2002.02.008
GUAN W L, WANG X D, LI L M, et al. Study on the properties and existing state of the soil humus under different long-term fertilizations[J]. Agricultural Research in the Arid Areas, 2002, 20(2):32-35 doi: 10.3321/j.issn:1000-7601.2002.02.008
[22]BARREIRO A, FONTúRBEL M T, LOMBAO A, et al. Using phospholipid fatty acid and community level physiological profiling techniques to characterize soil microbial communities following an experimental fire and different stabilization treatments[J]. CATENA, 2015, 135:419-429 doi: 10.1016/j.catena.2014.07.011
[23]KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils:A review[J]. Soil Science, 2000, 165(4):277-304 doi: 10.1097/00010694-200004000-00001
[24]GUO L Y, WU G L, LI Y, et al. Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat-maize rotation system in Eastern China[J]. Soil and Tillage Research, 2016, 156:140-147 doi: 10.1016/j.still.2015.10.010
[25]COTCHING W E. Organic matter in the agricultural soils of Tasmania, Australia-A review[J]. Geoderma, 2018, 312:170-182 doi: 10.1016/j.geoderma.2017.10.006
[26]CAMPBELL C A, ZENTNER R P, BOWREN K E, et al. Effect of crop rotations and fertilization on soil organic matter and some biochemical properties of a thick Black Chernozem[J]. Canadian Journal of Soil Science, 1991, 71(3):377-387 doi: 10.4141/cjss91-036
[27]王旭东, 张一平, 姚永斌.长期不同施肥对土壤腐殖质性质及存在形态的影响[J].陕西农业科学, 1997, (2):6-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700501559
WANG X D, ZHANG Y P, YAO Y B. Effects of long-term different fertilization on soil humus properties and existing forms[J]. Shaanxi Journal of Agricultural Sciences, 1997, (2):6-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700501559
[28]BONIFACIO E, FALSONE G, PETRILLO M. Humus forms, organic matter stocks and carbon fractions in forest soils of northwestern Italy[J]. Biology and Fertility of Soils, 2011, 47(5):555-566 doi: 10.1007/s00374-011-0568-y
[29]关松, 窦森, 马丽娜, 等.长施马粪对暗棕壤团聚体腐殖质数量和质量的影响[J].土壤学报, 2017, 54(5):1195-1205 http://d.old.wanfangdata.com.cn/Periodical/trxb201705014
GUAN S, DOU S, MA L N, et al. Effects of long-term application of horse manure on quantity and quality of humic substance in aggregates of dark brown soil[J]. Acta Pedologica Sinica, 2017, 54(5):1195-1205 http://d.old.wanfangdata.com.cn/Periodical/trxb201705014
[30]XU J S, ZHAO B Z, CHU W Y, et al. Altered humin compositions under organic and inorganic fertilization on an intensively cultivated sandy loam soil[J]. Science of the Total Environment, 2017, 601/602:356-364 doi: 10.1016/j.scitotenv.2017.05.205
[31]韩晓萍, 陶云彬, 章哲, 等.有机无机长期配施对小麦产量和土壤有机组分的影响[J].陕西农业科学, 2018, 64(1):14-17 doi: 10.3969/j.issn.0488-5368.2018.01.004
HAN X P, TAO Y B, ZHANG Z, et al. Effects of long-term organic combined with inorganic fertilization on wheat yield and soil organic components[J]. Shaanxi Journal of Agricultural Sciences, 2018, 64(1):14-17 doi: 10.3969/j.issn.0488-5368.2018.01.004
[32]YUAN Y, DAI X Q, XU M, et al. Responses of microbial community structure to land-use conversion and fertilization in southern China[J]. European Journal of Soil Biology, 2015, 70:1-6 doi: 10.1016/j.ejsobi.2015.06.002
[33]NAYAK D R, BABU Y J, ADHYA T K. Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition[J]. Soil Biology and Biochemistry, 2007, 39(8):1897-1906 doi: 10.1016/j.soilbio.2007.02.003
[34]THIELE-BRUHN S, BLOEM J, DE VRIES F T, et al. Linking soil biodiversity and agricultural soil management[J]. Current Opinion in Environmental Sustainability, 2012, 4(5):523-528 doi: 10.1016/j.cosust.2012.06.004
[35]GIACOMETTI C, DEMYAN M S, CAVANI L, et al. Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems[J]. Applied Soil Ecology, 2013, 64:32-48 doi: 10.1016/j.apsoil.2012.10.002
[36]ZHONG W H, GU T, WANG W, et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity[J]. Plant and Soil, 2010, 326(1/2):511-522 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e723d0489103f8d810c0b5e6da008a9c
[37]DRENOVSKY R E, VO D, GRAHAM K J, et al. Soil water content and organic carbon availability are major determinants of soil microbial community composition[J]. Microbial Ecology, 2004, 48(3):424-430 doi: 10.1007/s00248-003-1063-2

相关话题/土壤 微生物 结构 农业 腐殖质