删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于改进OK模型的土壤有机质空间分布预测——以宜都市红花套镇为例

本站小编 Free考研考试/2022-01-01

段丽君,
郭龙,
张海涛,,
琚清兰
华中农业大学资源与环境学院 武汉 430070
基金项目: 国家自然科学基金项目41371227

详细信息
作者简介:段丽君, 主要研究方向为土壤环境与生态动态模拟。E-mail:duanlijun@webmail.hzau.edu.cn
通讯作者:张海涛, 主要研究方向为土壤环境科学。E-mail:hzau_zht@163.com
中图分类号:S158.9

计量

文章访问数:665
HTML全文浏览量:4
PDF下载量:708
被引次数:0
出版历程

收稿日期:2018-04-05
录用日期:2018-07-13
刊出日期:2019-01-01

Prediction of spatial distribution of soil organic matter based on improved OK models: A case study of Honghuatao Town in Yidu City

DUAN Lijun,
GUO Long,
ZHANG Haitao,,
JU Qinglan
College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
Funds: the National Natural Science Foundation of China41371227

More Information
Corresponding author:ZHANG Haitao, E-mail:hzau_zht@163.com


摘要
HTML全文
(4)(5)
参考文献(35)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:选择合适的土壤有机质(SOM)预测模型是提高区域化空间分布模拟精度的前提,也是监测土壤碳库动态变化和指导农田土壤肥力投入的基础。以湖北宜都红花套镇柑橘区为例,设置普通克里格(OK)插值的SOM结果作对照,分别建立SOM及其最显著相关辅助变量碱解氮间的建模协同克里格(COK1)、全局协同克里格(COK2)和两个融合辅助变量协同相关性的改进OK模型(CCOK1、CCOK2),探讨纳入辅助变量、改变辅助信息插值数量以及结合辅助变量协同相关性对SOM含量预测的影响。结果表明:1)OK、CCOK1和CCOK2的块基比为25%~75%,表现出中等空间自相关性,而COK1和COK2的块基比小于25%,具有强烈的空间自相关,SOM的空间异质性受结构性因素影响的比重更大。2)SOM的预测含量范围为7.38~29.03 g·kg-1,使用COK1和COK2模型插值获得的有机质空间分布较OK更为破碎,CCOK1和CCOK2的插值结果则呈连续片状分布,更符合研究区土地利用类型分布的实际情况。3)SOM的空间分布预测精度由高到低依次为CCOK1 ≈ CCOK2 > COK2 > COK1 ≈ OK,OK和COK1两者精度指标相近,COK2的拟合效果有一定改进,但CCOK1和CCOK2的相关系数(r)分别从0.10升高到0.70和0.69,均方根误差(RMSE)分别降低了15.40%和14.78%,预测精度最高。因此,本研究提出的融合辅助变量协同相关性的改进OK模型的估算效果最优且在最大程度上提高辅助信息的参与度,可为SOM预测提供参考。
关键词:土壤有机质/
辅助变量/
碱解氮/
协同相关性/
改进OK模型/
空间自相关性
Abstract:Choosing a suitable prediction model to estimate soil organic matter (SOM) content is not only a prerequisite to improve the accuracy of spatial distribution simulation, but also the basis for monitoring dynamic changes in soil carbon pool and for guiding soil fertility input in farming. In order to achieve this, a research was set up to investigate the advantages of combined traditional Ordinary Kriging (OK) interpolation and Co-Kriging (COK) interpolation in constructing a new model that integrates Cooperative Correlation of auxiliary variables with OK model (CCOK). The following three aspects were thus discussed:1) whether the inclusion of auxiliary variables had an impact on SOM prediction result; 2) what were the differences in SOM prediction results caused by changes in the number of auxiliary information interpolations; and 3) how improved SOM prediction accuracy by cooperative correlation of auxiliary variables. To address these research questions, we collected 329 soil samples from a citrus plantation in Honghuatao Town located in the north Yidu City, Hubei Province. Through physical and chemical analysis, 14 soil properties were extracted. The correlation between SOM and other soil properties were discussed based on Pearson correlation coefficient (r) and available nitrogen was chosen as model auxiliary variable with the most significant correlation with SOM. With reference of OK (the control), we constructed modeling COK (COK1), global COK (COK2) and two improved OK models (CCOK1 and CCOK2). Among the models, COK1 was a COK model which used modeling set auxiliary variables to participate in modeling. Based on COK1, COK2 changed the modeling set auxiliary variables to global auxiliary variables. CCOK1 and CCOK2 represented the OK interpolation models of two forms of functions constructed by the target variables and its auxiliary variables. Some of the results obtained were as follows:1) the range of the nugget/sill proportions of OK, CCOK1 and CCOK2 were 25%-75%, which belonged to medium spatial autocorrelation. However, the nugget/sill proportions of COK1 and COK2 were less than 25%, belonging to strong spatial autocorrelation. It then showed that the spatial variability of SOM as cross-variance function with auxiliary variables was more easily recognized by semi-variogram models. 2) The predicted SOM in the study area was within 7.38-29.03·kg-1. Compared with OK interpolation, the strong spatial autocorrelation of COK1 and COK2 meant that the spatial distribution of SOM was even more fragmented. Furthermore, plots of CCOK1 and CCOK2 predictions were flaky, with digital mapping results of SOM with higher or lower values, which was more consistent with the actual distribution of land use in the study area. 3) The accuracies of COK1 and OK were similar, but that of COK2 was higher than the above two. Nevertheless, the correlation coefficients (r) of CCOK1 and CCOK2 increased from 0.10 to 0.70 and 0.69, with root mean square errors (RMSE) decreasing by 15.40% and 14.78%, respectively. Finally, the overall accuracy of SOM digital soil mapping was CCOK1 ≈ CCOK2 > COK2 > COK1 ≈ OK. This indicated that CCOK model minimized error between measured and predicted values in SOM prediction. Thus, the synergy of combined SOM estimation and auxiliary variables was a better correlation than the addition of only auxiliary variables or changing the amount of auxiliary variables. The improved OK model proposed in this study improved the maximum participation of auxiliary information, thereby providing a reliable reference for SOM prediction.
Key words:Soil organic matter/
Auxiliary variable/
Available nitrogen/
Cooperative correlation/
Improved OK models/
Spatial autocorrelation

HTML全文


图1研究区地理位置、土地利用概况及土壤样点分布
Figure1.Geographical location, land use profile and soil sample distribution in the study area


下载: 全尺寸图片幻灯片


图2研究区不同克里格插值模型的土壤有机质半方差函数图
OK为普通克里格; COK1和COK2分别为协同克里格和全局协同克里格; CCOK1和CCOK2为两个融合辅助变量协同相关性的改进OK。
Figure2.Semivariograms of soil organic matter with different Kriging interpolation models in the study area
OK: ordinary Kriging; COK1 and COK2 are modeling Cokriging and global Cokriging; CCOK1 and CCOK2 are two improved OK models with cooperative correlation of auxiliary variables.


下载: 全尺寸图片幻灯片


图3不同克里格插值模型对研究区土壤有机质空间分布预测的异同
OK为普通克里格; COK1和COK2分别为协同克里格和全局协同克里格; CCOK1和CCOK2为两个融合辅助变量协同相关性的改进OK。
Figure3.Similarities and differences of predicted spatial distribution of soil organic matter (SOM) by different Kriging interpolation models in the study area
OK: ordinary Kriging; COK1 and COK2 are modeling Cokriging and global Cokriging; CCOK1 and CCOK2 are two improved OK models with cooperative correlation of auxiliary variables.


下载: 全尺寸图片幻灯片


图4不同克里格插值模型对研究区土壤有机质预测的精度指标对比
OK为普通克里格; COK1和COK2分别为协同克里格和全局协同克里格; CCOK1和CCOK2为两个融合辅助变量协同相关性的改进OK。
Figure4.Comparison of accuracy indexes of predicted soil organic matter content by different Kriging interpolation models in the study area
OK: ordinary Kriging; COK1 and COK2 are modeling Cokriging and global Cokriging; CCOK1 and CCOK2 are two improved OK models with cooperative correlation of auxiliary variables.


下载: 全尺寸图片幻灯片

表1研究区样点土壤属性数据获取内容及方法
Table1.Contents and obtaining methods of attribute data of soil samples in the study area
变量名称
Variable name
获取方法
Method
有机质Soil organic matter (g·kg-1) 重铬酸钾容量法-外加热法Potassium dichromate volumetric method - external heating method
酸碱度pH 水浸提-电位计法Water extraction - potentiometer method
全氮Total nitrogen (g·kg-1) 半微量开氏法Semi-micro Kjeldahl method
全磷Total phosphorus (g·kg-1) 氢氧化钠熔融-钼锑抗比色法Sodium hydroxide melting - molybdenum antimony anti-colorimetric method
全钾Total potassium (g·kg-1) 氢氧化钠熔融-火焰光度法Sodium hydroxide melting - flame photometry
全铜Total bronze (mg·kg-1) 原子吸收光谱法Atomic absorption spectroscopy
碱解氮Available nitrogen (mg·kg-1) 碱解扩散法Alkaline diffusion method
速效磷Available phosphorus (mg·kg-1) 0.5 mol·L-1碳酸氢钠法0.5 mol·L-1 sodium bicarbonate method
速效钾Available potassium (mg·kg-1) 醋酸铵浸提-火焰光度法Ammonium acetate extraction - flame photometry
有效锌Available zinc (mg·kg-1) DTPA-TEA浸提-原子吸收光谱法DTPA-TEA extraction - atomic absorption spectroscopy
有效铁Available iron (mg·kg-1) DTPA溶液浸提-原子吸收光谱法DTPA extraction - atomic absorption spectroscopy
阳离子交换量Cation exchange capacity (cmol·kg-1) 乙酸钠-火焰光度法Sodium acetate - flame photometry
交换性钙Exchangeable calcium (cmol·kg-1) 乙酸铵交换-原子吸收光谱法Ammonium acetate exchange - atomic absorption spectroscopy
交换性镁Exchangeable magnesium (cmol·kg-1)


下载: 导出CSV
表2研究区土壤有机质含量的基本统计特征
Table2.Basic statistical characteristics of soil organic matter content of the study area
样本量
Simple size
平均值
Mean (g·kg-1)
最小值
Min (g·kg-1)
最大值
Max (g·kg-1)
极差
Range (g·kg-1)
标准差
SD (g·kg-1)
变异系数
CV (%)
偏度系数
Skewness
峰度系数
Kurtosis
正态分布检验
K-S
分布类型
Type of distribution
全部数据
All dataset
329 16.97 6.07 29.18 23.11 4.22 24.87 0.05 0.02 0.800 正态
Normality
建模集
Calibration dataset
263 17.24 7.18 29.18 22.00 4.09 23.72 0.07 -0.08 0.949 正态
Normality
验证集
Validation dataset
66 15.91 6.07 28.67 22.60 4.60 28.91 0.14 0.30 0.960 正态
Normality


下载: 导出CSV
表3研究区土壤有机质与影响因子的相关性
Table3.Correlation between soil organic matter and its influencing factors in the study area
土壤有机质
Soil organic matter
碱解氮
Available nitrogen
有效铁
Available iron
交换性镁
Exchangeable magnesium
全氮
Total nitrogen
阳离子交换量
Cation exchange capacity
速效钾
Available potassium
全磷
Total phosphorus
土壤有机质
Soil organic matter
1.000 0.815** 0.483** -0.361** 0.266** -0.232** -0.155* 0.141*
***分别表示在0.01和0.05水平(双侧)上显著。** and * indicate significant correlation at 0.01 and 0.05 levels (bilateral), respectively.


下载: 导出CSV
表4研究区土壤有机质、碱解氮空间自相关与交互相关分析
Table4.Spatial autocorrelation and cross-correlation analysis of soil organic matter and available nitrogen in the study area
莫兰指数
Moran’s I
P
P-value
Z得分
Z-value
土壤有机质(SOM)
Soil organic matter
0.11 0.02 2.14
碱解氮(AN)
Available nitrogen
0.08 0.07 1.48
SOM/AN 0.19 0.00 3.47
AN/SOM 0.15 0.00 2.68


下载: 导出CSV
表5研究区不同克里格插值模型的土壤有机质半方差模型参数
Table5.Parameters of soil organic matter semi-variance models with different Kriging interpolation models in the study area
插值方法
Kriging interpolation method
拟合模型
Model
模型参数
Model parameter
预测误差
Prediction error
块金值
Nugget (C0)
拱高
Partial sill (C)
基台值
Sill (C0+C)
块基比
Proportion [C0/(C0+C), %]
变程
Range (m)
步长
Lag (m)
平均值
Mean (g?kg-1)
均方根误差
RMSE(g?kg-1)
OK 高斯模型Gaussian 10.14 6.12 16.26 62.36 194.03 27.13 0.02 4.22
COK1 球状模型Spherical 0.00 16.50 16.50 0.00 194.03 26.72 -0.05 2.40
COK2 指数模型Exponential 4.00 12.74 16.74 23.89 203.51 28.10 -0.01 2.73
CCOK1 指数模型Exponential 0.02 0.01 0.03 66.67 3 627.41 302.28 0.00 0.17
CCOK2 指数模型Exponential 0.21 0.43 0.64 32.81 194.03 31.54 0.01 0.85
OK为普通克里格; COK1和COK2分别为协同克里格和全局协同克里格; CCOK1和CCOK2为两个融合辅助变量协同相关性的改进OK。OK: ordinary Kriging; COK1 and COK2 are modeling Cokriging and global Cokriging; CCOK1 and CCOK2 are two improved OK models with cooperative correlation of auxiliary variables.


下载: 导出CSV

参考文献(35)
[1]WANG K, ZHANG C R, LI W D. Comparison of geographically weighted regression and regression kriging for estimating the spatial distribution of soil organic matter[J]. GIScience & Remote Sensing, 2012, 49(6):915-932 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=24beb45bd723ef5671d43ab9cdd22840
[2]WALLACE A. Soil organic matter is essential to solving soil and environmental problems[J]. Communications in Soil Science and Plant Analysis, 2008, 25(1/2):15-28 doi: 10.1080/00103629409368999
[3]黄昌勇, 徐建明.土壤学[M].第3版.北京:中国农业出版社, 2010:29-30
HUANG C Y, XU J M. Soil Science[M]. 3rd ed. Beijing:China Agriculture Press, 2010:29-30
[4]马泉来, 高凤杰, 张志民, 等.我国东北黑土丘陵区小流域土壤有机质空间分布模拟[J].环境科学研究, 2016, 29(3):382-390 http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201603009
MA Q L, GAO F J, ZHANG Z M, et al. Simulation of spatial distribution of soil organic matter in a mollisol watershed in Northeastern China[J]. Research of Environmental Sciences, 2016, 29(3):382-390 http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201603009
[5]WANG K, ZHANG C R, LI W D, et al. Mapping soil organic matter with limited sample data using geographically weighted regression[J]. Journal of Spatial Science, 2014, 59(1):91-106 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8fa69f60e294e08d37f1c11e747c694b
[6]鲁剑巍, 陈防, 王富华, 等.湖北省柑橘园土壤养分分级研究[J].植物营养与肥料学报, 2002, 8(4):390-394 doi: 10.3321/j.issn:1008-505X.2002.04.002
LU J W, CHEN F, WANG F H, et al. Study of classification of the soil nutrient status of citrus orchard in Hubei Province[J]. Plant Nutrition and Fertilizer Science, 2002, 8(4):390-394 doi: 10.3321/j.issn:1008-505X.2002.04.002
[7]叶荣生.有机肥对柑橘营养及生长的影响[D].重庆: 西南大学, 2013: 16-18
YE R S. Effect of organic fertilizer on nutrition and growth of citrus[D]. Chongqing: Southwest University, 2013: 16-18
[8]SCULL P, FRANKLIN J, CHADWICK O A, et al. Predictive soil mapping:A review[J]. Progress in Physical Geography:Earth and Environment, 2003, 27(2):171-197 doi: 10.1191/0309133303pp366ra
[9]LI Y. Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information?[J]. Geoderma, 2010, 159(1/2):63-75 http://www.sciencedirect.com/science/article/pii/S0016706110002089
[10]LI S C, ZHAO Z Q, XIE M M, et al. Investigating spatial non-stationary and scale-dependent relationships between urban surface temperature and environmental factors using geographically weighted regression[J]. Environmental Modelling & Software, 2010, 25(12):1789-1800 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221370173/
[11]GUO L, ZHAO C, ZHANG H T, et al. Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology[J]. Geoderma, 2017, 285:280-292 doi: 10.1016/j.geoderma.2016.10.010
[12]XIAO Y, GU X M, YIN S Y, et al. Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, Northwest China[J]. Springerplus, 2016, 5(1):425 doi: 10.1186/s40064-016-2073-0
[13]SINGH A, SANTRA P, KUMAR M, et al. Spatial assessment of soil organic carbon and physicochemical properties in a horticultural orchard at arid zone of India using geostatistical approaches[J]. Environmental Monitoring and Assessment, 2016, 188(9):529 doi: 10.1007/s10661-016-5522-x
[14]李增兵, 赵庚星, 赵倩倩, 等.县域耕地地力评价中土壤养分空间插值方法的比较研究[J].中国农学通报, 2012, 28(20):230-236 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201220043
LI Z B, ZHAO G X, ZHAO Q Q, et al. Comparison of spatial interpolation methods for soil nutrients in cultivated land fertility evaluation[J]. Chinese Agricultural Science Bulletin, 2012, 28(20):230-236 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201220043
[15]LIU Y L, GUO L, JIANG Q H, et al. Comparing geospatial techniques to predict SOC stocks[J]. Soil and Tillage Research, 2015, 148:46-58 doi: 10.1016/j.still.2014.12.002
[16]刘爱利, 王培法, 丁园圆.地统计学概论[M].北京:科学出版社, 2012:154-155
LIU A L, WANG P F, DING Y Y. Introduction to Geostatistics[M]. Beijing:Science Press, 2012:154-155
[17]侯景儒, 黄竞先.地质统计学的理论与方法[M].北京:地质出版社, 1990:59-60
HOU J R, HUANG J X. Theory and Methods of Geostatistical[M]. Beijing:Geological Publishing House, 1990:59-60
[18]史舟, 李艳.地统计学在土壤学中的应用[M].北京:中国农业出版社, 2006:85-86
SHI Z, LI Y. Geostatistics and its Application in Soil Science[M]. Beijing:China Agriculture Press, 2006:85-86
[19]苏晓燕, 赵永存, 杨浩, 等.不同采样点数量下土壤有机质含量空间预测方法对比[J].地学前缘, 2011, 18(6):34-40 http://d.old.wanfangdata.com.cn/Periodical/dxqy201106007
SU X Y, ZHAO Y C, YANG H, et al. A comparison of predictive methods for mapping the spatial distribution of soil organic matter content with different sampling densities[J]. Earth Science Frontiers, 2011, 18(6):34-40 http://d.old.wanfangdata.com.cn/Periodical/dxqy201106007
[20]YANG Q Y, LUO W Q, JIANG Z C, et al. Improve the prediction of soil bulk density by cokriging with predicted soil water content as auxiliary variable[J]. Journal of Soils and Sediments, 2016, 16(1):77-84 doi: 10.1007/s11368-015-1193-4
[21]杨顺华, 张海涛, 陈家赢, 等.平原丘陵过渡带土壤有机碳空间分布及环境影响[J].中国环境科学, 2015, 35(12):3728-3736 doi: 10.3969/j.issn.1000-6923.2015.12.026
YANG S H, ZHANG H T, CHEN J Y, et al. The spatial variability of soil organic carbon in plain-hills transition belt and its environmental impact[J]. China Environmental Science, 2015, 35(12):3728-3736 doi: 10.3969/j.issn.1000-6923.2015.12.026
[22]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000:30-237
BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing:China Agriculture Press, 2000:30-237
[23]司涵, 张展羽, 吕梦醒, 等.小流域土壤氮磷空间变异特征分析[J].农业机械学报, 2014, 45(3):90-96 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201403016
SI H, ZHANG Z Y, LU M X, et al. Spatial variability of soil nitrogen and phosphorus in small watershed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(3):90-96 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201403016
[24]张晗, 赵小敏, 欧阳真程, 等.多尺度下的南方山地丘陵区耕地质量空间自相关分析——以江西省黎川县为例[J].中国生态农业学报, 2018, 26(2):263-273 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0212&flag=1
ZHANG H, ZHAO X M, OUYANG Z C, et al. Multi-scale spatial autocorrelation analysis of cultivated land quality in China's southern hillside areas:A case study of Lichuan County, Jiangxi Province[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2):263-273 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0212&flag=1
[25]KUMAR S. Estimating spatial distribution of soil organic carbon for the Midwestern United States using historical database[J]. Chemosphere, 2015, 127:49-57 doi: 10.1016/j.chemosphere.2014.12.027
[26]杨其坡, 武伟, 刘洪斌.基于地形因子和随机森林的丘陵区农田土壤有效铁空间分布预测[J].中国生态农业学报, 2018, 26(3):422-431 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0311&flag=1
YANG Q P, WU W, LIU H B. Prediction of spatial distribution of soil available iron in a typical hilly farmland using terrain attributes and random forest model[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3):422-431 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0311&flag=1
[27]孙冬梅, 陈学昌.黑龙江省土壤有机质与全氮和碱解氮的相关分析[J].黑龙江八一农垦大学学报, 1995, 8(2):57-60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500216431
SUN D M, CHEN X C. Correlation analysis of soil organic matter, total nitrogen and available nitrogen in Heilongjiang Province[J]. Journal of HAFLRU, 1995, 8(2):57-60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500216431
[28]罗由林, 李启权, 王昌全, 等.川中丘陵县域土壤碳氮比空间变异特征及其影响因素[J].应用生态学报, 2015, 26(1):177-185 http://d.old.wanfangdata.com.cn/Periodical/yystxb201501024
LUO Y L, LI Q Q, WANG C Q, et al. Spatial variability of soil C/N ratio and its influence factors at a county scale in hilly area of Mid-Sichuan Basin, Southwest China[J]. Chinese Journal of Applied Ecology, 2015, 26(1):177-185 http://d.old.wanfangdata.com.cn/Periodical/yystxb201501024
[29]许小伟, 樊剑波, 陈晏, 等.不同有机无机肥配施比例对红壤旱地花生产量、土壤速效养分和生物学性质的影响[J].生态学报, 2014, 34(18):5182-5190 http://d.old.wanfangdata.com.cn/Periodical/stxb201418006
XU X W, FAN J B, CHEN Y, et al. Effects of combined application of organic and chemical fertilizers on the yield of peanut, soil available nutrient and biological properties in the upland red soil in subtropical China[J]. Acta Ecologica Sinica, 2014, 34(18):5182-5190 http://d.old.wanfangdata.com.cn/Periodical/stxb201418006
[30]YATES S R, WARRICK A W. Estimating soil water content using Cokriging[J]. Soil Science Society of America Journal, 1987, 51(1):23-30 doi: 10.2136/sssaj1987.03615995005100010005x
[31]秦鱼生, 涂仕华, 冯文强, 等.成都平原水旱轮作种植下土壤养分特性空间变异研究[J].土壤学报, 2008, 45(2):355-359 doi: 10.3321/j.issn:0564-3929.2008.02.023
QIN Y S, TU S H, FENG W Q, et al. Spatial variability of soil nutrient characteristics under paddy-upland crop rotation in Chengdu Plain[J]. Acta Pedologica Sinica, 2008, 45(2):355-359 doi: 10.3321/j.issn:0564-3929.2008.02.023
[32]KUMAR S, LAL R, LIU D S. A geographically weighted regression kriging approach for mapping soil organic carbon stock[J]. Geoderma, 2012, 189/190:627-634 doi: 10.1016/j.geoderma.2012.05.022
[33]ERNER Y, COHEN A, MAGEN H. Fertilizing for High Yield Citrus[M]. Basel, Switzerland:International Potash Institute, 1999:31-35
[34]LAI L, HUANG X J, YANG H, et al. Carbon emissions from land-use change and management in China between 1990 and 2010[J]. Science Advances, 2016, 2(11):e1601063 doi: 10.1126/sciadv.1601063
[35]赵业婷, 常庆瑞, 李志鹏, 等.基于Cokriging的耕层土壤全氮空间特征及采样数量优化研究[J].土壤学报, 2014, 51(2):415-422 http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201402026.htm
ZHAO Y T, CHANG Q R, LI Z P, et al. Study on spatial distribution of total nitrogen in arable soil layer and optimization of number of soil samples for the study based on Cokriging[J]. Acta Pedologica Sinica, 2014, 51(2):415-422 http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201402026.htm

相关话题/空间 土壤 北京 交换 图片