删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同施肥方式下土壤氨氧化细菌的群落特征

本站小编 Free考研考试/2022-01-01

任灵玲,
李秀玲,
刘灵芝,
沈阳农业大学土地与环境学院/土肥资源高效利用国家工程实验室/农业部东北耕地保育重点实验室 沈阳 110866
基金项目: 辽宁省高等学校基本科研项目LSNZD201705
国家自然科学基金项目31101504

详细信息
作者简介:任灵玲, 主要研究方向为农业环境保护。E-mail:1464697578@qq.com
通讯作者:刘灵芝, 主要研究方向为土壤微生物。E-mail:liulingzhi2006@163.com
中图分类号:S147.2

计量

文章访问数:832
HTML全文浏览量:4
PDF下载量:620
被引次数:0
出版历程

收稿日期:2018-07-08
录用日期:2018-09-30
刊出日期:2019-01-01

Community characteristics of soil ammonia oxidizing bacteria after different fertilizer applications

REN Lingling,
LI Xiuling,
LIU Lingzhi,
College of Land and Environment, Shenyang Agricultural University/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources/Arable Land Conservation in Northeast China, Ministry of Agriculture, Shenyang 110866, China
Funds: the Basic Research Projects of Liaoning Higher Education InstitutionsLSNZD201705
the National Natural Science Foundation of China31101504

More Information
Corresponding author:LIU Lingzhi, E-mail:liulingzhi2006@163.com


摘要
HTML全文
(3)(5)
参考文献(25)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为了研究长期定位施肥对棕壤中氨氧化细菌(ammonia-oxidizing bacteria,AOB)种群结构多样性和垂直分布特征的影响,本研究采用化学分析、荧光定量PCR(qPCR)和变性梯度凝胶电泳(PCR-DGGE)技术,针对沈阳农业大学试验区不同施肥方式(不施肥、低量无机氮肥、高量无机氮肥、无机氮肥与有机肥配施)下不同土壤深度(0~20 cm、20~40 cm、40~60 cm)的土壤理化性质、AOB丰度及种群多样性进行分析,比较不同施肥方式对土壤AOB种群的影响。结果显示,与不施肥相比,施肥会降低土壤pH,增加土壤铵态氮(70.5%~939.21%)和硝态氮(253.20%~625.48%)含量。随土壤深度增加,土壤pH升高,铵态氮和硝态氮含量除低量无机氮肥处理外,多呈降低趋势。土壤增施氮肥可提高AOB丰度,降低总细菌丰度。其中,0~20 cm土层中AOB丰度较高,且高量无机氮肥处理的AOB数量最高,为9.65×105拷贝数·g-1(干土)。DGGE图谱分析显示,不同处理下,AOB群落结构多样性指数存在明显差异(P < 0.05),各多样性指数均在表层(0~20 cm)最高,增施氮肥则显著降低AOB的多样性。聚类分析表明,4个施肥处理中,高量无机氮肥处理聚为一类,其他处理则因土壤深度不同而异;3个土壤深度中,除不施肥处理外,所有施肥处理均表现为0~20 cm、20~40 cm土层发生聚类,40~60 cm则明显与其他两层分开。冗余梯度分析(RDA)显示,硝态氮(P=0.027)是造成影响AOB群落结构差异的主要原因。上述研究结果表明,长期定位施肥土壤AOB的数量和群落结构多样性受施肥方式显著影响,并表现出明显的垂直分布特征。与无机氮肥相比,有机无机配施处理有助于改善土壤pH,维持不同土壤深度下AOB群落结构多样性。
关键词:棕壤/
施肥方式/
氮肥/
氨氧化细菌(AOB)/
群落结构/
土壤深度
Abstract:Studies about ammonia oxidizing bacteria (AOB) have mainly focused on the topsoil and little has remained known about community distribution in the subsoil. There therefore has remained the need to understand the impact of long-term fertilization on AOB abundance, community structure and vertical distribution in order to deepen the exploration of microbial mechanisms of nitrogen (N) transformation and to develop sound fertilization regimes for sustainable soil quality in the study area and beyond. Thus, a long-term (1987-2015) fertilization experiment was set up in the brown earth in Shenyang Agriculture University, Liaoning Province, China. Four treatments were set, no fertilizer (CK), low N fertilizer (N2), high N fertilizer (N4) and low N fertilizer plus organic mature (M2N2). Soil samples were collected at three different depths (0-20 cm, 20-40 cm and 40-60 cm). The soil physico-chemical properties, 16S rDNA and AOB-amoA gene abundance (real-time PCR, qPCR) and AOB community structure and diversity (denaturing gradient gel electrophoresis, PCR-DGGE) were investigated. While soil pH decreased, the content of soil ammonium N (NH4+-N) increased by 70.5%-939.21% and that of nitrate N (NO3--N) by 253.20%-625.48% in the fertilization treatments over CK treatment. Also while soil pH increased, the contents of soil NH4+-N and NO3--N decreased with increasing soil depth, except for N2 treatment. The results of qPCR showed that fertilization treatments increased AOB abundance, but decreased total bacterial abundance compared to CK treatment. AOB amoA gene abundance was generally higher at the 0-20 cm than at the 20-40 cm and 40-60 cm soil layers. AOB abundance peaked in the N4 treatment, with 9.65×105 copies per g dry soil. The Shannon diversity (H), evenness (EH) and richness (S) indexes of AOB from DGGE fingerprints responded increasingly significantly (P < 0.05) to fertilization regimes and soil-fertilization interactions with increasing soil depth. Although the tested diversity indexes were highest in the surface soil (0-20 cm), N fertilizer treatments (N2, N4 and M2N2) significantly reduced AOB diversity indexes. Based on cluster analysis of the DGGE fingerprints, AOB community structure in the soil varied with fertilization treatments and soil depth. Three soil depths of high N fertilizer (N4) treatment was grouped together clearly. For other treatments, it was grouped according to soil depth with no discernible difference in AOB community structure among CK, N2 and M2N2 treatments. The 0-20 cm and 20-40 cm deep soils under fertilizer treatments formed single cluster with no less than 57% similarity, while 40-60 cm soil layer formed another cluster. Redundant gradient analysis (RDA) further showed that NO3--N (P=0.027) was the key factor that shaped AOB community under different fertilization treatments. The results indicated that AOB number and community structure diversity after long-term fertilization significantly varied with fertilization treatment, and showed obvious vertical distribution characteristics. Compared with chemical fertilizer (N2 and N4) application, organic manure plus chemical fertilizer (M2N2) more favorably improved soil pH and maintained AOB community diversity in the subsoil.
Key words:Brown soil/
Fertilization regime/
Nitrogen fertilizer/
Ammonia oxidizing bacteria (AOB)/
Community structure/
Soil depth

HTML全文


图1不同施肥处理下不同土层土壤细菌(A)和氨氧化细菌(AOB, B)基因丰度特征
CK、N2、N4和M2N2分别为不施肥、施低量氮肥、施高量氮肥和有机无机肥配施处理。图中不同字母表示不同施肥处理不同土层间差异显著(P < 0.05)。
Figure1.Abundances of soil bacteria (A) and ammonia-oxidizing bacteria (AOB, B) at different soil depths under different fertilization treatments
CK: no fertilizer; N2: low N fertilizer; N4: high N fertilizer; M2N2: organic manure combined with chemical fertilizer. Different letters above the bars indicate significant differences among different treatments at different soil depths based on protected LSD test (P < 0.05).


下载: 全尺寸图片幻灯片


图2不同施肥处理下不同土层土壤氨氧化细菌(AOB)16S rDNA基因PCR-DGGE电泳图谱(A)和聚类分析(B)
CK、N2、N4和M2N2分别为不施肥、施低量氮肥、施高量氮肥和有机无机肥配施处理。L1、L2和L3分别代表 0~20 cm、20~40 cm和40~60 cm土层。
Figure2.PCR-DGGE fingerprinting (A) and cluster analysis (B) of ammonia-oxidizing bacteria (AOB) 16S rDNA gene at different soil depths under different fertilization treatments
CK: no fertilizer; N2: low N fertilizer; N4: high N fertilizer; M2N2: organic manure combined with chemical fertilizer. L1, L2 and L3 represent soil depths of 0-20 cm, 20-40 cm and 40-60 cm, respectively.


下载: 全尺寸图片幻灯片


图3土壤氨氧化细菌与环境因子的冗余分析
1、2和3为不施肥处理的0~20 cm、20~40 cm和40~60 cm土层; 4、5和6为施低量氮肥N2的0~20 cm、20~40 cm和40~60 cm土层; 7、8和9为施高量氮肥处理的0~20 cm、20~40 cm和40~60 cm土层; 10、11和12为M2N2有机无机肥配施处理的0~20 cm、20~40 cm和40~60 cm土层。
Figure3.RDA analysis of ammonia oxidizing bacteria and soil environmental factors
In the figure, 1, 2 and 3 indicate 0-20 cm, 20-40 cm and 40-60 cm soil layers of no fertilizer treatment, respectively. 4, 5 and 6 indicate 0-20 cm, 20-40 cm and 40-60 cm soil layers of low N fertilizer treatment, respectively. 7, 8 and 9 indicate 0-20 cm, 20-40 cm and 40-60 cm soil layers of high N fertilizer treatment, respectively. 10, 11 and 12 indicate 0-20 cm, 20-40 cm and 40-60 cm soil layers of organic manure combined with chemical fertilizer treatment, respectively.


下载: 全尺寸图片幻灯片

表1细菌16S rDNA和氨氧化细菌(AOB)定量PCR扩增引物及反应条件
Table1.Primers and conditions of real-time PCR of ammonia-oxidizing bacteria (AOB) and bacterial 16S rDNA
微生物
Microbe
引物序列
Primer sequence (5';-3';)
片段长度
Fragment length (bp)
qPCR程序
Thermal profile for real-time PCR
AOB amoA-1F: GGGGTTTCTACTGGTGGT
amoA-2R: CCCCTCKGSAAAGCCTTCTTC
466 94 ℃预变性5 min, 94 ℃变性30 s, 53 ℃退火30 s, 72 ℃延伸30 s; 45个循环。
94 ℃ 5 min, 94 ℃ 30 s, 53 ℃ 30 s, 72 ℃ 30 s; 45 cycles.
16S rDNA 515F: GTGCCAGCMGCCGCGG
907R: CCGTCAATTCMTTTRAGTTT
392 95 ℃预变性5 min, 95 ℃变性15 s, 55 ℃退火30 s, 72 ℃延伸30 s; 45个循环。
95 ℃ 5 min, 95 ℃ 15 s, 55 ℃ 30 s, 72 ℃ 30 s; 45 cycles.


下载: 导出CSV
表2用于PCR-DGGE的扩增引物及反应程序
Table2.Primers and PCR thermal profiles used for the detection of 16S rDNA gene fragments
引物名称
Primer name
引物序列(5';-3';)
Primer sequence (5';-3';)
PCR程序
Thermal profile for PCR
参考文献
Reference
AOB 8F TCCGGTTGATCCTGCC 94 ℃预变性4 min; 94 ℃变性1 min, 58 ℃退火1 min, 72 ℃延伸90 s, 35个循环; 72 ℃终延伸10 min。
94 ℃ 4 min; 94 ℃ 1 min, 58 ℃ 1 min, 72 ℃ 90 s, 35 cycles, 72 ℃ 10 min.
[12]
1492R GGCTACCTTGTTACGACTT
CTO189F GGAGGAAAGTAGGGGATCG 95 ℃预变性5 min; 94 ℃变性30 s, 55 ℃退火30 s, 72 ℃延伸1 min, 10个循环; 92 ℃变性30 s, 55 ℃退火30 s, 72 ℃延伸1 min, 25个循环; 72 ℃终延伸10 min。 [13]
CTO654R CTAGCYTTGTAGTTTCAAACGC
95 ℃ 5 min; 94 ℃ 30 s, 55 ℃ 30 s, 72 ℃ 1min, 10 cycles; 92 ℃ 30 s, 55 ℃ 30 s, 72 ℃ 1 min, 25 cycles. 72 ℃ 10 min. [14]
GC-341F CGCCCGCCGCGCGCGGCGGGCGGGGCGGG
GGCACGGGGGGCCTACGGGAGGCAGCAGG
95 ℃预变性4 min; 94 ℃变性1 min, 60 ℃退火30 s, 72 ℃延伸2 min, 9个循环; 94 ℃变性30 s, 60 ℃退火
519R TATTACCGCGGCTGCTG 30 s, (-0.5 ℃/循环), 72 ℃延伸2 min, 9个循环; 94 ℃变性30 s, 55 ℃退火30 s, 72 ℃延伸2 min, 9个循环; 72 ℃终延伸8 min。
95 ℃ 4 min; 94 ℃ 1 min, 60 ℃ 30 s, 72 ℃ 2 min, 9 cycles; 94 ℃ 30 s, 60 ℃ 30 s, (-0.5 ℃/cycle), 72 ℃ 2 min, 9 cycles; 94 ℃ 30 s, 55 ℃ 30 s, 72 ℃ 2 min, 9 cycles; 72 ℃ 8 min.


下载: 导出CSV
表3不同施肥处理不同深度土壤理化性质的变化
Table3.Vertical variations of the soil physico-chemical properties under different fertilization treatments
处理
Treatment
土层深度
Soil depth (cm)
pH NH4+-N
(mg·kg-1)
NO3--N
(mg·kg-1)
硝化强度
Nitrifying capacity (mg·kg-1·h-1)
CK 0~20 5.65±0.20b 0.57±0.01h 9.64±0.02h 2.2±0.05c
20~40 5.71±0.05b 0.51±0.02i 6.24±0.01j 3.2±0.11b
40~60 5.60±0.05bc 0.63±0.01g 6.66±0.02i 1.6±0.03d
N2 0~20 4.95±0.03e 0.82±0.02f 27.46±0.14e 1.5±0.03cd
20~40 5.41±0.15d 0.84±0.04e 44.19±0.14b 3.4±0.12b
40~60 4.99±0.07e 1.34±0.05b 43.67±0.24c 1.5±0.05cd
N4 0~20 4.55±0.06f 5.30±0.04a 45.27±0.30a 5.2±0.05a
20~40 5.47±0.03cd 0.89±0.04c 43.87±0.13c 1.2±0.06d
40~60 5.36±0.04d 0.87±0.07cd 42.29±0.27d 0.2±0.03e
M2N2 0~20 5.47±0.14cd 0.87±0.03d 22.04±0.06f 5.7±0.03a
20~40 5.96±0.06a 0.48±004j 14.15±0.03f 5.5±0.05a
40~60 5.99±0.02a 0.57±0.05h 14.00±0.03g 0.5±0.06de
CK、N2、N4和M2N2分别为不施肥、施低量氮肥、施高量氮肥和有机无机肥配施处理。表中数据为平均值±标准误差, 每列数据标有不同字母表示Duncan检测下差异显著(P < 0.05)。CK: no fertilizer; N2: low N fertilizer; N4: high N fertilizer; M2N2: organic manure combined with chemical fertilizer. Data are mean ± standard deviation (n=3). In each column, data marked with different letters are significantly different according to Duncan test (P < 0.05).


下载: 导出CSV
表4不同施肥处理下不同土层土壤氨氧化细菌(AOB)的Shannon多样性指数(H)、均匀度(EH)和丰富度(S)
Table4.Shannon diversity index (H), evenness (EH) and richness (S) of ammonia-oxidizing bacteria (AOB) at different soil depths under different fertilization treatments
施肥处理
Fertilizer treatment
Shannon多样性指数
Shannon’s diversity index (H)
均匀度指数
Evenness (EH)
丰富度
Richness (S)
0~20 cm 20~40 cm 40~60 cm 0~20 cm 20~40 cm 40~60 cm 0~20 cm 20~40 cm 40~60 cm
CK 1.13a 0.9d 0.98c 0.37a 0.29d 0.31c 14a 8d 10c
N2 0.76f 0.45h 0.72g 0.25f 0.15h 0.23g 7e 6f 10c
N4 1.04b 0.99c 0.76f 0.34b 0.32d 0.25f 12b 10c 6ef
M2N2 0.89d 0.89de 0.86e 0.29e 0.29e 0.28e 8d 8d 8d
CK、N2、N4和M2N2分别为不施肥、施低量氮肥、施高量氮肥和有机无机肥配施处理。表中数据为平均值±标准误差, 每列数据标有不同字母表示Duncan检测下差异显著(P < 0.05)。CK: no fertilizer; N2: low N fertilizer; N4: high N fertilizer; M2N2: organic manure combined with chemical fertilizer. Data are mean ± standard deviation (n=3). In each column, data marked with different letters are significantly different according to Duncan test (P < 0.05).


下载: 导出CSV
表5土壤理化因子与氨氧化细菌(AOB)群落间的相关性
Table5.Pearson's correlation coefficients between physicochemical properties and ammonia oxidizers community of soil
NH4+-N NO3--N pH 硝化强度Nitrifying capacity
AOB Shannon多样性指数Shannon’s diversity index 0.281 -0.403* 0.058 0.086
均匀度指数Evenness 0.231 -0.447** 0.093 0.073
丰富度Richness 0.631** 0.258 -0.376* 0.240
log amoA 0.384* 0.071 -0.381* 0.216
细菌Bacteria log 16S rDNA 0.064 -0.586** 0.341* 0.142
Log amoA: amoA基因拷贝数的对数; log16S rDNA: 16S rDNA基因拷贝数的对数。*和**分别表示P < 0.05和P < 0.01水平显著相关。Log amoA: logarithm of number of amoA gene copies; Log16S rDNA: logarithm of number of 16S rDNA copies. * and ** mean significant correlation at 0.05 and 0.01 levels, respectively.


下载: 导出CSV

参考文献(25)
[1]LI Y Y, CHAPMAN S J, NICOL G W, et al. Nitrification and nitrifiers in acidic soils[J]. Soil Biology and Biochemistry, 2018, 116:290-301 doi: 10.1016/j.soilbio.2017.10.023
[2]CHEN X, ZHANG L M, SHEN J P, et al. Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil[J]. Biology and Fertility of Soils, 2011, 47(3):323-331 doi: 10.1007/s00374-011-0542-8
[3]WU Y C, LU L, WANG B Z, et al. Long-term field fertilization significantly alters community structure of ammonia-oxidizing bacteria rather than archaea in a paddy soil[J]. Soil Science Society of America Journal, 2011, 75(4):1431-1439 doi: 10.2136/sssaj2010.0434
[4]HAYATSU M, TAGO K, UCHIYAMA I, et al. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil[J]. The ISME Journal, 2017, 11(5):1130-1141 doi: 10.1038/ismej.2016.191
[5]FAN F L, YANG Q B, LI Z J, et al. Impacts of organic and inorganic fertilizers on nitrification in a cold climate soil are linked to the bacterial ammonia oxidizer community[J]. Microbial Ecology, 2011, 62(4):982-990 doi: 10.1007/s00248-011-9897-5
[6]AI C, LIANG G Q, SUN J W, et al. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil[J]. Soil Biology and Biochemistry, 2013, 57:30-42 doi: 10.1016/j.soilbio.2012.08.003
[7]KUMAR U, SHAHID M, TRIPATHI R, et al. Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization[J]. Ecological Indicators, 2017, 73:536-543 doi: 10.1016/j.ecolind.2016.10.014
[8]LIU H Y, LI J, ZHAO Y, et al. Ammonia oxidizers and nitrite-oxidizing bacteria respond differently to long-term manure application in four paddy soils of south of China[J]. Science of the Total Environment, 2018, 633:641-648 doi: 10.1016/j.scitotenv.2018.03.108
[9]OUYANG Y, REEVE J R, NORTON J M. Soil enzyme activities and abundance of microbial functional genes involved in nitrogen transformations in an organic farming system[J]. Biology and Fertility of Soils, 2018, 54(4):437-450 doi: 10.1007/s00374-018-1272-y
[10]ZHAO J, NI T, LI Y, et al. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times[J]. PLoS One, 2014, 9(1):e85301 doi: 10.1371/journal.pone.0085301
[11]赵爽, 胡江, 沈其荣.两个水稻品种根际土壤细菌和氨氧化细菌的群落结构差异[J].土壤学报, 2010, 47(5):939-945 http://d.old.wanfangdata.com.cn/Periodical/trxb201005016
ZHAO S, HU J, SHEN Q R. Difference in community structure of bacteria and ammonia-oxidizing bacteria in rhizosphere between two different rice cultivars[J]. Acta Pedologica Sinica, 2010, 47(5):939-945 http://d.old.wanfangdata.com.cn/Periodical/trxb201005016
[12]WANG L, LI T. Effects of seasonal temperature variation on nitrification, anammox process, and bacteria involved in a pilot-scale constructed wetland[J]. Environmental Science and Pollution Research, 2015, 22(5):3774-3783 doi: 10.1007/s11356-014-3633-x
[13]MA Y X, TAO W, LIU J, et al. Response of ammonia-oxidizing betaproteobacteria to short-term fertilization in a salt marsh in China[J]. Journal of Oceanology and Limnology, 2018, 36(2):351-361 doi: 10.1007/s00343-017-6147-9
[14]FOTIDIS I A, TREU L, ANGELIDAKI I. Enriched ammonia-tolerant methanogenic cultures as bioaugmentation inocula in continuous biomethanation processes[J]. Journal of Cleaner Production, 2017, 166:1305-1313 doi: 10.1016/j.jclepro.2017.08.151
[15]黄鑫, 杨弢, 吴昊, 等.成都老官山汉墓出土竹简饱水保存期间的细菌群落结构[J].应用与环境生物学报, 2018, 24(3):493-499 http://www.cnki.com.cn/Article/CJFDTotal-YYHS201803010.htm
HUANG X, YANG T, WU H, et al. Bacterial community structure in waterlogged bamboo slips excavated from the Laoguanshan Han Dynasty Tomb of Chengdu[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(3):493-499 http://www.cnki.com.cn/Article/CJFDTotal-YYHS201803010.htm
[16]GARCIAS-BONET N, ARRIETA J M, DE SANTANA C N, et al. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica)[J]. Frontiers in Microbiology, 2012, 3:342 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3448135
[17]杨亚东, 张明才, 胡君蔚, 等.施氮肥对华北平原土壤氨氧化细菌和古菌数量及群落结构的影响[J].生态学报, 2017, 37(11):3636-3646 http://d.old.wanfangdata.com.cn/Periodical/stxb201711005
YANG Y D, ZHANG M C, HU J W, et al. Effects of nitrogen fertilizer application on abundance and community structure of ammonia oxidizing bacteria and archaea in a North China agricultural soil[J]. Acta Ecologica Sinica, 2017, 37(11):3636-3646 http://d.old.wanfangdata.com.cn/Periodical/stxb201711005
[18]WANG J C, ZHANG L, LU Q, et al. Ammonia oxidizer abundance in paddy soil profile with different fertilizer regimes[J]. Applied Soil Ecology, 2014, 84:38-44 doi: 10.1016/j.apsoil.2014.06.009
[19]XIA W W, ZHANG C X, ZENG X W, et al. Autotrophic growth of nitrifying community in an agricultural soil[J]. The ISME Journal, 2011, 5(7):1226-1236 doi: 10.1038/ismej.2011.5
[20]TAGO K, OKUBO T, SHIMOMURA Y, et al. Environmental factors shaping the community structure of ammonia-oxidizing bacteria and archaea in sugarcane field soil[J]. Microbes and environments, 2015, 30(1):21-28 doi: 10.1264/jsme2.ME14137
[21]YAO H Y, CAMPBELL C D, CHAPMAN S J, et al. Multi-factorial drivers of ammonia oxidizer communities:Evidence from a national soil survey[J]. Environmental Microbiology, 2013, 15(9):2545-2556 doi: 10.1111/emi.2013.15.issue-9
[22]李晨华, 张彩霞, 唐立松, 等.长期施肥土壤微生物群落的剖面变化及其与土壤性质的关系[J].微生物学报, 2014, 54(3):319-329 http://d.old.wanfangdata.com.cn/Periodical/wswxb201403009
ZHANG C H, ZHANG C X, TANG L S, et al. Effect of long-term fertilizing regime on soil microbial diversity and soil property[J]. Acta Microbiologica Sinica, 2014, 54(3):319-329 http://d.old.wanfangdata.com.cn/Periodical/wswxb201403009
[23]李晨华, 贾仲君, 唐立松, 等.不同施肥模式对绿洲农田土壤微生物群落丰度与酶活性的影响[J].土壤学报, 2012, 49(3):567-574 http://d.old.wanfangdata.com.cn/Periodical/trxb201203019
LI C H, JIA Z J, TANG L S, et al. Effect of model of fertilization on microbial abundance and enzyme activity in oasis farmland soil[J]. Acta Pedologica Sinica, 2012, 49(3):567-574 http://d.old.wanfangdata.com.cn/Periodical/trxb201203019
[24]CHU H Y, FUJII T, MORIMOTO S, et al. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil[J]. Applied and Environmental Microbiology, 2007, 73(2):485-491 doi: 10.1128/AEM.01536-06
[25]ZHANG Q, LIANG G Q, MYROLD D D, et al. Variable responses of ammonia oxidizers across soil particle-size fractions affect nitrification in a long-term fertilizer experiment[J]. Soil Biology and Biochemistry, 2017, 105:25-36 doi: 10.1016/j.soilbio.2016.11.005

相关话题/土壤 结构 基因 微生物 数据