删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

冬小麦免耕覆盖与有机栽培对土壤微生物群落组成的影响

本站小编 Free考研考试/2022-01-01

王小玲1, 2,,
马琨1,,,
汪志琴1, 2,
李越2,
魏常慧2
1.宁夏大学农学院 银川 750021
2.宁夏大学西北土地退化与生态恢复国家重点实验室培育基地 银川 750021
基金项目: 国家自然科学基金项目31660132
国家自然科学基金项目31160104
宁夏高等学校一流学科建设项目NXYLXK2017B06

详细信息
作者简介:王小玲, 研究方向为农业生态学。E-mail:928176524@qq.com
通讯作者:马琨, 研究方向为农田生态学和土壤微生物生态学。E-mail:makun0411@163.com
中图分类号:S314

计量

文章访问数:787
HTML全文浏览量:8
PDF下载量:580
被引次数:0
出版历程

收稿日期:2018-06-24
录用日期:2018-09-30
刊出日期:2019-02-01

Effects of no-tillage, mulching and organic fertilization on soil microbial com-position in winter wheat field

WANG Xiaoling1, 2,,
MA Kun1,,,
WANG Zhiqin1, 2,
LI Yue2,
WEI Changhui2
1. College of Agronomy, Ningxia University, Yinchuan 750021, China
2. National Key Laboratory Breeding Base of Northwest Land Degradation and Ecological Restoration, Ningxia University, Yinchuan 750021, China
Funds: the National Natural Science Foundation of China31660132
the National Natural Science Foundation of China31160104
the First-class Discipline Construction Project of Colleges and Universities in NingxiaNXYLXK2017B06

More Information
Corresponding author:MA Kun, E-mail:makun0411@163.com


摘要
HTML全文
(1)(4)
参考文献(47)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为揭示农业管理活动对土壤微生物群落结构及AM真菌多样性的影响,以农田土壤生态系统为研究对象,选取免耕覆盖+施有机肥(NF)、免耕覆盖+不施有机肥(NC)、传统耕作不覆盖+施有机肥(TF)和传统耕作不覆盖+不施有机肥(TC)4种处理,采用Illumina Miseq高通量测序及磷脂脂肪酸(phospholipid fatty acids,PLFAs)分析方法,研究持续冬小麦免耕覆盖有机栽培3年后,土壤微生物群落结构组成、AM真菌及其多样性与土壤环境因子间的关系。结果表明,持续免耕覆盖有机栽培能增加以PLFA表征的土壤微生物群落的生物量,传统耕作显著提高了土壤革兰氏阳性菌(G+)、阴性菌(G-)的生物量(P < 0.05)。且随免耕栽培管理年限增加,土壤AM真菌生物量呈显著上升趋势;以16:1ω5c中性脂(NLFA)与16:1ω5c磷脂(PLFA)表征的AM真菌生物量比值显著升高(P < 0.05)。免耕覆盖措施下,有机肥的施用提高了土壤AM真菌丰富度指数(Chao1指数和ACE指数),但降低了土壤AM真菌的多样性(香农指数、辛普森指数)。主成分分析结果显示,AM真菌孢子(16:1ω5c中性脂)的生物量与土壤有机质、土壤易提取球囊霉素含量呈正相关关系,AM真菌丰富度指数与土壤有机质含量呈正相关,AM真菌多样性指数与土壤全氮含量、脲酶活性呈正相关。受农业管理措施导致的土壤理化性状及土壤生物学差异等综合因素影响,土壤微生物生物量及AM真菌多样性和丰富度改变。免耕覆盖措施提高了土壤AM真菌多样性指数,有机肥施用显著影响了AM真菌NLFA/PLFA生物量的比例,改变了AM真菌孢子和菌丝间生物量碳的分配关系。
关键词:免耕覆盖/
有机栽培/
冬小麦/
微生物群落/
AM真菌/
环境因子
Abstract:Soil micro-organisms constitute a significant part of soil fertility and play a critical role in maintaining soil ecological functions. Micro-organisms also are key indicators for soil quality and productivity. No-tillage and mulching cultivation indirectly affect the composition of soil microbial community by changing plant physiological characteristics and root exudates. The two agronomic practices can also improve soil environment by increasing the total amount of micro-organisms in the soil. By analyzing the composition of soil microbial community under no-tillage, mulching and organic cultivation of winter wheat in the southern mountain areas of Ningxia, the effects of agricultural management activities on soil microbial community structure and arbuscular mycorrhizal (AM) fungal diversity were determined in this paper. The study aimed at providing theoretical basis for the promotion of long-term no-tillage, mulching cultivation, sustainable use of farmlands and maintenance of soil microbial diversity. Short-term test on conservation tillage (no-tillage) was done for three consecutive years in Longde County, Guyuan. Four soil treatments were selected including no-tillage and straw mulching without organic fertilizer application (NC), no-tillage and straw mulching with organic fertilizer application (NF), traditional tillage and no-mulching without organic fertilizer application (TC) and traditional tillage and no-mulching with organic fertilizer application (TF). By using Illumina Miseq high-throughput sequencing platform and phospholipid fatty acids (PLFAs) analysis methods, soil microbial community composition, AM fungi community composition and diversity and soil environmental factors were analyzed after three years cultivation of winter wheat. The results showed that continuous no-tillage, mulching and organic fertilizer application increased soil microbial community biomass characterized by PLFA. Traditional tillages significantly improved microbial community biomass (P < 0.05) of gram-positive (G+) and negative (G-) bacteria in the soil. With increasing years of management of no-tillage and straw mulching, soil AM fungi biomass significantly increased. Also biomass ratios of 16:1ω5c neutral lipid (NLFA) to 16:1ω5c phospholipid lipid (PLFA) significantly increased (P < 0.05). Under no-tillage and straw mulching, the application of organic fertilizer increased soil AM fungi richness index (Chao1 index and ACE index), but reduced soil AM fungi diversity (Shannon index and Simpson index). The results of principal component analysis showed that biomass of AM fungal spores (16:1ω5 c neutral fat) was positively correlated with soil contents of organic matter, and easily extracted glomalin. While AM fungi richness index was positively correlated with soil organic matter content, AM fungi diversity index was positively correlated with soil total nitrogen content and urease activity. AM fungi richness and diversity were affected by soil physical and chemical properties and soil biological differences. Also soil microbial biomass changed along with AM fungal diversity and richness. It was concluded that no-tillage and straw mulching cultivation increased soil AM fungi diversity. The proportion of NLFA to PLFA biomass of AM fungi was also significantly affected by the application of organic fertilizer, and changed distribution of biomass carbon between AM fungi spores and mycelium.
Key words:No-tillage and straw mulching/
Organic cultivation/
Winter wheat/
Microbial community/
Arbuscular mycorrhizal fungi (AMF)/
Environmental factors

HTML全文


图1AM真菌生物量(a)、多样性指数(b)与土壤理化、生物学性状间的多元分析
TN、TP、AP、AN、AK和OM分别指土壤全氮、全磷、有效磷、碱解氮、速效钾和有机质; URE、ALP、CAT、EE-GRSP、T-GRSP分别指脲酶、碱性磷酸酶、过氧化氢酶、易提取球囊霉素、总球囊霉素; AMN、AMP、AMT、NLFA/PLFA分别指AM真菌中性脂、AM真菌磷脂脂肪酸、AM真菌总生物量、中性脂与磷脂脂肪酸的比值; Chao1、ACE、Shannon、Simpson分别指Chao1指数、ACE指数、香浓指数和辛普森指数。图中各形状代表不同采样点。NC表示免耕不施肥的3个重复(1~3), NF表示免耕施肥的3个重复(1~3), TC表示传统耕作不施肥的3个重复(1~3), TF表示传统耕作施肥的3个重复(1~3)。
Figure1.Multivariate analysis of AM fungal biomass (a), AM fungal diversity (b) with soil physical, chemical and biological characteristics
TN, TP, AP, AN, AK and OM refer to total nitrogen, total phosphorus, available phosphorus, available nitrogen, available potassium and organic matter; URE, ALP, CAT, EE-GRSP, T-GRSP refer to urease, alkaline phosphatase, catalase, easily extracted glomalin and total extracted glomalin; AMN, AMP, AMT, NLFA/PLFA refer to AM fungi neutral lipid acid, AM fungi phospholipid acid, AM fungi total biomass, neutral lipid acid and phospholipid acid ratio; Chao1, ACE, Shannon and Simpson refer to Chao 1 index, ACE index, Shannon index, and Simpson index, respectively. Each shape in the figure represents a sample. NC represents three replicates of treatment of no-tillage and straw mulching without organic fertilizer application (1-3), NF represents three replicates of treatment of no-tillage and straw mulching with organic fertilizer application (1-3), and TC represents three replicates of treatment of traditional tillage and no-mulching without organic fertilizer application (1-3), TF shows three replicates of treatment of traditional tillage and no-mulching with organic fertilizer (1-3).


下载: 全尺寸图片幻灯片

表1连续免耕覆盖与有机栽培对土壤主要微生物类群的影响
Table1.Effects of continuous no-tillage, straw mulching and organic fertilizer application of winter wheat on soil microorganisms communities
年份
Year
处理
Treatment
细菌
Bacteria (μg?g-1)
真菌
Fungi (μg?g-1)
放线菌
Actinomycetes (μg?g-1)
真菌/细菌
Fungi/bacteria
革兰氏阳性菌
Gram positive bacteria (G+)(μg?g-1)
革兰氏阴性菌
Gram negative bacteria (G-)(μg?g-1)
革兰氏阳性菌/革兰氏阴性菌
G+/G-
2015NC26.98±2.79a8.56±1.16b6.96±1.08a0.32±0.02ab8.76±1.07a18.21±1.91a0.48±0.04a
NF30.53±3.77a8.77±0.78ab7.87±0.98a0.29±0.02b10.19±2.03a20.34±1.95a0.50±0.06a
TC27.88±3.60a8.24±0.95b7.76±1.39a0.30±0.01b9.45±1.31a18.43±2.34a0.51±0.02a
TF28.94±5.57a10.25±0.86a8.50±0.84a0.36±0.05a10.14±1.18a18.88±4.74a0.54±0.14a
2017NC31.67±2.74ab6.29±0.48b7.59±0.38ab0.20±0.20a14.43±1.37ab17.24±1.68b0.84±0.07ab
NF29.59±5.90b6.63±1.68ab7.35±1.52b0.22±0.01a12.99±2.55b16.60±3.38b0.78±0.03bc
TC32.22±3.80ab6.47±0.38ab7.50±0.26ab0.20±0.02a15.18±2.79a17.04±1.55b0.89±0.13a
TF36.21±5.60a7.75±1.18a8.48±0.91a0.22±0.01a15.62±3.39a20.59±2.61a0.76±0.07c
不同小写字母代表不同处理间差异在0.05水平上显著。NC:免耕覆盖不施有机肥; NF:免耕覆盖施有机肥; TC:传统耕作不覆盖不施有机肥; TF:传统耕作不覆盖施有机肥。Different lowercase letters indicate significant differences among treatments at 0.05 level. NC: no-tillage and straw mulching without organic fertilizer application; NF: no-tillage and straw mulching with organic fertilizer application; TC: traditional tillage and no-mulching without organic fertilizer application; TF: traditional tillage and no-mulching with organic fertilizer application.


下载: 导出CSV
表2连续免耕覆盖有机管理对土壤AM真菌群落结构组成的影响
Table2.Effects of no-tillage, straw mulching and organic fertilizer application of winter wheat on soil AM fungal community structure
年份
Year
处理
Treatment
AM真菌磷脂脂肪酸
AMF PLFAs (μg·g-1)
AM真菌中性脂
AMF NLFA (μg·g-1)
AM真菌总生物量
Total AMF (μg·g-1)
中性脂/磷脂脂肪酸
NLFA / PLFA
微生物总磷脂脂肪酸
Total PLFAs (μg·g-1)
AM真菌/微生物总磷脂脂肪酸
AMF / total PLFAs
2015NC2.20±0.24a0.87±0.01a3.07±0.66a0.40±0.00a45.23±5.22a0.07±0.10a
NF2.47±0.35a0.76±0.38a3.23±0.72a0.30±0.11a50.74±6.02a0.06±0.01a
TC2.38±0.30a1.24±1.03a3.62±1.25a0.52±0.39a47.83±6.94a0.08±0.07a
TF2.59±0.21a0.60±0.33a3.19±0.44a0.23±0.13a51.25±6.85a0.07±0.01a
2017NC2.17±0.19ab16.84±4.53a19.01±4.65a7.72±1.74a64.56±6.21a0.29±0.50a
NF2.13±0.15b7.62±4.47b9.75±4.35b3.64±2.28b53.32±5.61b0.19±1.28a
TC2.15±0.26ab6.66±4.94b8.81±5.12b3.03±1.97b54.99±5.95b0.16±2.01a
TF2.45±0.34a9.54±7.08ab11.99±6.96b4.01±3.41b65.37±9.91a0.18±2.70a
不同小写字母代表不同处理间差异在0.05水平上显著。NC:免耕覆盖不施有机肥; NF:免耕覆盖施有机肥; TC:传统耕作不覆盖不施有机肥; TF:传统耕作不覆盖施有机肥。Different lowercase letters indicate significant differences among treatments at 0.05 level. NLFA: neutral lipid acid. NC: no-tillage and straw mulching without organic fertilizer application; NF: no-tillage and straw mulching with organic fertilizer application; TC: traditional tillage and no-mulching without organic fertilizer application; TF: traditional tillage and no-mulching with organic fertilizer application.


下载: 导出CSV
表3冬小麦免耕栽培对土壤AM真菌丰富度和多样性指数的影响
Table3.Effects of no-tillage, straw mulching and organic application of winter wheat on soil AM fungal richness and diversity
处理
Treatment
辛普森指数
Simpson index
香农指数
Shannon index
Chao1指数
Chao1 index
ACE指数
ACE index
NC0.95±0.02a5.95±0.45a668.99±99.77a696.34±127.06a
NF0.93±0.03a5.45±0.38a682.03±166.58a714.67±195.47a
TC0.92±0.03a5.45±0.26a702.53±67.55a754.21±81.15a
TF0.89±0.05a5.25±0.67a742.02±178.85a783.18±178.96a
不同小写字母代表不同处理间差异在0.05水平上显著。NC:免耕覆盖不施有机肥; NF:免耕覆盖施有机肥; TC:传统耕作不覆盖不施有机肥; TF:传统耕作不覆盖施有机肥。Different lowercase letters indicate significant differences among treatments at 0.05 level. NC: no-tillage and straw mulching without organic fertilizer application; NF: no-tillage and straw mulching with organic fertilizer application; TC: traditional tillage and no-mulching without organic fertilizer application; TF: traditional tillage and no-mulching with organic fertilizer application.


下载: 导出CSV
表4Mantel检验土壤AM真菌群落结构及AM真菌多样性与土壤理化、生物学性状间的关系
Table4.Correlation between community structure and diversity of AM fungi and soil physical and chemical biological characteristics
变量
Variable
中性脂/磷脂脂肪酸
NLFA /PLFA
AM真菌磷脂脂肪酸
AMF PLFA
AM真菌中性脂
AMF NLFA
AM真菌生物量
Total AMF
辛普森指数
Simpson index
香农指数
Shannon index
ACE指数
ACE index
Chao1指数
Chao 1 index
土壤有机质Soil organic matter-0.010.510.070.09-0.44-0.120.570.62
全氮Total nitrogen0.61-0.680.570.550.850.89*-0.77-0.69
全磷Total phosphorus-0.320.48-0.24-0.23-0.60-0.380.680.78
碱解氮Available nitrogen0.50-0.770.450.420.850.83-0.79-0.68
速效钾Available potassium-0.05-0.94*-0.12-0.150.680.43-0.71-0.54
pH0.520.220.570.580.080.440.080.10
速效磷Available phosphorus0.08-0.330.020.010.350.10-0.47-0.57
脲酶Urease-0.530.87-0.46-0.44-0.96**-0.870.93*0.86
过氧化氢酶Catalase0.17-0.830.070.050.770.45-0.86-0.85
碱性磷酸酶Alkaline phosphatase-0.700.37-0.69-0.68-0.65-0.840.520.47
易提取球囊霉素Easily extracted glomalin0.860.420.91*0.92*0.160.54-0.02-0.17
总球囊霉素Total extracted glomalin0.790.520.840.850.050.410.05-0.13
***分别代表 0.05和0.01水平显著相关。* and ** respectively represent significant correlations at 0.05 and 0.01 levels. NLFA: neutral lipid acid.


下载: 导出CSV

参考文献(47)
[1]FRANZLUEBBERS A J. Soil organic matter stratification ratio as an indicator of soil quality[J]. Soil and Tillage Research, 2010, 66(2):95-106
[2]谭周进, 周卫军, 张杨珠, 等.不同施肥制度对稻田土壤微生物的影响研究[J].植物营养与肥料学报, 2007, 13(3):430-435 doi: 10.3321/j.issn:1008-505X.2007.03.013
TAN Z J, ZHOU W J, ZHANG Y Z, et al. Effect of fertilization systems on microbes in the paddy soil[J]. Plant Nutrition and Fertilizer Science, 2007, 13(3):430-435 doi: 10.3321/j.issn:1008-505X.2007.03.013
[3]M?DER P, BERNER A. Development of reduced tillage systems in organic farming in Europe[J]. Renewable Agriculture and Food Systems, 2012, 27(1):7-11 doi: 10.1017/S1742170511000470
[4]孙建, 刘苗, 李立军, 等.不同施肥处理对土壤理化性质的影响[J].华北农学报, 2010, 25(4):221-225 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201004047
SUN J, LIU M, LI L J, et al. The effect of different fertilization treatments on soil physical and chemical property[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(4):221-225 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201004047
[5]王改兰, 段建南, 贾宁凤, 等.长期施肥对黄土丘陵区土壤理化性质的影响[J].水土保持学报, 2006, 20(4):82-85 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb200604019
WANG G L, DUAN J N, JIA N F, et al. Effects of long-term fertilization on soil physical and chemical property in loess hilly area[J]. Journal of Soil and Water Conservation, 2006, 20(4):82-85 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb200604019
[6]MARSCHNER P, KANDELER E, MARSCHNER B. Structure and function of the soil microbial community in a long-term fertilizer experiment[J]. Soil Biology and Biochemistry, 2003, 35(3):453-461 doi: 10.1016/S0038-0717(02)00297-3
[7]LI P, LI Y C, ZHENG X Q, et al. Rice straw decomposition affects diversity and dynamics of soil fungal community, but not bacteria[J]. Journal of Soils and Sediments, 2018, 18(1):248-258 doi: 10.1007/s11368-017-1749-6
[8]朱晨.不同施肥制度对主要农作物土壤中AMF群落结构的影响[D].南京: 南京农业大学, 2016
ZHU C. Effects of different fertilization on community structure of AMF in major farmland crops soils[D]. Nanjing: Nanjing Agricultural University, 2016
[9]HILL J O, SIMPSON R J, RYAN M H, et al. Root hair morphology and mycorrhizal colonisation of pasture species in response to phosphorus and nitrogen nutrition[J]. Crop and Pasture Science, 2010, 61(2):122-131 doi: 10.1071/CP09217
[10]LI T, HU Y J, HAO Z P, et al. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices[J]. New Phytologist, 2013, 197(2):617-630 doi: 10.1111/nph.2012.197.issue-2
[11]ROBINSON C H. Mycorrhizal symbiosis, 2nd edn. by S. E. Smith, D. J. Read[J]. Journal of Ecology, 1997, 85(6): 925-926
[12]张贵云, 张丽萍, 魏明峰, 等.长期保护性耕作对丛枝菌根真菌多样性的影响[J].中国生态农业学报, 2018, 26(7):1048-1055 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0712&flag=1
ZHANG G Y, ZHANG L P, WEI M F, et al. Effect of long-term conservation tillage on arbuscular mycorrhizal fungi diversity[J]. Chinese Journal of Eco-Agriculture, 2018, 26(7):1048-1055 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0712&flag=1
[13]KABIR Z, O'HALLORAN I P, WIDDEN P, et al. Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and conventional tillage systems[J]. Mycorrhiza, 1998, 8(1):53-55 doi: 10.1007/s005720050211
[14]SCHNOOR T K, LEKBERG Y, ROSENDAHL S, et al. Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland[J]. Mycorrhiza, 2011, 21(3):211-220 doi: 10.1007/s00572-010-0325-3
[15]鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000:1-329
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agriculture Press, 2000:1-329
[16]魏常慧, 刘亚军, 冶秀香, 等.马铃薯/玉米间作栽培对土壤和作物的影响[J].浙江大学学报:农业与生命科学版, 2017, 43(1):54-64 http://www.cnki.com.cn/Article/CJFDTOTAL-ZJNY201701008.htm
WEI C H, LIU Y J, YE X X, et al. Effects of intercropping potato with maize on soil and crop[J]. Journal of Zhejiang University:Agriculture & Life Sciences, 2017, 43(1):54-64 http://www.cnki.com.cn/Article/CJFDTOTAL-ZJNY201701008.htm
[17]SATO K, SUYAMA Y, SAITO M, et al. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis[J]. Grassland Science, 2005, 51(2):179-181 doi: 10.1111/j.1744-697X.2005.00023.x
[18]FADROSH D W, MA B, GAJER P, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform[J]. Microbiome, 2014, 2(1):6 doi: 10.1186/2049-2618-2-6
[19]徐恒.榆林沙区人工固沙林土壤养分、微生物数量和酶活性研究[D].杨凌: 西北农林科技大学, 2008
XU H. Soil nutrient, microorganism and enzyme activities under different artificial sand-fixing forests in the Yulin sand area[D]. Yangling: Northwest A&F University, 2008
[20]MATHEW R P, FENG YC, GITHINJI L, et al. Impact of no-tillage and conventional tillage systems on soil microbial communities[J]. Applied and Environmental Soil Science, 2012, 2012:548620 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003917844
[21]李雪静, 徐天乐, 陈保冬, 等.荒漠和草原生态系统丛枝菌根真菌多样性和群落结构[J].生态学杂志, 2017, 36(10):2734-2743 http://d.old.wanfangdata.com.cn/Periodical/stxzz201710007
LI X J, XU T L, CHEN B D, et al. Diversity and community structure of arbuscular mycorrhizal fungi in desert and steppe ecosystems[J]. Chinese Journal of Ecology, 2017, 36(10):2734-2743 http://d.old.wanfangdata.com.cn/Periodical/stxzz201710007
[22]何玉梅, 张仁陟, 张丽华, 等.不同耕作措施对土壤真菌群落结构与生态特征的影响[J].生态学报, 2007, 27(1):113-119 http://d.old.wanfangdata.com.cn/Periodical/stxb200701013
HE Y M, ZHANG R Z, ZHANG L H, et al. Effects of different tillage practices on fungi community structure and ecologic characteristics in loess soils[J]. Acta Ecologica Sinica, 2007, 27(1):113-119 http://d.old.wanfangdata.com.cn/Periodical/stxb200701013
[23]李玉洁, 王慧, 赵建宁, 等.耕作方式对农田土壤理化因子和生物学特性的影响[J].应用生态学报, 2015, 26(3):939-948 http://d.old.wanfangdata.com.cn/Periodical/yystxb201503038
LI Y J, WANG H, ZHAO J N, et al. Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland:A review[J]. Chinese Journal of Applied Ecology, 2015, 26(3):939-948 http://d.old.wanfangdata.com.cn/Periodical/yystxb201503038
[24]胡娜.免耕对土壤特性的影响[J].河南农业, 2018, (19):20 http://d.old.wanfangdata.com.cn/Periodical/trfl199905002
HU N. Effects of no-till on soil properties[J]. Henan Nongye, 2018, 19:20 http://d.old.wanfangdata.com.cn/Periodical/trfl199905002
[25]郭梨锦, 曹凑贵, 张枝盛, 等.耕作方式和秸秆还田对稻田表层土壤微生物群落的短期影响[J].农业环境科学学报, 2013, 32(8):1577-1584 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201401030000000358
GUO L J, CAO C G, ZHANG Z S, et al. Short-term effects of tillage practices and wheat-straw returned to rice fields on topsoil microbial community structure and microbial diversity in Central China[J]. Journal of Agro-Environment Science, 2013, 32(8):1577-1584 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201401030000000358
[26]强学彩, 袁红莉, 高旺盛.秸秆还田量对土壤CO2释放和土壤微生物量的影响[J].应用生态学报, 2004, (3):469-472 http://d.old.wanfangdata.com.cn/Periodical/yystxb200403022
QIANG X C, YUAN H L, GAO W S. Effect of crop-residue incorporation on soil CO2 emission and soil microbial biomass[J]. Chinese Journal of Applied Ecology, 2004, 15(3):469-472 http://d.old.wanfangdata.com.cn/Periodical/yystxb200403022
[27]BRITO I, GOSS M J, DE CARVALHO M, et al. Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions[J]. Soil and Tillage Research, 2012, 121:63-67 doi: 10.1016/j.still.2012.01.012
[28]MATHIMARAN N, RUH R, JAMA B, et al. Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol[J]. Agriculture, Eco-systems & Environment, 2007, 119(1/2):22-32 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be290fbeebfe3a179628a766352c055b
[29]QIN H, CHEN J H, WU Q F, et al. Intensive management decreases soil aggregation and changes the abundance and community compositions of arbuscular mycorrhizal fungi in Moso bamboo (Phyllostachys pubescens) forests[J]. Forest Ecology and Management, 2017, 400:246-255 doi: 10.1016/j.foreco.2017.06.003
[30]QIN H, LU K P, STRONG P J, et al. Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture[J]. Applied Soil Ecology, 2015, 89:35-43 doi: 10.1016/j.apsoil.2015.01.008
[31]BENDING G D, TURNER M K, RAYNS F, et al. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes[J]. Soil Biology and Biochemistry, 2004, 36(11):1785-1792 doi: 10.1016/j.soilbio.2004.04.035
[32]张贵云.不同农业措施对丛枝菌根真菌群落结构和侵染效应的影响[D].南京: 南京农业大学, 2013
ZHANG G Y. Effects of different agricultural measures on community structure and colonization rate of arbuscular mycorrhizal fungi[D]. Nanjing: Nanjing Agricultural University, 2013
[33]GAJDA A M, CZY? E A, DEXTER A R, et al. Effects of different soil management practices on soil properties and microbial diversity[J]. International Agrophysics, 2018, 32(1):81-91 doi: 10.1515/intag-2016-0089
[34]高萍, 闫飞扬, 蒙程, 等.黄土高原不同耕作措施下AM真菌的多样性[J].草业科学, 2016, 33(10):1917-1923 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201610002
GAO P, YAN F Y, MENG C, et al. Diversity of arbuscular mycorrhizal fungi under different agricultural practices in Loess Plateau in China[J]. Pratacultural Science, 2016, 33(10):1917-1923 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201610002
[35]ALGUACIL M M, LUMINI E, ROLDáN A, et al. The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops[J]. Ecological Applications, 2008, 18(2):527-536 doi: 10.1890/07-0521.1
[36]SHEN Y F, CHEN Y Y, LI S Q. Microbial functional diversity, biomass and activity as affected by soil surface mulching in a semiarid farmland[J]. PLoS One, 2016, 11(7):e0159144 doi: 10.1371/journal.pone.0159144
[37]XIANG D, VERESOGLOU S D, RILLIG M C, et al. Relative importance of individual climatic drivers shaping arbuscular mycorrhizal fungal communities[J]. Microbial Ecology, 2016, 72(2):418-427 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ab76563585484ae811878ae462cafe11
[38]HAZARD C, GOSLING P, VAN DER GAST C J, et al. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale[J]. The ISME Journal, 2013, 7(3):498-508 doi: 10.1038/ismej.2012.127
[39]宋福强, 刘宇飞, 范晓旭.耕种措施对农田生态系统AM真菌群落结构的影响[J].菌物学报, 2018, 37(8):988-998 http://d.old.wanfangdata.com.cn/Periodical/jwxt201808002
SONG F Q, LIU Y F, FAN X X. Effects of cultivation measures on AM fungal community structure in agro-ecological system[J]. Mycosystema, 2018, 37(8):988-998 http://d.old.wanfangdata.com.cn/Periodical/jwxt201808002
[40]ALGUACIL M M, TORRECILLAS E, LOZANO Z, et al. Arbuscular mycorrhizal fungi communities in a coral cay system (Morrocoy, Venezuela) and their relationships with environmental variables[J]. Science of the Total Environment, 2015, 505:805-813 doi: 10.1016/j.scitotenv.2014.10.030
[41]?MILAUER P. Communities of arbuscular mycorrhizal fungi in grassland:seasonal variability and effects of environment and host plants[J]. Folia Geobotanica, 2001, 36(3):243-263 doi: 10.1007/BF02803179
[42]KAHILUOTO H, KETOJA E, VESTBERG M, et al. Promotion of AM utilization through reduced P fertilization 2. Field studies[J]. Plant and Soil, 2001, 231(1):65-79 doi: 10.1023/A:1010366400009
[43]JANSA J, OBERHOLZER H R, EGLI S. Environmental determinants of the arbuscular mycorrhizal fungal infectivity of Swiss agricultural soils[J]. European Journal of Soil Biology, 2009, 45(5/6):400-408 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e28c22a2d975f76b3d37a30a94dec66
[44]HIJRI I, SYKOROVá Z, OEHL F, et al. Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity[J]. Molecular Ecology, 2006, 15(8):2277-2289 doi: 10.1111/j.1365-294X.2006.02921.x
[45]DE LEóN D G, CANTERO J J, MOORA M, et al. Soybean cultivation supports a diverse arbuscular mycorrhizal fungal community in central Argentina[J]. Applied Soil Ecology, 2017, 124:289-297
[46]BOLDT-BURISCH K, NAETH M A. Heterogeneous soil conditions influence fungal alkaline phosphatase activity in roots of Lotus corniculatus[J]. Applied Soil Ecology, 2017, 116:55-63 doi: 10.1016/j.apsoil.2017.03.024
[47]GUO Y J, DU Q F, LI G D, et al. Soil phosphorus fractions and arbuscular mycorrhizal fungi diversity following long-term grazing exclusion on semi-arid steppes in Inner Mongolia[J]. Geoderma, 2016, 269:79-90 doi: 10.1016/j.geoderma.2016.01.039

相关话题/土壤 微生物 结构 理化 农业