龚玲春1,
果晓玉1,
于淼2,,
1.沈阳农业大学土地与环境学院 沈阳 110161
2.沈阳农业大学理学院 沈阳 110161
基金项目: 沈阳农业大学土地与环境学院青年创新项目20140102
详细信息
作者简介:边振兴, 研究方向为农地利用与保护、农业景观生态学。E-mail:zhx-bian@263.net
通讯作者:于淼, 研究方向为数理统计与景观生态学。E-mail:yumiao77@163.com
中图分类号:P901计量
文章访问数:668
HTML全文浏览量:3
PDF下载量:387
被引次数:0
出版历程
收稿日期:2018-03-07
录用日期:2018-06-20
刊出日期:2019-01-01
Effect of agricultural landscape composition on natural enemy population of corn borer
BIAN Zhenxing1,,GONG Lingchun1,
GUO Xiaoyu1,
YU Miao2,,
1. College of Land and Environment, Shenyang Agricultural University, Shenyang 110161, China
2. College of Science, Shenyang Agricultural University, Shenyang 110161, China
Funds: the Youth Innovation Project of Land and Environment College of Shenyang Agricultural University20140102
More Information
Corresponding author:YU Miao, E-mail:yumiao77@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:高比例和多样的非耕作生境带来的农田景观高异质性是维持农业生物多样性的关键,推测提高非耕作生境组成能够促进农田中玉米螟天敌数量和种类增加。为揭示不同非耕作生境组成对玉米螟天敌数量的影响,本文选取东北平原玉米种植典型县——辽宁省昌图县,按照5个非耕作生境比例(0~10%、10%~20%、20%~30%、30%~40%和40%~50%)选取20个直径为600 m的样区。陷阱法采集玉米螟天敌,并用体视显微镜鉴别到科。主成分分析法筛选主要非耕作生境类型,逐步回归模型对非耕作生境组成(比例和类型)与玉米螟天敌数量进行拟合。并采用"赤池信息准则(AIC)"模型筛选,评估不同非耕作生境组成对玉米螟天敌数量的影响。研究结果表明,随着非耕作生境比例增加,玉米螟天敌数量呈先增后减的趋势,非耕作生境比例为20%~30%时天敌数量达最大值。非耕作生境比例20%~30%时,非耕作生境组成与玉米螟天敌数量关系最优模型(AIC=4.24,为最小值)是Y=b0-b1D+b2PC2,最优模型表明PC2(β=3.787,P=0.005)代表以林地为主的非耕作生境组成与玉米螟天敌数量呈显著正相关,景观多样性指数D(β=-3.173,P=0.005)与玉米螟天敌数量呈显著负相关。该比例的非耕作生境组成与玉米螟天敌数量关系的其他模型表明,以草地和村落为主(PC1)的非耕作生境与玉米螟天敌呈显著正相关(β=1.957,P=0.000)。而其他比例下,所有关系模型说明农田周边林地生境和其他作物耕地有利于提高农田中天敌数量。最适宜玉米螟天敌聚集的非耕作生境比例为20%~30%,以林地为主或村落、草地为主的非耕作生境,以及分布有其他作物的耕作生境能够提高玉米螟天敌数量。研究结果可为今后从景观生态角度构建适宜非耕作生境组成来防治玉米螟提供理论依据和方法。
关键词:农业景观/
非耕作生境/
玉米田/
玉米螟/
天敌
Abstract:The agricultural landscape with high proportion and diversity of non-cropped habitats is the key to maintaining agricultural biodiversity. It is a hypothesis that the natural enemy population and types of corn borer could increase by complex and high composition of non-cropped habitats in cornfields. To clarify the relationship between non-cropped habitats proportion and natural enemy, this study investigated the effects of composition of non-cropped habitats on natural enemy population of corn borer in Changtu County in the Northeast China Plain. Twenty plots (φ=600 m) were selected and classed into five groups based on the proportions of non-cropped habitats (0-10%, 10%-20%, 20%-30%, 30%-40% and 40%-50%). The samples of natural enemies of corn borer were collected by the pitfall trap method. The families of enemies were identified using stereomicroscope. Then principal component analysis was used to classify the main types of non-cropped habitats in the region. Stepwise regression model was used to fit relation curve of non-cropped habitat composition (ratio and type) and population of natural enemies of corn borer. Then the optimal model was selected based on the Akaike's Information Criterion (AIC) for effects of different proportions of non-cropped habitats on natural enemy population of corn borer. Results showed that natural enemy population of corn borer increased at first and then decreased with increasing proportion of non-cropped habitats. Natural enemy population of corn borer was highest[with the optimal model of AICminimum value=4.24, Y=b0-b1D + b2PC2, PC2 (β=3.787, P=0.005)] when the proportion of non-cropped habitats was 20%-30%. This optimal model implied that there was significant positive correlation between natural enemy population of corn borer and the composition of non-cropped habitats dominated by woodland. There was also significantly negative correlation between natural enemy population of corn borer and the landscape diversity index D. Other models[PC1 (β=1.957, P=0.000)] for 20%-30% proportion of non-cropped habitats implied that significant positive correlation existed between natural enemy population of corn borer and the composition of non-cropped habitats dominated by grassland and village. Under other proportions of non-cropped habitats, the optimal models suggested that corn filed neighboring woodland or other crops fields was beneficial for increase of natural enemy population of corn borer. In conclusion, the study showed that natural enemy population of corn borer was highest when the proportion of non-cropped habitats was 20%-30%. Non-cropped habitats dominated by woodland, grassland, village or in intercropped patterns attracted natural enemies of corn borer in farmlands with different proportions of non-cropped habitats. The study further provided theoretical basis for the prevention and control of corn borer by ways of landscape ecology.
Key words:Agricultural landscape/
Non-cropped habitat/
Corn field/
Corn borer/
Natural enemy
HTML全文
图1研究区样点分布图
Figure1.Distribution of corn field sampling sites in the study area
下载: 全尺寸图片幻灯片
图2玉米田中300 m半径的样方陷阱布设示意图
Figure2.Layout of the 300 m radius pitfall traps in corn field
下载: 全尺寸图片幻灯片
图3不同非耕地生境比例下农田景观类型的主成分分析
Figure3.Principal component analysis for farmland landscape types with different proportions of non-cropped habitats
下载: 全尺寸图片幻灯片
图4夏季和秋季不同非耕作生境比例的玉米螟天敌数量分析特征
Figure4.Quantitative features of corn borer' natural enemies in corn fields with different proportions of non-cropped habitats in summer and autumn
下载: 全尺寸图片幻灯片
图5夏季和秋季不同非耕作生境比例的玉米螟天敌数量分析特征
同一季节不同字母表示处理间差异显著。
Figure5.Quantitative features of corn borer' natural enemies in cornfields with different proportions of non-cropped habitats in summer and autumn
Different letters in the same season show significant differences at 0.05 level.
下载: 全尺寸图片幻灯片
图6非生境比例为20%~30%时最优模型中景观变量与玉米螟天敌数量的相关性分析
非耕作生境比例20%~30%上D+PC2为所有区间最优模型。
Figure6.Relationship between quantity of corn borer's natural enemies and landscape variables in the best fit model in corn field with 20%-30% non-cropped habitats
The best fit model is D+PC2 under 20%-30% non-cropped habitats
下载: 全尺寸图片幻灯片
图7非耕作生境比例与玉米螟天敌数量的关系
Figure7.Relationship between proportion of non-cropped habitats and quantity of corn borer' s natural enemies
下载: 全尺寸图片幻灯片
表120个调查区域采集的玉米螟天敌种类及数量
Table1.Quantities and types of natural enemies of corn borer collected in 20 investigated corn fields
门Phylum | 纲Classes | 目Orders | 科Families | 占捕获量比Proportion (%) |
节肢动物门 Arthropoda | 昆虫纲 Insecta | 鞘翅目 Coleoptera | 步甲科Carabidae | 36.00 |
瓢虫科Coccinellidae | 2.32 | |||
隐翅甲科Staphylinidae | 2.10 | |||
膜翅目 Hymenoptera | 蚁科Formicinae | 41.76 | ||
姬蜂科Lchneumqnidae | 3.11 | |||
革翅目Dermaptera | 蠼螋科Labiduridae | 2.35 | ||
半翅目Hemiptera | 花蝽科Anthocoridae | 2.64 | ||
脉翅目Neuroptera | 草蛉科Chrysopidae | 2.31 | ||
蛛形纲 Arachnida | 蛛形目 Aranelida | 蟹蛛科Thomisidae | 3.74 | |
球蛛科Theridiidae | 2.37 |
下载: 导出CSV
表2不同非耕作生境比例下不同景观变量与玉米螟天敌数量分布的模型分析
Table2.Models for quantities of corn borer' natural enemies in corn field and different landscape variables under different proportions of non-cropped habitats
非耕作生境比例 Non-cropped habitats proportion (%) | 模型 Model | 残差平方和 Sp2 | 样本量 Sample size | 阶数 Ki | 赤池信息准则 AIC | 调整R2 Adjusted R2 |
0-10 | Y=b0-b1D** | 86.265 | 8 | 3 | 43.66 | 0.620 |
Y=b0+b1PC1** | 48.856 | 8 | 3 | 39.11 | 0.785 | |
Y=b0+b1PC2* | 119.411 | 8 | 3 | 46.26 | 0.475 | |
Y=b0+b1PC3** | 47.410 | 8 | 3 | 38.87 | 0.791 | |
Y=b0+b1PC1*+b2PC2** | 48.856 | 8 | 4 | 41.11 | 0.785 | |
Y=b0+b1PC1**+b2PC3** | 47.410 | 8 | 4 | 40.87 | 0.791 | |
Y=b0+b1PC2**+b2PC3** | 47.410 | 8 | 4 | 40.87 | 0.791 | |
Y=b0+b1PC1**+b2PC2*+b3PC3** | 47.410 | 8 | 5 | 42.87 | 0.791 | |
Y=b0-b1D**+b2PC1** | 48.856 | 8 | 4 | 41.11 | 0.785 | |
Y=b0-b1D**+b2PC2* | 86.265 | 8 | 4 | 45.66 | 0.620 | |
Y=b0-b1D**+b2PC3** | 47.410 | 8 | 4 | 40.87 | 0.791 | |
Y=b0-b1D**+b2PC1**+b3PC2* | 48.856 | 8 | 5 | 43.11 | 0.785 | |
Y=b0-b1D**+b2PC1**+b3PC3** | 47.410 | 8 | 5 | 42.87 | 0.791 | |
Y=b0-b1D**+b2PC2*+b3PC3** | 47.410 | 8 | 5 | 42.87 | 0.791 | |
Y=b0-b1D**+b2PC1**+b3PC2*+b4PC3** | 47.410 | 8 | 6 | 44.87 | 0.791 | |
10-20 | Y=b0-b1D** | 58.985 | 8 | 3 | 40.62 | 0.762 |
Y=b0+b1PC1** | 40.933 | 8 | 3 | 37.70 | 0.835 | |
Y=b0+b1PC2** | 69.396 | 8 | 3 | 41.92 | 0.719 | |
Y=b0+b1PC1**+b2PC2** | 40.933 | 8 | 4 | 39.70 | 0.835 | |
Y=b0-b1D**+b2PC1** | 40.933 | 8 | 4 | 39.70 | 0.835 | |
Y=b0-b1D**+b2PC2** | 58.985 | 8 | 4 | 42.62 | 0.762 | |
Y=b0-b1D**+b2PC1**+b3PC2** | 40.933 | 8 | 5 | 41.70 | 0.835 | |
20-30 | Y=b0-b1D** | 2.977 | 8 | 3 | 16.73 | 0.978 |
Y=b0+b1PC1** | 2.676 | 8 | 3 | 15.87 | 0.981 | |
Y=b0+b1PC2** | 14.355 | 8 | 3 | 29.31 | 0.896 | |
Y=b0+b1PC1**+b2PC2** | 2.676 | 8 | 4 | 17.87 | 0.981 | |
Y=b0-b1D**+b2PC1** | 2.676 | 8 | 4 | 17.87 | 0.981 | |
Y=b0-b1D**+b2PC2** | 0.487 | 8 | 4 | 4.24 | 0.996 | |
Y=b0-b1D**+b2PC1**+b3PC2** | 2.676 | 8 | 5 | 19.87 | 0.981 | |
30-40 | Y=b0+b1D** | 23.527 | 8 | 3 | 33.27 | 0.652 |
Y=b0+b1PC1** | 23.834 | 8 | 3 | 33.37 | 0.648 | |
Y=b0+b1PC2** | 23.569 | 8 | 3 | 33.28 | 0.651 | |
Y=b0+b1PC1**+b2PC2** | 23.569 | 8 | 4 | 35.28 | 0.651 | |
Y=b0+b1D**+b2PC1** | 9.379 | 8 | 4 | 27.91 | 0.834 | |
Y=b0+b1D**+b2PC2** | 23.527 | 8 | 4 | 35.27 | 0.625 | |
Y=b0+b1D**+b2PC1**+b3PC2** | 9.379 | 8 | 5 | 29.91 | 0.834 | |
40-50 | Y=b0+b1D* | 33.086 | 8 | 3 | 35.99 | 0.451 |
Y=b0+b1PC1* | 29.523 | 8 | 3 | 35.08 | 0.510 | |
Y=b0+b1PC2** | 19.809 | 8 | 3 | 31.89 | 0.671 | |
Y=b0+b1(PC3*) | 28.391 | 8 | 3 | 34.77 | 0.529 | |
Y=b0+b1PC1*+b2PC2** | 19.809 | 8 | 4 | 33.89 | 0.671 | |
Y=b0+b1PC1*+b2(PC3*) | 19.809 | 8 | 4 | 33.89 | 0.671 | |
Y=b0+b1PC2**+b2(PC3*) | 28.391 | 8 | 4 | 36.77 | 0.529 | |
Y=b0+b1PC1*+b2PC2**+b3(PC3*) | 19.809 | 8 | 5 | 35.89 | 0.671 | |
Y=b0+b1D*+b2PC1* | 8.911 | 8 | 4 | 27.50 | 0.822 | |
Y=b0+b1D*+b2PC2** | 19.809 | 8 | 4 | 33.89 | 0.671 | |
Y=b0+b1D*+b2(PC3*) | 28.391 | 8 | 4 | 36.77 | 0.529 | |
Y=b0+b1D*+b2PC1*+b3PC2** | 19.809 | 8 | 5 | 35.89 | 0.671 | |
Y=b0+b1D*+b2PC1*+b3(PC3*) | 28.391 | 8 | 5 | 38.77 | 0.529 | |
Y=b0+b1D*+b2PC2**+b3(PC3*) | 19.809 | 8 | 5 | 35.89 | 0.671 | |
Y=b0+b1D*+b2PC1*+b3PC2**+b4(PC3*) | 19.809 | 8 | 6 | 37.89 | 0.671 | |
列出了所有模型。其中字体加粗表示为最优模型, AIC值最小; 括号表示自变量和天敌数量呈负相关关系。Y:天敌数量; D:景观多样性指数; PC1:主成分1; PC2:主成分2; PC3:主成分3。**:在0.01水平(单侧)上显著相关; *:在0.05水平(单侧)上显著相关。All the models are shown. Bold characters and numbers indicate the best model with the minimum AIC. Independent variables in parentheses are negatively related with quantities of corn borer’ natural enemies. D represents Simpson D; PC1 represents principal component 1; PC2 represents principal component 2; PC3 represents principal component 3. ** represents significant correlation at 0.01 level (unilateral); * represents significant correlation at 0.05 level (unilateral). |
下载: 导出CSV
参考文献
[1] | THIES C, ROSCHEWITZ I, TSCHARNTKE T. The landscape context of cereal aphid-parasitoid interactions[J]. Proceedings of the Royal Society B:Biological Sciences, 2005, 272(1559):203-210 doi: 10.1098/rspb.2004.2902 |
[2] | TSCHARNTKE T, STEFFAN-DEWENTER I, KRUESS A, et al. Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes[J]. Ecological Application, 2002, 12(2):354-363 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76b0b86c6d3524af79a9d8a9e4ec2cc9 |
[3] | BIANCHI F J J A, BOOIJ C J H, TSCHARNTKE T. Sustainable pest regulation in agricultural landscapes:A review on landscape composition, biodiversity and natural pest control[J]. Proceedings of the Royal Society B:Biological Sciences, 2006, 273(1595):1715-1727 doi: 10.1098/rspb.2006.3530 |
[4] | 赵紫华, 关晓庆, 贺达汉.农业景观结构对麦蚜寄生蜂群落组成的影响[J].应用昆虫学报, 2012, 49(1):220-228 http://d.old.wanfangdata.com.cn/Periodical/kczs201201030 ZHAO Z H, GUAN X Q, HE D H. Community composition of parasitoids and hyperparasitoids of wheat aphids in different agricultural landscapes[J]. Chinese Journal of Applied Entomology, 2012, 49(1):220-228 http://d.old.wanfangdata.com.cn/Periodical/kczs201201030 |
[5] | FAHRIG L, BAUDRY J, BROTONS L, et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[J]. Ecology Letters, 2011, 14(2):101-112 doi: 10.1111/j.1461-0248.2010.01559.x |
[6] | LAZZERINI G, CAMERA A, BENEDETTELLI S, et al. The role of field margins in agro-biodiversity management at the farm level[J]. Italian Journal of Agronomy, 2007, 2(2):127-134 doi: 10.4081/ija.2007.127 |
[7] | SCHNEIDER S, WIDMER F, JACOT K, et al. Spatial distribution of Metarhizium clade 1 in agricultural landscapes with arable land and different semi-natural habitats[J]. Applied Soil Ecology, 2012, 52:20-28 doi: 10.1016/j.apsoil.2011.10.007 |
[8] | LANDIS D A, WRATTEN S D, GURR G M. Habitat management to conserve natural enemies of arthropod pests in agriculture[J]. Annual Review of Entomology, 2000, 45:175-201 doi: 10.1146/annurev.ento.45.1.175 |
[9] | RUSCH A, VALANTIN-MORISON M, SARTHOU J P, et al. Multi-scale effects of landscape complexity and crop management on pollen beetle parasitism rate[J]. Landscape Ecology, 2011, 26(4):473-486 doi: 10.1007/s10980-011-9573-7 |
[10] | CARVALHEIRO L G, SEYMOUR C L, NICOLSON S W, et al. Creating patches of native flowers facilitates crop pollination in large agricultural fields:Mango as a case study[J]. Journal of Applied Ecology, 2012, 49(6):1373-1383 doi: 10.1111/jpe.2012.49.issue-6 |
[11] | GEIGER F, W?CKERS F L, BIANCHI F J J A. Hibernation of predatory arthropods in semi-natural habitats[J]. BioControl, 2009, 54(4):529-535 doi: 10.1007/s10526-008-9206-5 |
[12] | SCHMIDT M H, THIES C, NENTWIG W, et al. Contrasting responses of arable spiders to the landscape matrix at different spatial scales[J]. Journal of Biogeography, 2008, 35(1):157-166 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=865ef611f74046c422ef6e6763618d2b |
[13] | LEE J C, MENALLED F B, LANDIS D A. Refuge habitats modify impact of insecticide disturbance on carabid beetle communities[J]. Journal of Applied Ecology, 2001, 38(2):472-483 doi: 10.1046/j.1365-2664.2001.00602.x |
[14] | 尤民生, 侯有明, 刘雨芳, 等.农田非作物生境调控与害虫综合治理[J].昆虫学报, 2004, 47(2):260-268 doi: 10.3321/j.issn:0454-6296.2004.02.021 YOU M S, HOU Y M, LIU Y F, et al. Non-crop habitat manipulation and integrated pest management in agroecosystems[J]. Acta Entomologica Sinica, 2004, 47(2):260-268 doi: 10.3321/j.issn:0454-6296.2004.02.021 |
[15] | CARVELL C, MEEK W R, PYWELL R F, et al. Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins[J]. Journal of Applied Ecology, 2007, 44(1):29-40 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=225e9d774c332fc237efe80781b27f61 |
[16] | 刘文惠, 洪波, 胡懿君, 等.不同景观结构下麦田地面甲虫和蜘蛛物种多样性及优势种分布的时空动态[J].应用昆虫学报, 2014, 51(5):1299-1309 http://d.old.wanfangdata.com.cn/Periodical/kczs201405020 LIU W H, HONG B, HU Y J, et al. Space-time dynamic distribution of species diversity and dominant species of ground-dwelling beetle and spider populations on wheat crops in different agricultural landscape structures[J]. Chinese Journal of Applied Entomology, 2014, 51(5):1299-1309 http://d.old.wanfangdata.com.cn/Periodical/kczs201405020 |
[17] | PURTAUF T, DAUBER J, WOLTERS V. The response of carabids to landscape simplification differs between trophic groups[J]. Oecologia, 2005, 142(3):458-464 doi: 10.1007/s00442-004-1740-y |
[18] | PURTAUF T, ROSCHEWITZ I, DAUBER J, et al. Landscape context of organic and conventional farms:Influences on carabid beetle diversity[J]. Agriculture, Ecosystems & Environment, 2005, 108(2):165-174 http://europepmc.org/abstract/AGR/IND43713631 |
[19] | CLOUGH Y, KRUESS A, KLEIJN D, et al. Spider diversity in cereal fields:Comparing factors at local, landscape and regional scales[J]. Journal of Biogeography, 2005, 32(11):2007-2014 doi: 10.1111/jbi.2005.32.issue-11 |
[20] | SCHMIDT M H, TSCHARNTKE T. Landscape context of sheetweb spider (Araneae:Linyphiidae) abundance in cereal fields[J]. Journal of Biogeography, 2005, 32(3):467-473 doi: 10.1111/jbi.2005.32.issue-3 |
[21] | GARDINER M M, LANDIS D A, GRATTON C, et al. Landscape composition influences the activity density of Carabidae and Arachnida in soybean fields[J]. Biological Control, 2010, 55(1):11-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45510b25f0b486de4ba9351efafc040f |
[22] | GARDINER M M, LANDIS D A, GRATTON C, et al. Landscape composition influences patterns of native and exotic lady beetle abundance[J]. Diversity and Distributions, 2009b, 15(4):554-564 doi: 10.1111/ddi.2009.15.issue-4 |
[23] | FENG Y, KRAVCHUK O, SANDHU H, et al. The activities of generalist parasitoids can be segregated between crop and adjacent non-crop habitats[J]. Journal of Pest Science, 2017, 90(1):275-286 doi: 10.1007/s10340-016-0775-2 |
[24] | DUELLI P, OBRIST M K. Regional biodiversity in an agricultural landscape:The contribution of seminatural habitat islands[J]. Basic and Applied Ecology, 2003, 4(2):129-138 doi: 10.1078/1439-1791-00140 |
[25] | 刘雨芳, 张古忍, 古德祥.农田生态系统中生境与植被多样性对节肢动物群落的影响及其作用机制探讨[J].湘潭师范学院学报, 2000, 21(6):74-78 http://d.old.wanfangdata.com.cn/Periodical/xtsfxyxb200006019 LIU Y F, ZHANG G R, GU D X. Effect and the acting mechanisms of the habitats and vegetational diversity on arthropod community in agroecosystem[J]. Journal of Xiangtan Normal University, 2000, 21(6):74-78 http://d.old.wanfangdata.com.cn/Periodical/xtsfxyxb200006019 |
[26] | HAWRO V, CERYNGIER P, TSCHARNTKE T, et al. Landscape complexity is not a major trigger of species richness and food web structure of European cereal aphid parasitoids[J]. BioControl, 2015, 60(4):451-461 doi: 10.1007/s10526-015-9660-9 |
[27] | ?STMAN ?, EKBOM B, BENGTSSON J. Landscape heterogeneity and farming practice influence biological control[J]. Basic and Applied Ecology, 2001, 2(4):365-371 doi: 10.1078/1439-1791-00072 |
[28] | 张旭珠, 韩印, 宇振荣, 等.半自然农田边界与相邻农田步甲和蜘蛛的时空分布[J].应用生态学报, 2017, 28(6):1879-1888 http://d.old.wanfangdata.com.cn/Periodical/yystxb201706017 ZHANG X Z, HAN Y, YU Z R, et al. Spatio-temporal distribution of carabids and spiders between semi-natural field margin and the adjacent crop fields in agricultural landscape[J]. Chinese Journal of Applied Ecology, 2017, 28(6):1879-1888 http://d.old.wanfangdata.com.cn/Periodical/yystxb201706017 |
[29] | 赵爽, 宋博, 丁圣彦, 等.黄河下游农业景观中景观结构和生境特征对林表生蜘蛛多样性的影响[J].生态学报, 2017, 37(6):1816-1825 http://d.old.wanfangdata.com.cn/Periodical/stxb201706008 ZHAO S, SONG B, DING S Y, et al. Effects of landscape structure and habitat characteristics on spider diversity in the agro-landscape along the lower reaches of the Yellow River[J]. Acta Ecologica Sinica, 2017, 37(6):1816-1825 http://d.old.wanfangdata.com.cn/Periodical/stxb201706008 |
[30] | ZHOU K, HUANG J K, DENG X Z, et al. Effects of land use and insecticides on natural enemies of aphids in cotton:First evidence from smallholder agriculture in the North China Plain[J]. Agriculture, Ecosystems & Environment, 2014, 183:176-184 http://www.sciencedirect.com/science/article/pii/S0167880913003927 |
[31] | DONG Z K, OUYANG F, LU F, et al. Shelterbelts in agricultural landscapes enhance ladybeetle abundance in spillover from cropland to adjacent habitats[J]. BioControl, 2015, 60(3):351-361 doi: 10.1007/s10526-015-9648-5 |
[32] | GARDINER M M, LANDIS D A, GRATTON C, et al. Landscape diversity enhances biological control of an introduced crop pest in the north-central USA[J]. Ecological Applications, 2009, 19(1):143-154 doi: 10.1890/07-1265.1 |
[33] | AKAIKE H. Information theory and an extension of the maximum likelihood principle[M]//PARZEN E, TANABE K, KITAGAWA G. Selected Papers of Hirotugu Akaike. New York: Springer, 1998: 199-213 |
[34] | 杨福芹, 戴华阳, 冯海宽, 等.基于赤池信息准则的冬小麦植株氮含量高光谱估算[J].农业工程学报, 2016, 32(23):161-167 doi: 10.11975/j.issn.1002-6819.2016.23.022 YANG F Q, DAI H Y, FENG H K, et al. Hyperspectral estimation of plant nitrogen content based on Akaike's information criterion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23):161-167 doi: 10.11975/j.issn.1002-6819.2016.23.022 |
[35] | TSCHARNTKE T, TYLIANAKIS J M, RAND T A, et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses[J]. Biological Reviews, 2012, 87(3):661-685 doi: 10.1111/brv.2012.87.issue-3 |
[36] | 边振兴, 李晓璐, 于淼.东北平原典型玉米种植区农业景观植物多样性研究——以昌图县为例[J].中国生态农业学报, 2018, 26(4):480-492 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0402&flag=1 BIAN Z X, LI X L, YU M. The plant diversity of agro-landscapes in typical maize planting areas in the Northeast Plain, China-A case study of Changtu County[J]. Chinese Journal of Eco-Agriculture, 2018, 26(4):480-492 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0402&flag=1 |
[37] | TURNOCK W J, WISE I L. Density and survival of lady beetles (Coccinellidae) in overwintering sites in Manitoba[J]. The Canadian Field-Naturalist, 2004, 118(3):309-317 doi: 10.22621/cfn.v118i3.10 |
[38] | 杨龙, 徐磊, 刘冰, 等.农田景观格局对华北地区麦田早期瓢虫种群发生的影响[J].应用昆虫学报, 2016, 53(3):612-620 http://d.old.wanfangdata.com.cn/Periodical/kczs201603022 YANG L, XU L, LIU B, et al. Effects of landscape pattern on the occurrence of ladybeetles in wheat fields in northern China[J]. Chinese Journal of Applied Entomology, 2016, 53(3):612-620 http://d.old.wanfangdata.com.cn/Periodical/kczs201603022 |
[39] | LABRIE G, CODERRE D, LUCAS é. Overwintering strategy of multicolored Asian lady beetle (Coleoptera:Coccinellidae):Cold-free space as a factor of invasive success[J]. Annals of the Entomological Society of America, 2008, 101(5):860-866 doi: 10.1093/aesa/101.5.860 |
[40] | Wang S, Michaud J P, Tan X L, et al. The aggregation behavior of Harmonia axyridis in its native range in Northeast China[J]. BioControl, 2011, 56(2):193-206 doi: 10.1007/s10526-010-9325-7 |
[41] | WERLING B P, GRATTON C. Local and broad scale landscape structure differentially impact predation of two potato pests[J]. Ecological Applications, 2010, 20(4):1114-1125 doi: 10.1890/09-0597.1 |
[42] | 邬建国.景观生态学——格局、过程、尺度与等级[M].第2版.北京:高等教育出版社, 2007 WU J G. Landscape Ecology:Pattern, Process, Scale and Hierarchy[M]. 2nd ed. Beijing:Higher Education Press, 2007 |