董文旭1,
胡春胜1,,,
李佳珍1, 2,
陈拓1, 2
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
基金项目: 公益性行业(农业)科研专项201503117-5
国家重点研发计划项目2017YFD0800601
详细信息
作者简介:赵力莹, 主要研究方向为农田生态系统碳循环。E-mail:zlydlkx@163.com
通讯作者:胡春胜, 主要研究方向为农田生态系统碳、氮、水循环及土壤生态过程。E-mail:cshu@sjziam.ac.cn
中图分类号:S157.4+2;S512.1+1计量
文章访问数:827
HTML全文浏览量:2
PDF下载量:854
被引次数:0
出版历程
收稿日期:2018-03-07
录用日期:2018-05-30
刊出日期:2018-11-01
Effect of tillage method change on soil greenhouse gas emission and yield during winter-wheat growing season
ZHAO Liying1, 2,,DONG Wenxu1,
HU Chunsheng1,,,
LI Jiazhen1, 2,
CHEN Tuo1, 2
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Water-Saving Agriculture, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the Special Fund for Agro-scientific Research in the Public Interest of China201503117-5
the National Key Research and Development Program of China2017YFD0800601
More Information
Corresponding author:HU Chunsheng, E-mail:cshu@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:合理耕作方式对农业可持续生产和减缓全球气候变化有重要意义。为评价耕作方式转变对农田温室气体排放的影响,本研究针对连续16年的长期旋耕小麦/玉米农田进行不同的轮耕处理,采用原位静态箱-气相色谱法分析了小麦季农田土壤3种温室气体CH4、CO2、N2O排放规律。试验共设3个处理:在前期旋耕基础上分别进行翻耕处理(XF)和深松处理(XS),另外保持旋耕(X)作为对照。试验结果表明:CO2排放通量在耕作后1周有明显排放峰,XF处理显著低于X和XS处理;N2O排放通量在耕作和灌溉施肥后有明显排放峰,XS处理显著高于XF和X处理;两种气体排放通量在越冬期出现最低值。CH4从耕作后到越冬期有持续明显的吸收过程,其中XS处理的吸收通量显著高于XF和X处理。农田土壤在冬小麦生长季表现为CO2的源,累积排放量为XS(5 241 kg·hm-2)> X(5 160 kg·hm-2)> XF(4 840 kg·hm-2),XS与X处理间差异不显著,均显著高于XF;N2O的源,累积排放量表现为XS(4.38 kg·hm-2)> XF(2.39 kg·hm-2)> X(2.26 kg·hm-2),XS与XF处理间差异不显著,均显著高于X处理;CH4的汇,累积吸收量为XS(6.14 kg·hm-2)> XF(5.64 kg·hm-2)> X(3.70 kg·hm-2)。将累积温室气体换算为CO2当量,对增温效应的贡献表现为XF(5.32 t·hm-2) < X(5.66 t·hm-2) < XS(6.23 t·hm-2),三者之间差异达显著水平。经翻耕处理后,0~10 cm土壤有机质含量明显低于X处理,而10~20 cm土壤有机质升高,表层有机质降低可能是翻耕处理CO2的排放减少的主要原因。不同耕作处理后小麦产量差异明显,X处理冬小麦产量最高,且显著高于XS处理,XF处理与X和XS处理差异均不显著。综合考虑耕作方式对温室气体排放和冬小麦产量的影响,短期内旋耕-翻耕可能是较适宜的轮耕模式,旋耕深松模式不利于控制温室气体排放,但未来需要加强对不同轮耕模式长期效应研究。
关键词:冬小麦/
旋耕/
翻耕/
深松/
温室气体/
产量
Abstract:Under long-term rotary tillage, soil bulk density, carbon decomposition and nutrient in sub-surface soil in the shallow plow layer significantly increase, but wheat growth and soil carbon sequestration become limited. However, subsoiling and deep plowing can break the bottom of the plow layer and reduce soil bulk density, which are conducive for good growth of plant root and absorption of nutrients to ensure high crop yield. The objectives of this study were to analyze changes in greenhouse gases emission and wheat yield after 16 years (2001-2016) of rotary tillage (X) treatment and conversion into other tillage treatments, including rotary tillage-deep plowing (XF) and rotary tillage-subsoiling (XS) treatments in 2016, and to determine the best rational tillage strategy. Carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4)emission fluxes in the three tillage treatments were sampled and measured using static chamber-gas chromatography. Soil temperature at the 0 cm depth, soil gravimetric moisture content, soil bulk density at different depths and other related factors were monitored during wheat growth period and winter wheat yield analyzed after harvest. The experimental results showed prominent high fluxes of CO2 and N2O one week after the three tillage treatments and during harvest, with minimum emission fluxes of CO2and N2O during winter period. Compared with XF treatment, X and XS treatments significantly increased CO2 emission fluxes from the start of the three tillage treatments to the end of October. Compared with X and XF treatments, N2O fluxes under XS treatment were significant high after tillage treatment, fertilization and irrigation. CH4 fluxes fluctuated from November 2016 to February 2017, and became more stable from March 2017. From January 2017 to the harvest season, soil uptake of CH4 under XS treatment was higher than those under XF and X treatments. The fields under the three tillage treatments during winter wheat growth were the sources of CO2 and N2O. The cumulative fluxes of the three tillage treatments served as CH4 sink. In winter wheat fields, cumulative CO2 emission was in order of XS > X > XF, with total CO2 emissions of 5 241 kg·hm-2, 5 160 kg·hm-2 and 4 840 kg·hm-2, respectively. Cumulative N2O emission was in order of XS > XF > X, with total N2O emissions of 4.38 kg·hm-2, 2.39 kg·hm-2 and 2.26 kg·hm-2, respectively. Cumulative CH4 sink was in order of XS > XF > X, with total CH4 absorptions of 6.14 kg·hm-2, 5.64 kg·hm-2 and 3.70 kg·hm-2, respectively. The contribution of cumulative greenhouse gases to CO2-equivalents was expressed as XS > X > XF, which were 6.23 t·hm-2, 5.66 t·hm-2 and 5.32 t·hm-2, respectively. Using deep plowing and subsoiling, soil organic matter decreased in the 0-10 cm soil depth, but increased in the 10-20 cm soil depth. Soil organic carbon was the main source of CO2. Reduction in soil organic matter led to reduction in CO2. Winter wheat grain yield under X treatment was higher than that under XS and XF treatments. Considering the changes in soil physical properties, greenhouse gas emission and wheat yield, XF treatment was the most suitable tillage practice. However, more and longer research work was needed to determine an ideal tillage treatment to ensure future ecological benefits and grain yield.
Key words:Winter wheat/
Rotary tillage/
Deep plowing tillage/
Subsoiling tillage/
Greenhouse gases/
Yield
HTML全文
图1试验年份研究区冬小麦季日平均温度(a)和降雨量(b)
Figure1.Mean daily air temperature (a) and precipitation (b) during winter wheat season of the study year in the study area
下载: 全尺寸图片幻灯片
图2不同耕作处理冬小麦田地表平均温度(a)和0~20 cm土层土壤重量含水率(b)的变化
X:旋耕; XF:旋耕后翻耕; XS:旋耕后深松。X: rotary tillage; XF: rotary tillage converting to deep plowing tillage; XS: rotary tillage converting to subsoiling tillage.
Figure2.Variations of surface soil temperature (a) and soil gravimetric moisture content of 0-20 cm soil layer (b) of winter wheat field under different tillage treatments
下载: 全尺寸图片幻灯片
图3冬小麦收获后不同耕作处理不同深度土壤容重
X:旋耕; XF:旋耕后翻耕; XS:旋耕后深松。同一土层不同字母表示在P < 0.05水平差异显著。X: rotary tillage; XF: rotary tillage converting to deep plowing tillage; XS: rotary tillage converting to subsoiling tillage. Different letters within a soil depth indicate significant differences at P < 0.05.
Figure3.Soil bulk densities under different tillage treatments in different soil depths after winter wheat harvest
下载: 全尺寸图片幻灯片
图4不同耕作处理下冬小麦田CO2排放通量的变化
X:旋耕; XF:旋耕后翻耕; XS:旋耕后深松。X: rotary tillage; XF: rotary tillage converting to deep plowing tillage; XS: rotary tillage converting to subsoiling tillage.
Figure4.Variation of CO2 flux of winter wheat field under different tillage treatments
下载: 全尺寸图片幻灯片
图5不同耕作处理下冬小麦田N2O排放通量的变化
X:旋耕; XF:旋耕后翻耕; XS:旋耕后深松。X: rotary tillage; XF: rotary tillage converting to deep plowing tillage; XS: rotary tillage converting to subsoiling tillage.
Figure5.Variation of N2O flux of winter wheat field under different tillage treatments
下载: 全尺寸图片幻灯片
图6不同耕作处理下冬小麦田CH4排放通量的变化
X:旋耕; XF:旋耕后翻耕; XS:旋耕后深松。X: rotary tillage; XF: rotary tillage converting to deep plowing tillage; XS: rotary tillage converting to subsoiling tillage.
Figure6.Variation of CH4 flux of winter wheat field under different tillage treatments
下载: 全尺寸图片幻灯片
表1不同耕作处理下冬小麦田不同土层土壤有机质含量
Table1.Soil organic matter contents at 0-10 cm, 10-20 cm, 20-30 cm layers of winter wheat field under different tillage treatments
g·kg-1 | |||
土层深度 Soil depth (cm) | X | XF | XS |
0~10 | 22.52±0.26a | 21.13±0.14b | 21.54±0.45ab |
10~20 | 16.55±0.65a | 18.33±1.20a | 17.19±0.60a |
20~30 | 12.00±0.69a | 11.56±0.54a | 12.24±0.17a |
X:旋耕; XF:旋耕后翻耕; XS:旋耕后深松。数据为3次重复的平均值±标准误。同行不同字母表示在P < 0.05水平差异显著。X: rotary tillage; XF: rotary tillage converting to deep plowing tillage; XS: rotary tillage converting to subsoiling tillage. Values are means ± S.E. (n=3). Different letters within a row indicate significant differences at P < 0.05. |
下载: 导出CSV
表2不同耕作处理下冬小麦田温室气体累积排放量和对增温效应的贡献
Table2.Cumulative emissions of greenhouse gases expressed as CO2-equivalents and contribution to warming effect under different tillage treatments
耕作处理 Tillage treatment | 累积排放 Cumulative emission | 对增温效应贡献率 Contribution rate to warming effect (%) | ||||||
CH4 (kg·hm-2) | CO2 (kg·hm-2) | N2O (kg·hm-2) | CO2-eq (t·hm-2) | CH4 | CO2 | N2O | ||
X | -3.70±0.09c | 5 160.07±71.36a | 2.26±0.06b | 5.66±0.07b | -1.83 | 91.22 | 10.61 | |
XF | -5.64±0.09b | 4 840.17±41.19b | 2.39±0.05b | 5.32±0.05c | -2.97 | 91.04 | 11.93 | |
XS | -6.14±0.14a | 5 241.83±19.22a | 4.38±0.04a | 6.23±0.01a | -2.76 | 84.15 | 18.62 | |
X:旋耕; XF:旋耕后翻耕; XS:旋耕后深松。数据为4次重复的平均值±标准误。同列不同字母表示在P < 0.05水平下差异显著。X: rotary tillage; XF: rotary tillage converting to deep plowing tillage; XS: rotary tillage converting to subsoiling tillage. Values are means ± S.E. (n=4). Different letters within a column indicate significant differences at P < 0.05. |
下载: 导出CSV
表3不同耕作处理对冬小麦产量及其构成因素的影响
Table3.Effects of different tillage treatments on grain yield and its' components of winter wheat
耕作处理 Tillagetreatment | 穗数 Spike number (spikes·m-2) | 穗粒数 Grain numberper spike | 千粒重 1 000-grain weight (g) | 产量 Yield (kg·hm-2) | 地上生物量 Above-ground biomass(kg·hm-2) | 收获指数 Harvest index (%) |
X | 687.22±56.73a | 35.94±0.48a | 43.34±1.30a | 7 197.93±181.51a | 15 645.94±349.28a | 46.00±0.36a |
XF | 597.22±24.33a | 30.08±0.62c | 43.36±0.26a | 6 501.07±189.64ab | 14 285.25±441.17ab | 45.54±0.56a |
XS | 708.89±51.46a | 33.44±0.59b | 40.47±0.55b | 6 187.23±400.86b | 13 378.67±862.39b | 46.25±0.34a |
X:旋耕; XF:旋耕后翻耕; XS:旋耕后深松。数据为6次重复的平均值±标准误, 同列不同字母表示P < 0.05水平下差异显著。X: rotary tillage; XF: rotary tillage converting to deep plowing tillage; XS: rotary tillage converting to subsoiling tillage. Values are means ± S.E. (n=6). Different letters within a colum indicate significant differences at P < 0.05. |
下载: 导出CSV
参考文献
[1] | 李晶, 王明星, 王跃思, 等.农田生态系统温室气体排放研究进展[J].大气科学, 2003, 27(4):740-749 doi: 10.3878/j.issn.1006-9895.2003.04.20 LI J, WANG M X, WANG Y S, et al. Advance of researches on greenhouse gases emission from Chinese agricultural ecosystem[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4):740-749 doi: 10.3878/j.issn.1006-9895.2003.04.20 |
[2] | HOUGHTON J T, DING Y, GRIGGS D J. Climate Change 2001: The Scientific Basis. Contribution of Working Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge, UK: Cambridge University Press, 2001 |
[3] | SMITH P, MARTINO D, CAI Z C, et al. Greenhouse gas mitigation in agriculture[J]. Philosophical Transactions of the Royal Society B, 2008, 363(1492):789-813 doi: 10.1098/rstb.2007.2184 |
[4] | 于淑婷, 赵亚丽, 王育红, 等.轮耕模式对黄淮海冬小麦-夏玉米两熟区农田土壤改良效应[J].中国农业科学, 2017, 50(11):2150-2165 doi: 10.3864/j.issn.0578-1752.2017.11.020 YU S T, ZHAO Y L, WANG Y H, et al. Improvement effects of rotational tillage patterns on soil in the winter wheat-summer maize double cropping area of Huang-Huai-Hai region[J]. Scientia Agricultura Sinica, 2017, 50(11):2150-2165 doi: 10.3864/j.issn.0578-1752.2017.11.020 |
[5] | 汤文光, 肖小平, 唐海明, 等.长期不同耕作与秸秆还田对土壤养分库容及重金属Cd的影响[J].应用生态学报, 2015, 26(1):168-176 http://d.old.wanfangdata.com.cn/Periodical/yystxb201501023 TANG W G, XIAO X P, TANG H M, et al. Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration[J]. Chinese Journal of Applied Ecology, 2015, 26(1):168-176 http://d.old.wanfangdata.com.cn/Periodical/yystxb201501023 |
[6] | ZHANG X Q, PU C, ZHAO X, et al. Tillage effects on carbon footprint and ecosystem services of climate regulation in a winter wheat-summer maize cropping system of the North China Plain[J]. Ecological Indicators, 2016, 67:821-829 doi: 10.1016/j.ecolind.2016.03.046 |
[7] | 翟振, 李玉义, 逄焕成, 等.黄淮海北部农田犁底层现状及其特征[J].中国农业科学, 2016, 49(12):2322-2332 doi: 10.3864/j.issn.0578-1752.2016.12.008 ZHAI Z, LI Y Y, PANG H C, et al. Study on present situation and characteristics of plow pan in the northern region of Huang Huai Hai Plain[J]. Scientia Agricultura Sinica, 2016, 49(12):2322-2332 doi: 10.3864/j.issn.0578-1752.2016.12.008 |
[8] | 杨雪, 逄焕成, 李轶冰, 等.深旋松耕作法对华北缺水区壤质黏潮土物理性状及作物生长的影响[J].中国农业科学, 2013, 46(16):3401-3412 doi: 10.3864/j.issn.0578-1752.2013.16.011 YANG X, PANG H C, LI Y B, et al. Effects of deep rotary sub-soiling tillage on the physical properties and crop growth of the sticky loamy soil in north China[J]. Scientia Agricultura Sinica, 2013, 46(16):3401-3412 doi: 10.3864/j.issn.0578-1752.2013.16.011 |
[9] | 王金贵, 王益权, 徐海, 等.农田土壤紧实度和容重空间变异性研究[J].土壤通报, 2012, 43(3):594-598 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201706761 WANG J G, WANG Y Q, XU H, et al. Spatial variability of soil compaction and bulk density in farmland[J]. Chinese Journal of Soil Science, 2012, 43(3):594-598 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201706761 |
[10] | 田慎重.基于长期耕作和秸秆还田的农田土壤碳库演变、固碳减排潜力和碳足迹分析[D].泰安: 山东农业大学, 2014 TIAN S Z. Responses of soil organic carbon pool, greenhouse gas emission and carbon footprint to a long-term tillage and residue management system[D]. Tai'an: Shandong Agricultural University, 2014 |
[11] | 侯贤清, 李荣, 贾志宽, 等.不同农作区土壤轮耕模式与生态效应研究进展[J].生态学报, 2016, 36(5):1215-1223 http://d.old.wanfangdata.com.cn/Periodical/stxb201605004 HOU X Q, LI R, JIA Z K, et al. Research progress on ecological effects under the rotational tillage patterns in agricultural regions of China[J]. Acta Ecologica Sinica, 2016, 36(5):1215-1223 http://d.old.wanfangdata.com.cn/Periodical/stxb201605004 |
[12] | BADAGLIACCA G, BENíTEZ E, AMATO G, et al. Long-term effects of contrasting tillage on soil organic carbon, nitrous oxide and ammonia emissions in a Mediterranean Vertisol under different crop sequences[J]. Science of the Total Environment, 2017, 619/620:18-27 http://www.ncbi.nlm.nih.gov/pubmed/29136531 |
[13] | ZHU X Y, CHANG L, LIU J, et al. Exploring the relationships between soil fauna, different tillage regimes and CO2 and N2O emissions from black soil in China[J]. Soil Biology and Biochemistry, 2016, 103:106-116 doi: 10.1016/j.soilbio.2016.08.019 |
[14] | LAMPTEY S, LI L L, XIE J H, et al. Soil respiration and net ecosystem production under different tillage practices in semi-arid Northwest China[J]. Plant Soil and Environment, 2017, 63(1):14-21 doi: 10.17221/PSE |
[15] | LOGNOUL M, THEODORAKOPOULOS N, HIEL M P, et al. Impact of tillage on greenhouse gas emissions by an agricultural crop and dynamics of N2O fluxes:Insights from automated closed chamber measurements[J]. Soil and Tillage Research, 2017, 167:80-89 doi: 10.1016/j.still.2016.11.008 |
[16] | LEE J, SIX J, KING A P, et al. Tillage and field scale controls on greenhouse gas emissions[J]. Journal of Environmental Quality, 2006, 35(3):714-725 doi: 10.2134/jeq2005.0337 |
[17] | 李长生, 肖向明, FROLKING S, 等.中国农田的温室气体排放[J].第四纪研究, 2003, 23(5):493-503 doi: 10.3321/j.issn:1001-7410.2003.05.004 LI C S, XIAO X M, FROLKING S, et al. Greenhouse gas emissions from croplands of China[J]. Quaternary Sciences, 2003, 23(5):493-503 doi: 10.3321/j.issn:1001-7410.2003.05.004 |
[18] | 刘爽, 严昌荣, 何文清, 等.不同耕作措施下旱地农田土壤呼吸及其影响因素[J].生态学报, 2010, 30(11):2919-2924 http://d.old.wanfangdata.com.cn/Periodical/stxb201011014 LIU S, YAN C R, HE W Q, et al. Soil respiration and it's affected factors under different tillage systems in dryland production systems[J]. Acta Ecologica Sinica, 2010, 30(11):2919-2924 http://d.old.wanfangdata.com.cn/Periodical/stxb201011014 |
[19] | 陈素英, 张喜英, 孙宏勇, 等.华北平原秸秆覆盖冬小麦减产原因分析[J].中国生态农业学报, 2013, 21(5):519-525 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013501&flag=1 CHEN S Y, ZHANG X Y, SUN H Y, et al. Cause and mechanism of winter wheat yield reduction under straw mulch in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5):519-525 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013501&flag=1 |
[20] | 赵自超.华北平原优化农作条件下作物生产和温室气体减排研究[D].北京: 中国农业大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10019-1017164658.htm ZHAO Z C. Crop production and greenhouse gas mitigation through optimized farming practices in Northern China Plain[D]. Beijing: China Agricultural University, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10019-1017164658.htm |
[21] | 张宇, 张海林, 陈继康, 等.耕作措施对华北农田CO2排放影响及水热关系分析[J].农业工程学报, 2009, 25(4):47-53 doi: 10.3321/j.issn:1007-4333.2009.04.008 ZHANG Y, ZHANG H L, CHEN J K, et al. Effects of different tillage practices on CO2 emission fluxes from farmland in North China Plain and the analysis of soil temperature and moisture[J]. Transactions of the CSAE, 2009, 25(4):47-53 doi: 10.3321/j.issn:1007-4333.2009.04.008 |
[22] | 李琳, 张海林, 陈阜, 等.不同耕作措施下冬小麦生长季农田二氧化碳排放通量及其与土壤温度的关系[J].应用生态学报, 2007, 18(12):2765-2770 http://d.old.wanfangdata.com.cn/Periodical/yystxb200712020 LI L, ZHANG H L, CHEN F, et al. CO2 flux and its correlation with soil temperature in winter wheat growth season under different tillage measures[J]. Chinese Journal of Applied Ecology, 2007, 18(12):2765-2770 http://d.old.wanfangdata.com.cn/Periodical/yystxb200712020 |
[23] | 张贺, 郭李萍, 谢立勇, 等.不同管理措施对华北平原冬小麦田土壤CO2和N2O排放的影响研究[J].土壤通报, 2013, 44(3):653-659 http://d.old.wanfangdata.com.cn/Periodical/trtb201303024 ZHANG H, GUO L P, XIE L Y, et al. The effect of management practices on the emission of CO2 and N2O from the winter wheat field in North China Plain[J]. Chinese Journal of Soil Science, 2013, 44(3):653-659 http://d.old.wanfangdata.com.cn/Periodical/trtb201303024 |
[24] | 黄光辉, 张明园, 陈阜, 等.耕作措施对华北地区冬小麦田N2O排放的影响[J].农业工程学报, 2011, 27(2):167-173 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201102028 HUANG G H, ZHANG M Y, CHEN F, et al. Influences of tillage methods on N2O emission from winter wheat field in North China Plain[J]. Transactions of the CSAE, 2011, 27(2):167-173 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201102028 |
[25] | 田慎重, 宁堂原, 李增嘉, 等.不同耕作措施对华北地区麦田CH4吸收通量的影响[J].生态学报, 2010, 30(2):541-548 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201002033 TIAN S Z, NING T Y, LI Z J, et al. Effect of CH4 uptake flux under different tillage systems in wheat field in the North China Plain[J]. Acta Ecologica Sinica, 2010, 30(2):541-548 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201002033 |
[26] | 郑智旗, 王树东, 何进, 等.耕作措施对京郊冬小麦农田CO2、CH4排放通量的影响[J].农业机械学报, 2014, 45(S1):189-195 doi: 10.6041/j.issn.1000-1298.2014.S0.030 ZHENG Z Q, WANG S D, HE J, et al. Influences of tillage methods on carbon dioxide and methane fluxes from winter wheat fields in Beijing's suburb[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(S1):189-195 doi: 10.6041/j.issn.1000-1298.2014.S0.030 |
[27] | 武岩, 红梅, 林立龙, 等. 3种土壤改良剂对河套灌区玉米田温室气体排放的影响[J].环境科学, 2018, 39(1):310-320 http://d.old.wanfangdata.com.cn/Periodical/hjkx201801039 WU Y, HONG M, LIN L L, et al. Effects of three soil amendments on greenhouse gas emissions from corn fields in the Hetao Irrigation District[J]. Environmental Science, 2018, 39(1):310-320 http://d.old.wanfangdata.com.cn/Periodical/hjkx201801039 |
[28] | 闫翠萍, 张玉铭, 胡春胜, 等.不同耕作措施下小麦-玉米轮作农田温室气体交换及其综合增温潜势[J].中国生态农业学报, 2016, 24(6):704-715 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016602&flag=1 YAN C P, ZHANG Y M, HU C S, et al. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6):704-715 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016602&flag=1 |
[29] | STOCKER T F, QIN D, PLATTNER G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2013 |
[30] | SOLOMON S, QIN D, MANNING M, et al. Climate change 2007: The physical science basis. Contribution of working group to the fourth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2007 |
[31] | BISTA P, NORTON U, GHIMIRE R, et al. Effects of tillage system on greenhouse gas fluxes and soil mineral nitrogen in wheat (Triticum aestivum, L.)-fallow during drought[J]. Journal of Arid Environments, 2017, 147:103-113 doi: 10.1016/j.jaridenv.2017.09.002 |
[32] | 王秀领, 阎旭东, 徐玉鹏, 等.不同耕作方式对春玉米土壤水分、温度及产量的影响[J].玉米科学, 2017, 25(3):87-93 http://cdmd.cnki.com.cn/Article/CDMD-10712-2006179761.htm WANG X L, YAN X D, XU Y P, et al. Effects of different culture methods on soil water, temperature and yield of spring maize[J]. Journal of Maize Sciences, 2017, 25(3):87-93 http://cdmd.cnki.com.cn/Article/CDMD-10712-2006179761.htm |
[33] | LIU Y, YANG L, GU D D, et al. Influence of tillage practice on soil CO2 emission rate and soil characteristics in a dryland wheat field[J]. International Journal of Agriculture & Biology, 2013, 15(4):680-686 http://www.cabdirect.org/abstracts/20133240829.html |
[34] | CHATSKIKH D, OLESEN J E. Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley[J]. Soil and Tillage Research, 2007, 97(1):5-18 doi: 10.1016/j.still.2007.08.004 |
[35] | 王芸, 韩宾, 史忠强, 等.保护性耕作对土壤微生物特性及酶活性的影响[J].水土保持学报, 2006, 20(4):120-122 doi: 10.3321/j.issn:1009-2242.2006.04.029 WANG Y, HAN B, SHI Z Q, et al. Effects of conservation tillage on soil microbial characters and soil enzyme activities[J]. Journal of Soil and Water Conservation, 2006, 20(4):120-122 doi: 10.3321/j.issn:1009-2242.2006.04.029 |
[36] | 王立刚, 邱建军, 李维炯.黄淮海平原地区夏玉米农田土壤呼吸的动态研究[J].土壤肥料, 2002, (6):13-17 http://d.old.wanfangdata.com.cn/Periodical/trfl200206003 WANG L G, QIU J J, LI W J. Study on the dynamics of soil respiration in the field of summer-corn in Huanghuaihai region in China[J]. Soils and Fertilizers, 2002, (6):13-17 http://d.old.wanfangdata.com.cn/Periodical/trfl200206003 |
[37] | KRAUSS M, RUSER R, M LLER T, et al. Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley-winter wheat cropping sequence[J]. Agriculture, Ecosystems & Environment, 2017, 239:324-333 http://europepmc.org/abstract/MED/28366969 |
[38] | 李晓密, 伦小秀, 陈琪, 等.不同施肥处理下冬小麦-夏玉米轮作农田温室气体的排放[J].环境化学, 2014, 33(4):591-596 http://d.old.wanfangdata.com.cn/Periodical/hjhx201404008 LI X M, LUN X X, CHEN Q, et al. Greenhouse gas emission from a winter wheat-summer maize crop rotation farmland under different fertilization treatments[J]. Environmental Chemistry, 2014, 33(4):591-596 http://d.old.wanfangdata.com.cn/Periodical/hjhx201404008 |
[39] | BHATIA A, SASMAL S, JAIN N, et al. Mitigating nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors[J]. Agriculture, Ecosystems & Environment, 2010, 136(3/4):247-253 http://www.cabdirect.org/abstracts/20103123153.html |
[40] | ZHANG Y F, SHENG J, WANG Z C, et al. Nitrous oxide and methane emissions from a Chinese wheat-rice cropping system under different tillage practices during the wheat-growing season[J]. Soil and Tillage Research, 2015, 146:261-269 doi: 10.1016/j.still.2014.09.019 |
[41] | DOBBIE K E, MCTAGGART I P, SMITH K A. Nitrous oxide emissions from intensive agricultural systems:Variations between crops and seasons, key driving variables, and mean emission factors[J]. Geophysical Research, 1999, 104(D21):26891-26899 doi: 10.1029/1999JD900378 |
[42] | SMITH K A, BALL T, CONEN F, et al. Exchange of greenhouse gases between soil and atmosphere:Interactions of soil physical factors and biological processes[J]. European Journal of Soil Science, 2003, 54(4):779-791 doi: 10.1046/j.1351-0754.2003.0567.x |
[43] | 曾泽彬, 朱波, 朱雪梅, 等.施肥对夏玉米季紫色土N2O排放及反硝化作用的影响[J].土壤学报, 2013, 50(1):130-137 http://d.old.wanfangdata.com.cn/Periodical/trxb201301016 ZENG Z B, ZHU B, ZHU X M, et al. Effects of fertilization on N2O emission and denitrification in purple soil during summer maize season in the Sichuan basin[J]. Acta Pedologica Sinica, 2013, 50(1):130-137 http://d.old.wanfangdata.com.cn/Periodical/trxb201301016 |
[44] | 黄国宏, 陈冠雄, 韩冰, 等.土壤含水量与N2O产生途径研究[J].应用生态学报, 1999, 10(1):53-56 doi: 10.3321/j.issn:1001-9332.1999.01.014 HUANG G H, CHEN G X, HAN B, et al. Relationships between soil water content and N2O production[J]. Chinese Journal of Applied Ecology, 1999, 10(1):53-56 doi: 10.3321/j.issn:1001-9332.1999.01.014 |
[45] | FORTE A, FIORENTINO N, FAGNANO M, et al. Mitigation impact of minimum tillage on CO2 and N2O emissions from a Mediterranean maize cropped soil under low-water input management[J]. Soil and Tillage Research, 2017, 166:167-178 doi: 10.1016/j.still.2016.09.014 |
[46] | TIAN S Z, WANG Y, NING T Y, et al. Greenhouse gas flux and crop productivity after 10 years of reduced and no tillage in a wheat-maize cropping system[J]. PLoS One, 2013, 8(9):e73450 doi: 10.1371/journal.pone.0073450 |
[47] | DOBBIE K E, SMITH K A. Nitrous oxide emission factors for agricultural soils in Great Britain:The impact of soil water-filled pore space and other controlling variables[J]. Global Change Biology, 2003, 9(2):204-218 doi: 10.1046/j.1365-2486.2003.00563.x |
[48] | 陈晓龙, 杨威, 江波, 等.不同耕作方式下冬小麦田N2O排放特征的差异性研究[J].干旱地区农业研究, 2016, 34(3):221-227 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201603035 CHEN X L, YANG W, JIANG B, et al. Characteristic variations of N2O flux in winter wheat field under different tillage methods[J]. Agricultural Research in the Arid Areas, 2016, 34(3):221-227 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201603035 |
[49] | 丁世杰, 熊淑萍, 马新明, 等.耕作方式与施氮量对小麦-玉米复种系统玉米季土壤氮素转化及产量的影响[J].应用生态学报, 2017, 28(1):142-150 http://d.old.wanfangdata.com.cn/Periodical/yystxb201701017 DING S J, XIONG S P, MA X M, et al. Effects of tillage and nitrogen application rate on soil nitrogen transformation and yield in a winter wheat/summer maize multiple cropping system[J]. Chinese Journal of Applied Ecology, 2017, 28(1):142-150 http://d.old.wanfangdata.com.cn/Periodical/yystxb201701017 |
[50] | 谢军飞, 李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象, 2002, 23(4):47-52 doi: 10.3969/j.issn.1000-6362.2002.04.013 XIE J F, LI Y E. A review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils[J]. Chinese Journal of Agrometeorology, 2002, 23(4):47-52 doi: 10.3969/j.issn.1000-6362.2002.04.013 |
[51] | WOLFF M W, ALSINA M M, STOCKERT C M, et al. Minimum tillage of a cover crop lowers net GWP and sequesters soil carbon in a California vineyard[J]. Soil and Tillage Research, 2018, 175:244-254 doi: 10.1016/j.still.2017.06.003 |
[52] | 董玉红, 欧阳竹.有机肥对农田土壤二氧化碳和甲烷通量的影响[J].应用生态学报, 2005, 16(7):1303-1307 doi: 10.3321/j.issn:1001-9332.2005.07.024 DONG Y H, OUYANG Z. Effects of organic manures on CO2 and CH4 fluxes of farmland[J]. Chinese Journal of Applied Ecology, 2005, 16(7):1303-1307 doi: 10.3321/j.issn:1001-9332.2005.07.024 |
[53] | 申丽霞, 王璞.保护性耕作对土壤综合特性的影响[J].中国农学通报, 2011, 27(8):265-268 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201108053 SHEN L X, WANG P. Effects of conservation tillage on characteristics of soil[J]. Chinese Agricultural Science Bulletin, 2011, 27(8):265-268 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201108053 |
[54] | 聂良鹏, 郭利伟, 牛海燕, 等.轮耕对小麦-玉米两熟农田耕层构造及作物产量与品质的影响[J].作物学报, 2015, 41(3):468-478 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201503014 NIE L P, GUO L W, NIU H Y, et al. Effects of rotational tillage on tilth soil structure and crop yield and quality in maize-wheat cropping system[J]. Acta Agronomica Sinica, 2015, 41(3):468-478 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201503014 |
[55] | 郑侃, 何进, 李洪文, 等.中国北方地区深松对小麦玉米产量影响的Meta分析[J].农业工程学报, 2015, 31(22):7-15 doi: 10.11975/j.issn.1002-6819.2015.22.002 ZHENG K, HE J, LI H W, et al. Meta-analysis on maize and wheat yield under subsoiling in Northern China[J]. Transactions of the CSAE, 2015, 31(22):7-15 doi: 10.11975/j.issn.1002-6819.2015.22.002 |
[56] | PIERCE F J, FORTIN M C, STATON M J. Immediate and residual effects of zone-tillage on soil physical properties and corn performance[J]. Soil and Tillage Research, 1992, 24(2):149-165 doi: 10.1016/0167-1987(92)90098-V |
[57] | 王玉玲, 李军.利于小麦-玉米轮作田土壤理化性状和作物产量的耕作方式研究[J].植物营养与肥料学报, 2014, 20(5):1139-1150 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201405010 WANG Y L, LI J. Study of tillage patterns suitable for soil physicochemical properties and crop yields in wheat/maize fields[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5):1139-1150 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201405010 |