删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

间作作物菌根菌丝对红壤磷形态的影响

本站小编 Free考研考试/2022-01-01

钟雄1, 2,,
王硕1,
包立1, 2,
张乃明1, 2,
刘大会3,
夏运生1, 2,,,
李佳华1
1.云南农业大学 昆明 650201
2.云南省土壤培肥与污染修复工程实验室 昆明 650201
3.湖北中医药大学 武汉 430065
基金项目: 国家自然科学基金项目41161041
国家自然科学基金项目41105756
云南省科技创新人才计划项目2015HC018
院士专家工作站项目2015IC022
云南省高新技术产业发展项目201605

详细信息
作者简介:钟雄, 主要研究方向为土壤侵蚀与环境。E-mail:zhongxiongyx@163.com
通讯作者:夏运生, 主要研究方向为菌根生理及污染控制。E-mail:yshengxia@163.com
中图分类号:S344.2;S513

计量

文章访问数:747
HTML全文浏览量:9
PDF下载量:553
被引次数:0
出版历程

收稿日期:2018-04-24
录用日期:2018-06-04
刊出日期:2018-11-01

Effects of intercropping and AMF inoculation on phosphorus forms in red soils

ZHONG Xiong1, 2,,
WANG Shuo1,
BAO Li1, 2,
ZHANG Naiming1, 2,
LIU Dahui3,
XIA Yunsheng1, 2,,,
LI Jiahua1
1. Yunnan Agricultural University, Kunming 650201, China
2. Yunnan Soil Fertilizer and Pollution Repair Engineering Laboratory, Kunming 650201, China
3. Hubei University of Chinese Medicine, Wuhan 430065, China
Funds: the National Natural Science Foundation of China41161041
the National Natural Science Foundation of China41105756
the Science and Technology Innovation Talent Plan Project of Yunnan Province2015HC018
the Academician Expert Workstation Project of Yunnan Province2015IC022
the Hi-tech Industrial Development Project of Yunnan Province201605

More Information
Corresponding author:XIA Yunsheng, E-mail:yshengxia@163.com


摘要
HTML全文
(5)(2)
参考文献(27)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)在植物与土壤系统中扮演着重要的角色,能促进寄主植物对养分尤其是磷(P)的吸收。间作在提高土壤P素利用及增产增收等方面具有重要作用。本研究通过三室隔网分室盆栽模拟试验,在玉米/大豆间作种植体系下,对菌丝室进行不同形态P处理[不施P(P0)、施用无机磷(IOP50)、施用有机磷(OP50)],同时在根室进行不同AMF处理[不接种(NM)、接种Funneliformis mosseae(FM)],研究了不同外源形态P添加和AMF处理下,菌根作物对菌丝室红壤中不同形态P吸收利用的影响。结果表明:与单作-FM-IOP50处理相比,间作-FM-IOP50处理下的玉米P吸收量显著增加150.2%,大豆P吸收量增加24.5%;除大豆单作-P0处理外,接种FM均明显降低菌丝室土壤有效磷含量。除大豆单作-FM处理外,施用IOP50使土壤有效磷含量在单作条件下最高,而在间作条件下则最低。对红壤P形态的分级结果表明,接种AMF均一定程度增加了Ca2-P、Al-P、Org-P、O-Al-P、Ca10-P的含量,而间作则显著提高了作物对土壤Ca2-P、Fe-P的吸收;相比其他处理,土壤Ca2-P、Org-P、O-Al-P含量在间作-FM-IOP50组合处理下较高(P < 0.05)。相关分析显示,Ca2-P与玉米植株P吸收量呈显著负相关,而O-Al-P与大豆植株P吸收量呈显著负相关。总之,接种FM、磷肥施用与间作均在一定程度上促进了宿主作物对P的吸收累积。其中间作-FM-IOP50组合是促进间作玉米生长、P素吸收及Ca2-P、Org-P、O-Al-P增加的最佳组合,通过促进无机磷的活化而改善作物对P素的吸收利用,有效削减土壤P素的残留,若将其应用于滇池流域,可望减少P素的流失。
关键词:丛枝菌根真菌(AMF)/
间作/
玉米/
大豆/
磷形态/
磷吸收/
土壤有效磷
Abstract:Arbuscular mycorrhizal fungi (AMF) can help host plants in the uptake of nutrients, especially phosphorus (P). Intercropping also can promote use efficiency of P in soils and increase crop yield. In order to study the effects of different P additions and AMF treatments on the absorption and utilization of different forms of P of intercropping corps in red soils, a pot simulation experiment was conducted using the three-compartment method. Under maize-soybean intercropping system, the hyphal compartments were treated with different forms of P-no P (P0), inorganic P (potassium dihydrogen phosphate-IOP50) and organic P (soy lecithin-OP50). Different AMF treatments, including no AMF (NM), inoculation with Funneliformis mosseae (FM), were performed in the root chamber. Intercropped maize and soybean, mono-cropped maize and soybean were planted in the experiment. The results showed that compared with mono-cropping-FM and IOP50 treatment, P uptake in maize increased by 150.2% and P uptake in soybean increased by only 24.5% under intercropping-FM and IOP50 treatment. Except mono-cropped soybean and P0 treatment, FM inoculation significantly decreased available P content in hyphal compartment soils. In addition to soybean mono-cropping-FM treatment, IOP50 application yielded the highest soil available P content under mono-cropping, and the lowest under intercropping conditions. AMF inoculation increased the contents of Ca2-P, Al-P, Org-P, O-Al-P and Ca10-P to a certain extent, while intercropping significantly increased crop uptake of Ca2-P and Fe-P in the soil. Under combined intercropping, FM and IOP50, the contents of Ca2-P, Org-P and O-Al-P in the soil were higher (P < 0.05) compared with other treatments. Correlation analysis showed that Ca2-P was significantly negatively correlated with P uptake in maize, while O-Al-P was significantly negatively correlated with P uptake in soybean. In conclusion, FM inoculation, P fertilizer application and intercropping all promoted P absorption and accumulation of host crops to a certain extent. Among these, FM, IOP50 and intercropping was the best combination for the promotion of intercropped maize growth, P uptake and increased Ca2-P, Org-P and O-Al-P of red soil. If applied to Dianchi watershed, it is expected to reduce the loss of P.
Key words:Arbuscular mycorrhizal fungi (AMF)/
Intercropping/
Maize/
Soybean/
Phosphorus form/
Phosphorus uptake/
Soil available phosphorus

HTML全文


图1试验装置示意图
Figure1.Diagram of the pot used in the experiment


下载: 全尺寸图片幻灯片


图2接种AMF及施用不同形态磷肥对玉米-大豆间作系统植株生物量的影响
P0、IOP50和OP50分别指在菌丝室中不添加P、添加无机磷50 mg·kg-1、添加有机磷50 mg·kg-1。NM、FM指不接种AMF、接种Funneliformis mosseae。不同小写字母表示不同处理间在P < 0.05水平差异显著。P0, IOP50, and OP50 are treatments of no P, addition of inorganic P 50 mg·kg-1 and addition of organic P 50 mg·kg-1. NM, and FM are treatments of no inoculation and, inoculation with Funneliformis mosseae. Different lowercase letters indicate significant differences at P < 0.05 level among different treatments.
Figure2.Effects of AMF inoculation and application of different forms of phosphate fertilizer on plant dry biomass of maize-soybean intercropping system


下载: 全尺寸图片幻灯片


图3接种AMF及施用不同形态磷肥对间作植株P吸收量的影响
P0、IOP50和OP50分别指在菌丝室中不添加P、添加无机磷50 mg·kg-1、添加有机磷50 mg·kg-1。NM、FM指不接种AMF、接种Funneliformis mosseae。不同小写字母表示不同处理间在P < 0.05水平差异显著。P0, IOP50 and, OP50 are treatments of no P, addition of inorganic P 50 mg·kg-1 and addition of organic P 50 mg·kg-1. NM, and FM are treatments of no inoculation and, inoculation with Funneliformis mosseae. Different lowercase letters indicate significant differences at P < 0.05 level among different treatments.
Figure3.Effects of AMF inoculation and application of different forms of phosphate fertilizer on plant P uptake of maize-soybean intercropping system


下载: 全尺寸图片幻灯片


图4接种AMF及施用不同形态磷肥对菌丝室土壤有效磷的影响
P0、IOP50和OP50分别指在菌丝室中不添加P、添加无机磷50 mg·kg-1、添加有机磷50 mg·kg-1。NM、FM指不接种AMF、接种Funneliformis mosseae。不同小写字母表示不同处理间在P < 0.05水平差异显著。P0, IOP50, and OP50 are treatments of no P, addition of inorganic P 50 mg·kg-1 and addition of organic P 50 mg·kg-1. NM, and FM are treatments of no inoculation, and inoculation with Funneliformis mosseae. Different lowercase letters indicate significant differences at P < 0.05 level among different treatments.
Figure4.Effects of AMF inoculation and application of different forms of phosphate fertilizer on soil available P content in hyphal compartment


下载: 全尺寸图片幻灯片


图5玉米-大豆间作和单作下接种AMF及施用不同形态磷肥对菌丝室土壤磷酸酶的影响
P0、IOP50和OP50分别指在菌丝室中不添加P、添加无机磷50 mg·kg-1、添加有机磷50 mg·kg-1。NM、FM指不接种AMF、接种Funneliformis mosseae。不同小写字母表示不同处理间在P < 0.05水平差异显著。P0, IOP50, and OP50 are treatments of no P, addition of inorganic P 50 mg·kg-1 and addition of organic P 50 mg·kg-1. NM, and FM are treatments of no inoculation, and inoculation with Funneliformis mosseae. Different lowercase letters indicate significant differences at P < 0.05 level among different treatments.
Figure5.Effects of AMF inoculation and application of different forms of phosphate fertilizer on soil phosphatase activity in hyphal compartment under maize-soybean intercropped and monoculture


下载: 全尺寸图片幻灯片

表1玉米-大豆间作和单作下接种AMF及施用不同形态磷肥对菌丝室土壤各形态P含量的影响
Table1.Effects of AMF inoculation and application of different forms of phosphate fertilizer on contents of different P forms in hyphal compartment under maize-soybean intercropped and monoculture
种植模式
Planting mode
菌丝室施P
P addition to hyphal compartment
菌根处理
AMF treatment
Ca2-P Al-P Org-P Fe-P O-Al-P O-Fe-P Ca10-P
玉米单作
Maize monoculture
P0 NM 21.90±0.34j 95.20±3.27i 0.11±0.00i 49.74±1.27g 52.39±3.77h 0.63±0.00j 87.84±1.66kl
FM 50.36±2.35fg 136.83±4.51h 1.23±0.18h 56.43±1.21ef 93.53±1.19ef 1.14±0.05c 102.73±0.74fgh
IOP50 NM 56.63±1.51de 170.82±1.33b 0.15±0.02i 67.22±1.69d 82.38±0.86fg 0.72±0.04i 104.15±2.23fgh
FM 59.17±1.33d 172.42±1.47b 1.68±0.02gh 70.65±1.11d 98.00±1.40e 1.18±0.02bc 146.80±1.67a
OP50 NM 44.45±1.25h 142.84±1.31fgh 2.74±0.04cd 89.93±1.73b 90.20±4.35efg 0.80±0.01hi 106.16±1.72fg
FM 52.17±2.13fgh 183.74±5.80a 3.36±0.09b 103.00±2.41a 96.15±3.34e 1.88±0.02a 113.28±1.00de
大豆单作
Soybean monoculture
P0 NM 35.06±1.73i 142.71±2.01fgh 1.94±0.29fg 53.62±0.18fg 78.62±1.52g 0.78±0.02hi 86.96±0.71l
FM 45.07±1.40gh 154.04±4.28de 2.40±0.22def 58.07±0.92e 92.59±2.57ef 0.95±0.05de 95.30±1.71ij
IOP50 NM 53.78±1.19def 144.90±1.51efgh 2.74±0.13cd 55.25±1.05ef 165.03±10.76c 0.84±0.03fgh 101.57±0.89gh
FM 56.19±0.36de 164.60±4.20bc 2.87±0.04bcd 58.57±0.57e 178.08±4.14b 1.19±0.05bc 106.95±0.16fg
OP50 NM 45.30±0.91gh 145.59±1.34efgh 2.49±0.01def 59.59±0.14e 82.65±1.13fg 0.89±0.02efg 98.99±4.07hi
FM 54.49±1.22def 161.01±1.79cd 3.41±0.19b 58.35±2.19e 95.82±0.62e 0.98±0.03d 120.69±2.43c
间作
Intercropping
P0 NM 44.86±1.21gh 19.70±0.46j 1.34±0.03h 81.34±1.84c 79.01±3.19g 0.81±0.03gh 92.29±0.48jk
FM 52.19±1.29ef 23.38±2.37j 2.15±0.19efg 87.17±0.66b 136.12±0.63d 0.89±0.02efg 116.68±1.65cd
IOP50 NM 67.20±3.52c 138.50±3.36gh 3.19±0.31bc 87.74±1.17b 82.66±1.95fg 0.95±0.01de 99.51±0.81hi
FM 79.97±4.60a 151.60±6.83ef 4.48±0.38a 88.14±2.25b 191.88±2.89a 0.92±0.01def 136.65±0.77b
OP50 NM 68.90±0.84bc 138.74±2.62gh 2.01±0.23fg 89.20±0.79b 172.22±0.70bc 0.95±0.02de 108.30±0.76ef
FM 73.72±1.20b 146.98±1.84efg 2.70±0.20cde 89.35±0.78b 181.07±1.86ab 1.22±0.03b 134.32±2.02b
P0、IOP50和OP50分别指在菌丝室中不添加P、添加无机磷50 mg·kg-1、添加有机磷50 mg·kg-1。NM、FM指不接种AMF、接种Funneliformis mosseae。同列不同小写字母表示不同处理间P < 0.05水平差异显著。P0, IOP50, and OP50 are treatments of no P, addition of inorganic P 50 mg·kg-1 and addition of organic P 50 mg·kg-1. NM, and FM are treatments of no inoculation and, inoculation with Funneliformis mosseae. Different lowercase letters in the same column indicate significant differences at P < 0.05 level among different treatments.


下载: 导出CSV
表2植株P吸收量与菌丝室土壤中有效磷、磷酸酶活性及各无机磷形态之间的相关性
Table2.Correlation between P uptake of plants and available P, phosphatase activity and different inorganic P forms in hyphal compartment soil
土壤有效磷
Soil available P
土壤磷酸酶
Soil phosphatase
Ca2-P Al-P Org-P Fe-P O-Al-P O-Fe-P Ca10-P
土壤磷酸酶
Soil phosphatase
-0.301*
Ca2-P 0.508** -0.533**
Al-P 0.092 0.478** 0.299*
Org-P 0.226 -0.073 0.368** 0.321*
Fe-P 0.336** -0.596** 0.553** -0.102 0.545**
O-Al-P 0.369** -0.412** 0.695** 0.152 0.302* 0.287*
O-Fe-P 0.276* 0.108 0.342** 0.382** 0.506** 0.427** 0.243
Ca10-P 0.534** -0.126 0.665** 0.296* 0.342** 0.412** 0.521** 0.439**
玉米P吸收量
P uptake of maize
-0.470* -0.305 -0.531* -0.378 0.160 0.120 -0.428 -0.403 -0.533
大豆P吸收量
P uptake of soybean
-0.124 0.296 -0.422 -0.188 -0.236 0.087 -0.508* -0.236 -0.262
**和*表示相关性分别在0.01和0.05水平上差异显著。** and * indicate that the correlations are significantly different at 0.01 and 0.05 levels, respectively.


下载: 导出CSV

参考文献(27)
[1]张宇亭, 朱敏, 线岩相洼, 等.接种AM真菌对玉米和油菜种间竞争及土壤无机磷组分的影响[J].生态学报, 2012, 32(22):7091-7101 http://d.old.wanfangdata.com.cn/Periodical/stxb201222020
ZHANG Y T, ZHU M, XIAN Y X W, et al. Influence of mycorrhizal inoculation on competition between plant species and inorganic phosphate forms[J]. Acta Ecologica Sinica, 2012, 32(22):7091-7101 http://d.old.wanfangdata.com.cn/Periodical/stxb201222020
[2]向万胜, 黄敏, 李学垣.土壤磷素的化学组分及其植物有效性[J].植物营养与肥料学报, 2004, 10(6):663-670 doi: 10.3321/j.issn:1008-505X.2004.06.021
XIANG W S, HUANG M, LI X Y. Progress on fractioning of soil phosphorous and availability of various phosphorous fractions to crops in soil[J]. Plant Nutrition and Fertilizer Science, 2004, 10(6):663-670 doi: 10.3321/j.issn:1008-505X.2004.06.021
[3]王庆仁, 李继云, 李振声.高效利用土壤磷素的植物营养学研究[J].生态学报, 1999, 19(3):417-421 doi: 10.3321/j.issn:1000-0933.1999.03.021
WANG Q R, LI J Y, LI Z S. Studies on plant nutrition of efficient utility for soil phosphorus[J]. Acta Ecologica Sinica, 1999, 19(3):417-421 doi: 10.3321/j.issn:1000-0933.1999.03.021
[4]宋春, 毛璐, 徐敏, 等.玉米-大豆套作体系作物根际土壤磷素形态及有效性[J].水土保持学报, 2015, 29(5):226-230 http://d.wanfangdata.com.cn/Periodical/trqsystbcxb201505041
SONG C, MAO L, XU M, et al. Phosphorus fractions and availability of rhizosphere soil in a maize-soybean relay intercropping system[J]. Journal of Soil and Water Conservation, 2015, 29(5):226-230 http://d.wanfangdata.com.cn/Periodical/trqsystbcxb201505041
[5]ZHAO R X, GUO W, BI N, et al. Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress[J]. Applied Soil Ecology, 2015, 88:41-49 doi: 10.1016/j.apsoil.2014.11.016
[6]付先恒, 年夫照, 谷林静, 等.分室磷添加下菌根对滇池流域红壤间作玉米生长及磷素利用的影响[J].中国生态农业学报, 2015, 23(10):1220-1227 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151002&flag=1
FU X H, NIAN F Z, GU L J, et al. Effect of inoculation of AMF on plant growth and phosphorus utilization in intercropped maize under chamber phosphorus addition on red soils in Dianchi Watershed[J]. Chinese Journal of Eco-Agriculture, 2015, 23(10):1220-1227 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151002&flag=1
[7]张丽, 柳勇, 谷林静, 等.外源磷与AMF对间作玉米种植红壤无机磷形态的影响[J].中国土壤与肥料, 2016, (1):26-33 http://d.old.wanfangdata.com.cn/Periodical/trfl201601005
ZHANG L, LIU Y, GU L J, et al. Effect of phosphorus addition and different AMF on inorganic phosphorus forms in red soil under intercropping maize plants[J]. Soil and Fertilizer Sciences in China, 2016, (1):26-33 http://d.old.wanfangdata.com.cn/Periodical/trfl201601005
[8]GROSS N, LE BAGOUSSE-PINGUET Y, LIANCOURT P, et al. Trait-mediated effect of arbuscular mycorrhiza on the competitive effect and response of a monopolistic species[J]. Functional Ecology, 2010, 24(5):1122-1132 doi: 10.1111/j.1365-2435.2010.01713.x
[9]张向前, 黄国勤, 卞新民, 等.红壤旱地玉米对间作大豆和花生边行效应影响的研究[J].中国生态农业学报, 2012, 20(8):1010-1017 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012808&flag=1
ZHANG X Q, HUANG G Q, BIAN X M, et al. Marginal effect of soybean and peanut intercropped with maize in upland red soils[J]. Chinese Journal of Eco-Agriculture, 2012, 20(8):1010-1017 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012808&flag=1
[10]李中阳, 李菊梅, 徐明岗, 等.外源磷对土壤无机磷的影响及有效性[J].中国土壤与肥料, 2007, (3):32-35 doi: 10.3969/j.issn.1673-6257.2007.03.008
LI Z Y, LI J M, XU M G, et al. Change and availability of soil inorganic phosphorus components influenced by phosphorus fertilizer application[J]. Soil and Fertilizer Sciences in China, 2007, (3):32-35 doi: 10.3969/j.issn.1673-6257.2007.03.008
[11]孟凡凡, 王博, 刘宝泉, 等.玉米-大豆带状间作下玉米品种产量和主要农艺性状比较分析[J].作物杂志, 2014, (3):101-105 http://d.old.wanfangdata.com.cn/Periodical/zwzz201403022
MENG F F, WANG B, LIU B Q, et al. Analysis of yield and main agronomic traits of maize in maize and soybean strip intercropping system[J]. Crops, 2014, (3):101-105 http://d.old.wanfangdata.com.cn/Periodical/zwzz201403022
[12]王小春, 杨文钰, 邓小燕, 等.玉米/大豆和玉米/甘薯模式下玉米干物质积累与分配差异及氮肥的调控效应[J].植物营养与肥料学报, 2015, 21(1):46-57 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201501005
WANG X C, YANG W Y, DENG X Y, et al. Differences of dry matter accumulation and distribution of maize and their responses to nitrogen fertilization in maize/soybean and maize/sweet potato relay intercropping systems[J]. Plant Nutrition and Fertilizer Science, 2015, 21(1):46-57 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201501005
[13]姚青, 赵紫娟, 冯固, 等. VA菌根真菌外生菌丝对难溶性无机磷酸盐的活化及利用Ⅰ. 32P间接标记法[J].核农学报, 2000, 14(3):145-150 doi: 10.3969/j.issn.1000-8551.2000.03.004
YAO Q, ZHAO Z J, FENG G, et al. Mobilization and utilization of sparingly soluble phosphates by VA mycorrhizal fungus external hyphae Ⅰ. 32P indirectly labelling[J]. Acta Agriculturae Nucleatae Sinica, 2000, 14(3):145-150 doi: 10.3969/j.issn.1000-8551.2000.03.004
[14]宋勇春, 冯固, 李晓林.泡囊丛枝菌根对红三叶草根际土壤磷酸酶活性的影响[J].应用与环境生物学报, 2000, 6(2):171-175 doi: 10.3321/j.issn:1006-687X.2000.02.015
SONG Y C, FENG G, LI X L. Effect of VAM fungi on phosphatase activity in the rhizosphere of clover[J]. Chinese Journal of Applied & Environmental Biology, 2000, 6(2):171-175 doi: 10.3321/j.issn:1006-687X.2000.02.015
[15]贾广军, 张仕颖, 谷林静, 等.菌根对紫色土上间作玉米生长及磷素累积的影响[J].中国生态农业学报, 2014, 22(5):516-524 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014503&flag=1
JIA G J, ZHANG S Y, GU L J, et al. Effect of mycorrhizal inoculation on growth and phosphorus accumulation of intercropped maize on purple soil[J]. Chinese Journal of Eco-Agriculture, 2014, 22(5):516-524 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014503&flag=1
[16]鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000:268-270
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agriculture Press, 2000:268-270
[17]雷宏军, 刘鑫, 朱端卫.酸性土壤磷分级新方法建立与生物学评价[J].土壤学报, 2007, 44(5):860-866 doi: 10.3321/j.issn:0564-3929.2007.05.013
LEI H J, LIU X, ZHU D W. Development of a new phosphorus fractionation scheme in acid soils and biological evaluation[J]. Acta Pedologica Sinica, 2007, 44(5):860-866 doi: 10.3321/j.issn:0564-3929.2007.05.013
[18]谢贤安.丛枝菌根共生体磷信号转运受体的发现及其分子机制的研究[D].武汉: 华中农业大学, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10504-1013336724.htm
XIE X A. Transport and signaling through the AM symbiotic phosphate transceptor[D]. Wuhan: Huazhong Agricultural University, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10504-1013336724.htm
[19]周贤玉, 唐艺玲, 王志国, 等.减量施氮与间作模式对甜玉米AMF侵染和大豆结瘤及作物氮磷吸收的影响[J].中国生态农业学报, 2017, 25(8):1139-1146 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170805&flag=1
ZHOU X Y, TANG Y L, WANG Z G, et al. Effects of reduced nitrogen application and intercropping on sweet corn AMF colonization, soybean nodulation and nitrogen and phosphorus absorption[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8):1139-1146 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170805&flag=1
[20]CLARK R B, ZETO S K. Mineral acquisition by arbuscular mycorrhizal plants[J]. Journal of Plant Nutrition, 2000, 23(7):867-902 doi: 10.1080/01904160009382068
[21]付晓峰, 张桂萍, 张小伟, 等.溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响[J].西北植物学报, 2016, 36(2):353-360 http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201602018
FU X F, ZHANG G P, ZHANG X W, et al. Effects of PSB and AMF on growth, microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var. mairei seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2):353-360 http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201602018
[22]耿玉清, 白翠霞, 赵广亮, 等.土壤磷酸酶活性及其与有机磷组分的相关性[J].北京林业大学学报, 2008, 30(S2):139-143 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802331798
GENG Y Q, BAI C X, ZHAO G L, et al. Soil phosphatase activity and its correlation with composition of organic phosphorus[J]. Journal of Beijing Forestry University, 2008, 30(S2):139-143 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802331798
[23]ALLISON S D, VITOUSEK P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil Biology and Biochemistry, 2005, 37(5):937-944 doi: 10.1016/j.soilbio.2004.09.014
[24]柴强, 黄鹏, 黄高宝.间作对根际土壤微生物和酶活性的影响研究[J].草业学报, 2005, 14(5):105-110 doi: 10.3321/j.issn:1004-5759.2005.05.019
CHAI Q, HUANG P, HUANG G B. Effect of intercropping on soil microbial and enzyme activity in the rhizosphere[J]. Acta Prataculturae Sinica, 2005, 14(5):105-110 doi: 10.3321/j.issn:1004-5759.2005.05.019
[25]杜有新, 何春林, 丁园, 等.庐山植物园11种植物的根际土壤氮磷有效性和酶活性[J].生态环境学报, 2013, 22(8):1297-1302 doi: 10.3969/j.issn.1674-5906.2013.08.004
DU Y X, HE C L, DING Y, et al. Available nitrogen and phosphorus and biological enzyme activities in rhizosphere soils beneath 11 plant species in Lushan Mountain[J]. Ecology and Environmental Sciences, 2013, 22(8):1297-1302 doi: 10.3969/j.issn.1674-5906.2013.08.004
[26]KOUNO K, WU J, BROOKES P C. Turnover of biomass C and P in soil following incorporation of glucose or ryegrass[J]. Soil Biology and Biochemistry, 2002, 34(5):617-622 doi: 10.1016/S0038-0717(01)00218-8
[27]罗燕, 樊卫国.不同施磷水平下4种柑橘砧木的根际土壤有机酸、微生物及酶活性[J].中国农业科学, 2014, 47(5):955-967 doi: 10.3864/j.issn.0578-1752.2014.05.012
LUO Y, FAN W G. Organic acid content, microbial quantity and enzyme activity in rhizosphere soil of four citrus rootstocks under different phosphorus levels[J]. Scientia Agricultura Sinica, 2014, 47(5):955-967 doi: 10.3864/j.issn.0578-1752.2014.05.012

相关话题/土壤 作物 植物 图片 系统