删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

减量施氮与间作大豆对华南地区甜玉米农田氮平衡的影响

本站小编 Free考研考试/2022-01-01

王志国,
刘培,
邵宇婷,
唐艺玲,
管奥湄,
王建武,
农业部华南热带农业环境重点实验室/广东省现代生态循环农业工程中心/华南农业大学资源环境学院 广州 510642
基金项目: 国家自然科学基金项目31770556

详细信息
作者简介:王志国, 主要从事甜玉米//大豆间作体系中氮素循环研究。E-mail:121335917@qq.com
通讯作者:王建武, 主要从事循环农业和转基因作物安全方面的研究。E-mail:wangjw@scau.edu.cn
中图分类号:S344.2

计量

文章访问数:808
HTML全文浏览量:1
PDF下载量:642
被引次数:0
出版历程

收稿日期:2018-01-26
录用日期:2018-05-08
刊出日期:2018-11-01

Effect of nitrogen reduction and soybean intercropping on nitrogen balance in sweet maize fields in South China

WANG Zhiguo,
LIU Pei,
SHAO Yuting,
TANG Yiling,
GUAN Aomei,
WANG Jianwu,
Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture/Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture/College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
Funds: the National Natural Science Foundation of China31770556

More Information
Corresponding author:WANG Jianwu, E-mail:wangjw@scau.edu.cn


摘要
HTML全文
(1)(7)
参考文献(38)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:本文在广东广州华南农业大学试验中心,通过大田定位试验(2015-2016年两年4季)对比了两种施氮水平[减量施氮(300 kg·hm-2,N1)和常规施氮(360 kg·hm-2,N2)]、3种种植模式[甜玉米单作(SS)、甜玉米//大豆2:3间作(S2B3)、甜玉米//大豆2:4间作(S2B4)]农田生态系统的氮素输入、输出和平衡状况,旨在为减少化学氮肥投入水平,提高氮素利用效率,在华南地区发展环境友好型的玉米可持续生产模式提供科学依据。结果表明:1)减量施氮与甜玉米//大豆间作降低了系统氮素总输入量,大豆固氮和秸秆还田降低了化肥氮输入的比重,与常规施氮相比,减量施氮下SS、S2B3和S2B4的化肥氮输入占年均氮素总输入的比例分别下降3.24%、3.64%和3.77%。2)间作大豆增加了系统籽粒氮素累积量,N1和N2处理甜玉米//大豆间作的年均籽粒氮素累积量分别是单作甜玉米的2.43倍和2.18倍;减量施氮与甜玉米//大豆间作能降低甜玉米农田氮素损失,N1和N2处理甜玉米//大豆间作的年均氨挥发量分别比单作甜玉米低39.02%和27.26%;间作甜玉米的氮淋溶量比单作低13.85%。3)减量施氮与间作大豆显著降低了系统氮素盈余量,S2B3-N1、S2B3-N2和S2B4-N1、S2B4-N2年均氮素盈余量分别为71.03 kg·hm-2、133.7 kg·hm-2和42.87 kg·hm-2、100.64 kg·hm-2,分别比SS处理N1和N2的平均值减少81.27%、64.75%和88.69%、73.47%。因此,减量施氮甜玉米//大豆间作模式能维持系统作物产量、减少生产成本、降低环境污染风险,具有较高的经济和生态效益。
Abstract:The increasing demand for fresh sweet maize (Zea mays L. saccharata) in South China has led to the prioritization of finding solutions to environmental pollution caused by continuous production of the crop and high inputs of chemical nitrogen fertilizer. A promising method for improving crop production and environmental conditions is to intercrop sweet maize with legumes. Here, a field experiment was conducted at Experimental Center of South China Agriculture University for two years (2015-2016) to investigate nitrogen input, output and balance in sweet maize farmlands in South China under two nitrogen levels [reduced nitrogen dose of 300 kg·hm-2 (N1) and conventional nitrogen dose of 360 kg·hm-2 (N2)] and three cropping patterns [sole sweet maize (SS), sweet maize//soybean intercropping with sweet maize to soybean line ratios of 2:3 (S2B3) and 2:4 (S2B4)]. The purpose of the study was to provide scientific basis for reducing chemical nitrogen fertilizer input, improving nitrogen use efficiency and developing a sustainable sweet corn production model in South China. Results showed that:1) reduced nitrogen application and sweet maize//soybean intercropping decreased total nitrogen input and the proportion of chemical nitrogen input through soybean nitrogen fixation and straw return. Nitrogen fertilizer input under SS, S2B3 and S2B4 accounted respectively for 84.29%, 55.42% and 59.06% of total annual nitrogen input under N1 and for 87.53%, 49.93% and 53.70% under N2. 2) Accumulated nitrogen amount of grain under intercropping system was significantly higher than that under sole sweet maize. Average annual grain nitrogen accumulation of sweet maize//soybean intercropping was 2.18-2.43 times of that of SS. Sweet maize//soybean intercropping reduced ammonia volatilization significantly and thereby reduced the risk of nitrogen leaching. Compared with SS, S2B3 and S2B4 reduced annual ammonia volatilization and nitrogen leaching under N1 by 35.97% and 14.74%, 42.07% and 11.54%, respectively. Treatment S2B4-N1 had the lowest ammonia volatilization, which was 38.72 kg·hm-2. Meanwhile, annual ammonia volatilization and average annual nitrogen leaching in S2B3 and S2B4 under N2 reduced respectively by 24.55% and 12.89%, 29.98% and 16.23% than that under N1 treatment. 3) Annual nitrogen surpluses under S2B3-N1, S2B3-N2, S2B4-N1 and S2B4-N2 were respectively 71.03 kg·hm-2, 133.7 kg·hm-2, 42.87 kg·hm-2 and 100.64 kg·hm-2, which were 81.27%, 64.75%, 88.69% and 73.47% lower than the average of SS under N1 and N2. Overall, the study demonstrated that intercropping combined with reduced-nitrogen rate maintained sweet maize production, reduced production cost, while also reducing environmental impact. Intercropping with soybean and reduced nitrogen application may be a more sustainable and environmentally friendly way for production of sweet maize in South China.

HTML全文


图1不同处理的甜玉米、大豆种植模式图
Figure1.Layouts of planting patterns of sweet maize and soybean in different treatments of cropping systems


下载: 全尺寸图片幻灯片

表12015—2016年甜玉米//大豆间作系统4季农艺措施时间(月-日)
Table1.Dates (month-day) of agronomic measures in four seasons of sweet maize-soybean intercropping systems of 2015-2016
季度
Season
播种大豆、玉米育苗
Soybean sowing and sweet maize seedling growing
移栽甜玉米
Sweet maize transplant
苗肥
Seedling dressing
拔节肥
Jointingdressing
攻苞肥
Headdressing
大豆收获
Soybeanharvesting
甜玉米收获
Maizeharvesting
2015年春季
Spring of 2015
03-15 03-29 03-31 04-18 05-24 06-03 06-03
2015年秋季
Autumn of 2015
08-10 08-20 09-05 09-20 10-08 10-31 10-29
2016年春季
Spring of 2016
03-12 04-02 04-09 05-02 05-25 05-31 06-07
2016年秋季
Autumn of 2016
08-13 08-22 08-27 09-16 10-01 10-20 10-24


下载: 导出CSV
表22015—2016年甜玉米//大豆间作系统中大豆的固氮效率和固氮量
Table2.Soybean nitrogen fixation efficiency and fixed nitrogen amount of sweet maize//soybean intercropping systems during 2015-2016
项目
Item
施氮水平
N rate (kg?hm-2)
种植模式
Planting pattern
2015年春
Spring of 2015
2015年秋
Autumn of 2015
2016年春
Spring of 2016
2016年秋
Autumn of 2016
固氮效率
Nitrogen fixation efficiency(%)
300
(N1, 减量施氮Nitrogen reduction)
S2B3 58.08±4.00aB 62.71±3.79aB 61.70±1.40aB 76.23±5.10aA
S2B4 40.96±6.87aC 62.44±7.74aB 69.53±4.26aAB 87.88±3.43aA
360
(N2, 常规施氮Conventional nitrogen)
S2B3 55.18±15.14aA 46.62±7.54aA 64.37±1.62aA 77.68±7.01aA
S2B4 49.77±4.61aA 56.29±13.18aA 67.69±2.03aA 74.64±3.41aA
0 SB 50.65±3.50aA 55.81±5.13aA 71.47±1.72aA 64.49±8.83aA
固氮量Fixed nitrogen (kg?hm2) 300
(N1, 减量施氮Nitrogen reduction)
S2B3 48.86±9.00b A 45.97±3.48bA 41.89±4.98bA 74.77±10.91aA
S2B4 45.46±0.83bB 41.85±5.30bB 46.54±7.92bB 109.03±14.47aA
360
(N2, 常规施氮Conventional nitrogen
S2B3 38.63±10.75bA 40.68±11.68bA 50.75±3.76bA 85.39±14.72aA
S2B4 51.38±6.01bB 44.60±13.78bB 60.32±5.19bB 99.71±9.81aA
0 SB 113.29±10.66aA 106.65±22.01aA 127.27±10.58aA 168.11±43.38aA
同行不同大写字母表示相同处理下不同年、季间差异显著(P < 0.05), 同列不同小写字母表示同一年、季不同种植模式间差异显著(P < 0.05)。Different capital letters in the same row indicate significant differences among different seasons for the same planting pattern at 0.05 level, and different lowercase letters in the same line indicate significant differences among planting patterns in the same season at 0.05 level.


下载: 导出CSV
表32015—2016年减量施氮与甜玉米//大豆间作对农田氨挥发的影响
Table3.Effect of reduced nitrogen application and sweet maize//soybean intercropping on ammonia volatilization of farmland during 2015-2016
kg?hm-2
施氮水平
N rate (kg?hm-2)
种植模式
Planting pattern
2015年春
Spring of 2015
2015年秋
Autumn of 2015
2016年春
Spring of 2016
2016年秋
Autumn of 2016
300
(N1, 减量施氮Nitrogen reduction)
SS 22.62±0.29aD 44.85±1.89aA 27.99±0.40aC 38.21±0.20aB
S2B3 14.04±2.94aB 26.98±4.09bA 13.99±0.21cB 30.58±0.24bA
S2B4 14.58±0.70aB 24.67±0.70bA 14.13±0.32cB 24.05±0.04cA
360
(N2, 常规施氮Conventional nitrogen)
SS 22.10±4.88aB 40.84±0.47aA 26.33±1.84aB 39.58±0.08aA
S2B3 13.97±2.37aC 39.87±3.17aA 13.77±0.00cC 29.61±2.21bB
S2B4 13.06±2.75aC 30.40±0.35bA 21.53±0.10bB 25.23±0.54cB
同行不同大写字母表示相同处理下不同年、季间差异显著(P < 0.05), 同列不同小写字母表示同一年、季不同种植模式间差异显著(P < 0.05)。Different capital letters in the same row indicate significant differences among different seasons for the same planting pattern at 0.05 level, and different lowercase letters in the same line indicate significant differences among planting patterns in the same season at 0.05 level.


下载: 导出CSV
表42015—2016年减量施氮和甜玉米//大豆间作对农田氮淋溶的影响
Table4.Effect of reduced nitrogen application and sweet maize//soybean intercropping on nitrogen leaching of farmlandduring 2015-2016
kg?hm-2
施氮水平
N rate (kg?hm-2)
种植模式
Planting pattern
2015年春
Spring of 2015
2015年秋
Autumn of 2015
2016年春
Spring of 2016
2016年秋
Autumn of 2016
300
(N1, 减量施氮Nitrogen reduction)
SS 106.12±1.97aA 113.25±11.94aA 54.99±7.06aB 29.22±1.06abC
S2B3 92.52±5.48aA 96.25±14.96aA 45.99±1.06abB 24.08±0.85bcB
S2B4 105.36±10.81aA 100.40±7.67aA 41.86±0.02bB 20.93±0.38cdB
360
(N2, 常规施氮Conventional nitrogen)
SS 111.92±4.51aA 121.97±17.70aA 42.65±3.33bB 31.18±2.12aB
S2B3 89.52±3.58aA 104.86±14.72aA 49.66±2.04abB 24.01±3.67bcC
S2B4 96.00±3.88aA 96.00±8.09aA 40.21±4.61bB 25.57±2.95abcB
0 SB 53.69±1.95bA 33.60±1.60bB 25.77±1.33cC 15.08±0.96dD
同行不同大写字母表示相同处理下不同年、季间差异显著(P < 0.05), 同列不同小写字母表示同一年、季不同种植模式间差异显著(P < 0.05)。Different capital letters in the same row indicate significant differences among different seasons for the same planting pattern at 0.05 level, and different lowercase letters in the same line indicate significant differences among planting patterns in the same season at 0.05 level.


下载: 导出CSV
表52015—2016年减量施氮和甜玉米//大豆间作对农田N2O-N累积排放量的影响
Table5.Effect of reduced nitrogen application and sweet maize//soybean intercropping on N2O-N cumulative emissions of farmland during 2015-2016
kg?hm-2
施氮水平
N rate (kg?hm-2)
种植模式
Planting pattern
2015年春
Spring of 2015
2015年秋
Autumn of 2015
2016年春
Spring of 2016
2016年秋
Autumn of 2016
300
(N1, 减量施氮Nitrogen reduction)
SS 1.17±0.29aAB 0.51±0.05aB 1.82±0.31aA 0.74±0.26abB
S2B3 0.58±0.09bB 0.45±0.08abB 1.54±0.21aA 0.28±0.04bB
S2B4 0.24±0.07bB 0.29±0.09abcB 0.93±0.28abA 0.25±0.05bB
360
(N2, 常规施氮Conventional nitrogen)
SS 1.33±0.28aA 0.31±0.09abcA 1.45±0.14aA 1.10±0.42aA
S2B3 0.15±0.06bB 0.28±0.08bcB 1.00±0.04abA 0.30±0.03bB
S2B4 0.43±0.11bA 0.19±0.02cA 2.09±0.89aA 0.78±0.30abA
0 SB 0.02±0.00bA 0.10±0.01cA 0.12±0.01bA 0.04±0.01bA
同行不同大写字母表示相同处理下不同年、季间差异显著(P < 0.05), 同列不同小写字母表示同一年、季不同种植模式间差异显著(P < 0.05)。Different capital letters in the same row indicate significant differences among different seasons for the same planting pattern at 0.05 level, and different lowercase letters in the same line indicate significant differences among planting patterns in the same season at 0.05 level.


下载: 导出CSV
表62015—2016年减量施氮与甜玉米//大豆间作对作物氮素累积量的影响
Table6.Effect of reduced nitrogen application and sweet maize//soybean intercropping on nitrogen accumulation of crops during 2015-2016
项目
Item
施氮水平
N rate(kg?hm-2)
种植模式
Planting pattern
2015年春
Spring of 2015
2015年秋
Autumn of 2015
2016年春
Spring of 2016
2016年秋
Autumn of 2016
籽粒氮素累积量
Grain nitrogen accumulation(kg?hm-2)
300
(N1, 减量施氮Nitrogen reduction)
SS 38.61±1.86dC 64.64±4.37cA 33.04±0.50cC 47.78±1.12bB
S2B3 82.09±2.12aC 131.63±4.25bA 111.28±5.99abB 119.69±5.14aAB
S2B4 57.87±5.59cC 114.98±16.58bcAB 108.58±22.12abBC 167.74±16.93aA
360
(N2, 常规施氮Conventional nitrogen)
SS 40.14±3.80dB 70.29±5.01cA 38.92±2.40cB 47.89±3.87bB
S2B3 69.23±3.67abcB 131.73±20.07bA 93.15±4.90bAB 131.31±14.71aA
S2B4 74.88±5.92abA 111.56±7.96bcA 123.27±6.44abA 135.11±20.08aA
0 SB 63.73±8.05bcB 199.76±39.20aA 155.18±30.28aA 145.42±44.35aA
秸秆氮素累积量
Straw nitrogen accumulation(kg?hm2)
300
(N1, 减量施氮Nitrogen reduction)
SS 73.41±6.43cA 82.27±3.92aA 69.83±2.97aA 56.81±7.08cA
S2B3 101.10±6.62bA 93.65±3.63aA 69.25±4.75aB 86.65±2.40bA
S2B4 109.26±7.63bA 80.09±8.93aBC 60.38±4.88aC 88.71±3.39bAB
360
(N2, 常规施氮Conventional nitrogen)
SS 73.13±0.67cB 88.28±5.90aA 75.47±4.29aB 60.57±1.48cC
S2B3 92.30±3.58bcA 108.56±7.74aA 82.35±5.41aA 86.59±5.80bA
S2B4 113.25±6.57bA 91.44±3.37aB 70.42±5.31aC 95.73±6.41bAB
0 SB 140.30±9.93aA 79.84±8.49aBC 68.10±5.96aC 118.73±15.51aAB
同行不同大写字母表示相同处理下不同年、季间差异显著(P < 0.05), 同列不同小写字母表示同一年、季不同种植模式间差异显著(P < 0.05)。Different capital letters in the same row indicate significant differences among different seasons for the same planting pattern at 0.05 level, and different lowercase letters in the same line indicate significant differences among planting patterns in the same season at 0.05 level.


下载: 导出CSV
表72015—2016年甜玉米//大豆间作系统氮平衡
Table7.Nitrogen balance in sweet maize//soybean intercropping system during 2015-2016
kg?hm-2
年份
Year
处理
Treatment
氮输入N input 氮输出N output 氮素盈亏
Profit or loss N
化肥氮
FertilizerN
种子氮
SeedN
秸秆氮
Straw N of last quarter
大豆固氮
Soybean fixed N
籽粒氮
GrainN
秋季秸秆氮
Straw N of autumn
氨挥发
Ammonia volatilization
氮淋溶
NO3-N leaching
氧化亚氮
N2O
2015 SS-N1 600.00 0.34 140.63 0.00 103.25 82.27 67.47 219.37 1.68 266.93±42.81a
S2B3-N1 308.80 8.54 174.50 94.83 213.72 93.65 41.02 188.77 1.03 48.50±27.31bc
S2B4-N1 262.50 9.60 184.20 87.31 172.85 80.09 39.25 205.76 0.53 45.14±25.64bc
SS-N2 720.00 0.34 116.23 0.00 110.43 88.28 62.94 233.89 1.64 339.38±23.99a
S2B3-N2 370.60 8.54 172.69 79.31 200.96 108.56 53.84 194.38 0.43 72.97±17.12b
S2B4-N2 315.00 9.60 176.56 95.98 186.44 91.44 43.46 192.00 0.62 83.19±8.09b
SB 0.00 15.66 178.40 219.94 263.49 79.84 0.00 87.29 0.12 -16.73±31.74c
2016 SS-N1 600.00 0.34 82.27 0.00 80.82 56.81 66.20 84.21 2.56 392.02±10.13b
S2B3-N1 308.80 8.54 93.65 116.66 230.97 86.65 44.57 70.07 1.82 93.56±7.81de
S2B4-N1 262.50 9.60 80.09 155.57 276.32 88.71 38.18 62.79 1.18 40.60±12.60e
SS-N2 720.00 0.34 88.28 0.00 86.81 60.57 65.91 73.83 2.55 518.95±11.00a
S2B3-N2 370.60 8.54 108.56 136.14 224.46 86.59 43.38 73.68 1.30 194.43±14.70c
S2B4-N2 315.00 9.60 91.44 160.03 246.84 95.73 46.76 65.78 2.87 118.08±32.03d
SB 0.00 15.66 79.84 295.38 300.60 118.73 0.00 40.85 0.16 -69.45±25.85f
同列不同小写字母表示同一年不同处理间差异显著(P < 0.05)。Different lowercase letters in the same column indicate significant differences among treatments in the same year (P < 0.05).


下载: 导出CSV

参考文献(38)
[1]甘阳英, 万忠, 刘蔚楠, 等. 2014年广东甜玉米产业发展形势与对策建议[J].广东农业科学, 2015, (11):11-15 doi: 10.3969/j.issn.1004-874X.2015.11.003
GAN Y Y, WAN Z, LIU W N, et al. Development situation and countermeasures of Guangdong sweet corn industry in 2014[J]. Guangdong Agricultural Science, 2015, (11):11-15 doi: 10.3969/j.issn.1004-874X.2015.11.003
[2]刘蔚楠, 万忠, 甘阳英, 等. 2015年广东甜玉米产业发展形势与对策建议[J].广东农业科学, 2016, (3):12-16 http://d.old.wanfangdata.com.cn/Periodical/gdnykx201603003
LIU W N, WAN Z, GAN Y Y, et al. Development situation and countermeasures of Guangdong sweet corn industry in 2015[J]. Guangdong Agricultural Sciences, 2016, (3):12-16 http://d.old.wanfangdata.com.cn/Periodical/gdnykx201603003
[3]张福锁, 王激清, 张卫峰, 等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报, 2008, 45(5):915-924 doi: 10.3321/j.issn:0564-3929.2008.05.018
ZHANG F S, WANG J Q, ZHANG W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5):915-924 doi: 10.3321/j.issn:0564-3929.2008.05.018
[4]李祯, 史海滨, 李仙岳, 等.农田硝态氮淋溶规律对不同水氮运筹模式的响应[J].水土保持学报, 2017, 31(1):310-317 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201701051
LI Z, SHI H B, LI X Y, et al. Response of the nitrate nitrogen leaching law to different water-nitrogen management patterns in farmland[J]. Journal of Soil and Water Conservation, 2017, 31(1):310-317 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201701051
[5]张白鸽, 李强, 陈琼贤, 等.广东甜玉米施肥指标体系研究[J].广东农业科学, 2013, (20):67-70 doi: 10.3969/j.issn.1004-874X.2013.20.022
ZHANG B G, LI Q, CHEN Q X, et al. Research on index system for sweet maize fertilization in Guangdong[J]. Guangdong Agricultural Sciences, 2013, (20):67-70 doi: 10.3969/j.issn.1004-874X.2013.20.022
[6]刘慧颖, 韩瑛祚, 华利民.施氮方式对玉米氮吸收及土壤养分、N2O排放的影响[J].中国土壤与肥料, 2013, (6):17-21 http://d.old.wanfangdata.com.cn/Periodical/trfl201306004
LIU H Y, HAN Y Z, HUA L M. Effect of N application on plant N uptake and change of soil nutrition and N2O emission in maize[J]. Soil and Fertilizer Sciences in China, 2013, (6):17-21 http://d.old.wanfangdata.com.cn/Periodical/trfl201306004
[7]刘小明, 雍太文, 刘文钰, 等.减量施氮对玉米-大豆套作体系土壤氮素残留和氮肥损失的影响[J].应用生态学报, 2014, 25(8):2267-2274 http://d.old.wanfangdata.com.cn/Periodical/yystxb201408016
LIU X M, YONG T W, LIU W Y, et al. Effect of reduced N application on soil N residue and N loss in maize-soybean relay strip intercropping system[J]. Chinese Journal of Applied Ecology, 2014, 25(8):2267-2274 http://d.old.wanfangdata.com.cn/Periodical/yystxb201408016
[8]李文学, 孙建好, 李隆, 等.不同施肥处理与间作形式对带田中玉米产量及氮营养状况的影响[J].中国农业科技导报, 2001, 3(3):36-39 doi: 10.3969/j.issn.1008-0864.2001.03.010
LI W X, SUN J H, LI L, et al. Effects of fertilization and intercrop pattern on yield and N nutrition of maize[J]. Review of China Agricultural Science and Technology, 2001, 3(3):36-39 doi: 10.3969/j.issn.1008-0864.2001.03.010
[9]陈远学, 李隆, 汤利, 等.小麦/蚕豆间作系统中施氮对小麦氮营养及条锈病发生的影响[J].核农学报, 2013, 27(7):1020-1028 http://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201307017.htm
CHEN Y X, LI L, TANG L, et al. Effect of nitrogen addition on nitrogen nutrition and strip rust occurrence of wheat in wheat/fababean intercropping system[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(7):1020-1028 http://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201307017.htm
[10]李隆.间套作强化农田生态系统服务功能的研究进展与应用展望[J].中国生态农业学报, 2016, 24(4):403-415 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016401&flag=1
LI L. Intercropping enhances agroecosystem services and functioning:Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4):403-415 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016401&flag=1
[11]LI L, TILMAN D, LAMBERS H, et al. Plant diversity and overyielding:Insights from belowground facilitation of intercropping in agriculture[J]. New Phytologist, 2014, 203(1):63-69 doi: 10.1111/nph.12778
[12]柴强, 胡发龙, 陈桂平.禾豆间作氮素高效利用机理及农艺调控途径研究进展[J].中国生态农业学报, 2017, 25(1):19-26 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170104&flag=1
CHAI Q, HU F L, CHEN G P. Research advance in the mechanism and agronomic regulation of high-efficient use of nitrogen in cereal-legume intercropping[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1):19-26 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170104&flag=1
[13]REGEHR A, OELBERMANN M, VIDELA C, et al. Gross nitrogen mineralization and immobilization in temperate maize-soybean intercrops[J]. Plant and Soil, 2015, 391(1/2):353-365 doi: 10.1007/s11104-015-2438-0
[14]CHEN P, DU Q, LIU X M, et al. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system[J]. PLoS One, 2017, 12(9):e0184503 doi: 10.1371/journal.pone.0184503
[15]BROOKER R W, BENNETT A E, CONG W F, et al. Improving intercropping:A synthesis of research in agronomy, plant physiology and ecology[J]. New Phytologist, 2015, 206(1):107-117 doi: 10.1111/nph.13132
[16]CONG W F, HOFFLAND E, LI L, et al. Intercropping enhances soil carbon and nitrogen[J]. Global Change Biology, 2015, 21(4):1715-1726 doi: 10.1111/gcb.12738
[17]唐艺玲, 管奥湄, 周贤玉, 等.减量施氮与间作大豆对华南地区甜玉米连作农田N2O排放的影响[J].中国生态农业学报, 2015, 23(12):1529-1535 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151205&flag=1
TANG Y L, GUAN A M, ZHOU X Y, et al. Effect of reduced N application and soybean intercropping on soil N2O emission in sweet corn fields in South China[J]. Chinese Journal of Eco-Agriculture, 2015, 23(12):1529-1535 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151205&flag=1
[18]周贤玉, 唐艺玲, 王志国, 等.减量施氮与间作模式对甜玉米AMF侵染和大豆结瘤及作物氮磷吸收的影响[J].中国生态农业学报, 2017, 25(8):1139-1146 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170805&flag=1
ZHOU X Y, TANG Y L, WANG Z G, et al. Effects of reduced nitrogen application and intercropping on sweet corn AMF colonization, soybean nodulation and nitrogen and phosphorus absorption[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8):1139-1146 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170805&flag=1
[19]TANG Y L, YU L L, GUAN A M, et al. Soil mineral nitrogen and yield-scaled soil N2O emissions lowered by reducing nitrogen application and intercropping with soybean for sweet maize production in southern China[J]. Journal of Integrative Agriculture, 2017, 16(11):2586-2596 doi: 10.1016/S2095-3119(17)61672-1
[20]HOUNGNANDAN P, YEMADJE R G H, OIKEH S O, et al. Improved estimation of biological nitrogen fixation of soybean cultivars (Glycine max L. Merril) using 15N natural abundance technique[J]. Biology and Fertility of Soils, 2008, 45(2):175-183 doi: 10.1007/s00374-008-0311-5
[21]王朝辉, 刘学军, 巨晓棠, 等.北方冬小麦/夏玉米轮作体系土壤氨挥发的原位测定[J].生态学报, 2002, 22(3):359-365 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200203011
WANG Z H, LIU X J, JU X T, et al. In situ determination of ammonia volatilization from wheat-maize rotation system field in North China[J]. Acta Ecologica Sinica, 2002, 22(3):359-365 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200203011
[22]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000
LU R K. Soil Agricultural Chemical Analysis Method[M]. Beijing:Chinese Agricultural Science and Techniques Press, 2000
[23]尹晓芳, 同延安, 张树兰, 等.关中地区小麦/玉米轮作农田硝态氮淋溶特点[J].应用生态学报, 2010, 21(3):640-646 http://www.cqvip.com/Main/Detail.aspx?id=33525418
YIN X F, TONG Y A, ZHANG S L, et al. Nitrate leaching characteristics of wheat-corn rotation farmland in Guanzhong area of Shaanxi[J]. Chinese Journal of Applied Ecology, 2010, 21(3):640-646 http://www.cqvip.com/Main/Detail.aspx?id=33525418
[24]王肖娟, 危常州, 张君, 等.灌溉方式和施氮量对棉田氮肥利用率及损失的影响[J].应用生态学报, 2012, 23(10):2751-2758 http://d.old.wanfangdata.com.cn/Periodical/yystxb201210018
WANG X J, WEI C Z, ZHANG J, et al. Effects of irrigation mode and N application rate on cotton field fertilizer N use efficiency and N losses[J]. Chinese Journal of Applied Ecology, 2012, 23(10):2751-2758 http://d.old.wanfangdata.com.cn/Periodical/yystxb201210018
[25]LUO S S, YU L L, LIU Y, et al. Effects of reduced nitrogen input on productivity and N2O emissions in a sugarcane/soybean intercropping system[J]. European Journal of Agronomy, 2016, 81:78-85 doi: 10.1016/j.eja.2016.09.002
[26]LI Y Y, YU C B, CHENG X, et al. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean[J]. Plant and Soil, 2009, 323(1/2):295-308 doi: 10.2307/24130045?Search=yes&resultItemClick=true&searchText=au:&searchText=
[27]HU F L, ZHAO C, FENG F X, et al. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea[J]. Plant and Soil, 2017, 412(1/2):235-251 doi: 10.1007/s11104-016-3063-2
[28]LI B, LI Y Y, WU H M, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23):6496-6501 doi: 10.1073/pnas.1523580113
[29]董文旭, 吴电明, 胡春胜, 等.华北山前平原农田氨挥发速率与调控研究[J].中国生态农业学报, 2011, 19(5):1115-1121 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110521&flag=1
DONG W X, WU D M, HU C S, et al. Ammonia volatilization and control mechanisms in the piedmont of North China Plain[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5):1115-1121 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110521&flag=1
[30]习斌, 张继宗, 左强, 等.保护地菜田土壤氨挥发损失及影响因素研究[J].植物营养与肥料学报, 2010, 16(2):327-333 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201002010
XI B, ZHANG J Z, ZUO Q, et al. Study on the losing of ammonia volatilization and its influencing factors on the protected vegetable fields' soil[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2):327-333 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201002010
[31]串丽敏, 赵同科, 安志装, 等.土壤硝态氮淋溶及氮素利用研究进展[J].中国农学通报, 2010, 26(11):200-205 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201011041
CHUAN L M, ZHAO T K, AN Z Z, et al. Research advancement in nitrate leaching and nitrogen use in soils[J]. Chinese Agricultural Science Bulletin, 2010, 26(11):200-205 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201011041
[32]王良, 徐旭, 叶桂香, 等.夏玉米农田N2O排放影响因素的模拟分析[J].植物营养与肥料学报, 2016, 22(2):346-352 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201602007
WANG L, XU X, YE G X, et al. Simulation of the factors influencing N2O emission in summer corn farmland[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2):346-352 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201602007
[33]李欠欠, 李雨繁, 高强, 等.传统和优化施氮对春玉米产量、氨挥发及氮平衡的影响[J].植物营养与肥料学报, 2015, 21(3):571-579 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201503003
LI Q Q, LI Y F, GAO Q, et al. Effect of conventional and optimized nitrogen fertilization on spring maize yield, ammonia volatilization and nitrogen balance in soil-maize system[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3):571-579 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201503003
[34]乔云发, 韩晓增, 赵兰坡, 等.黑土氮肥氨挥发损失特征研究[J].水土保持学报, 2009, 23(1):198-201 doi: 10.3321/j.issn:1009-2242.2009.01.042
QIAO Y F, HAN X Z, ZHAO L P, et al. Researches on ammonia volatilization loss characters of nitrogen fertilizer from black soil[J]. Journal of Soil and Water Conservation, 2009, 23(1):198-201 doi: 10.3321/j.issn:1009-2242.2009.01.042
[35]ARMOUR J D, NELSON P N, DANIELLS J W, et al. Nitrogen leaching from the root zone of sugarcane and bananas in the humid tropics of Australia[J]. Agriculture, Ecosystems & Environment, 2013, 180:68-78 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232423043
[36]高莹, 吴普特, 赵西宁, 等.春小麦/春玉米间作模式光温环境特征研究[J].水土保持研究, 2015, 22(3):163-169 http://www.cnki.com.cn/Article/CJFDTOTAL-STBY201503030.htm
GAO Y, WU P T, ZHAO X N, et al. Characteristics of light environment and soil temperature in the spring wheat/spring maize intercropping system[J]. Research of Soil and Water Conservation, 2015, 22(3):163-169 http://www.cnki.com.cn/Article/CJFDTOTAL-STBY201503030.htm
[37]龚巍巍, 张宜升, 何凌燕, 等.菜地氨挥发损失及影响因素原位研究[J].环境科学, 2011, 32(2):345-350 http://d.old.wanfangdata.com.cn/Periodical/hjkx201102007
GONG W W, ZHANG Y S, HE L Y, et al. In-situ measurement on volatilization loss of ammonia in the vegetable field and its influencing factors[J]. Environmental Science, 2011, 32(2):345-350 http://d.old.wanfangdata.com.cn/Periodical/hjkx201102007
[38]赵伟, 王宏燕, 于佳, 等.农肥和化肥对黑土农田生态系统氮素循环与平衡影响的研究[J].水土保持学报, 2010, 24(1):155-158 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201001035
ZHAO W, WANG H Y, YU J, et al. Effects of manure and chemical fertilizers application on nitrogen cycling and balance in agricultural ecosystem of black soil[J]. Journal of Soil and Water Conservation, 2010, 24(1):155-158 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201001035

相关话题/农田 土壤 系统 广东 生态