删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

肥液浓度和生物质掺混比例对微润灌溉湿润体内水肥分布的影响

本站小编 Free考研考试/2022-01-01

李义林1,,
刘小刚1,,,
刘艳伟1,
董木宏道2,
杨启良1,
隋龙1
1.昆明理工大学现代农业工程学院 昆明 650500
2.昆明皓川工程咨询有限公司 昆明 650051
基金项目: 国家自然科学基金项目51769010
国家自然科学基金项目51469010
国家自然科学基金项目51109102
云南省应用基础研究项目2014FB130
大学生创新创业训练计划项目201710674039

详细信息
作者简介:李义林, 主要从事节水灌溉新技术研究。E-mail:liyilin3194@126.com
通讯作者:刘小刚, 主要从事节水灌溉新技术与水土资源高效利用研究。E-mail:liuxiaogangjy@126.com
中图分类号:S275.9

计量

文章访问数:718
HTML全文浏览量:5
PDF下载量:403
被引次数:0
出版历程

收稿日期:2018-05-26
录用日期:2018-08-29
刊出日期:2019-01-01

Increase of fertilizer solution concentration and biomass mixing proportion can enhance water and nutrients distribution in wetted soils under moistube irrigation

LI Yilin1,,
LIU Xiaogang1,,,
LIU Yanwei1,
DONGMU Hongdao2,
YANG Qiliang1,
SUI Long1
1. Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China
2. Kunming Haochuan Engineering Consulting Co., Ltd., Kunming 650051, China
Funds: the National Natural Science Foundation of China51769010
the National Natural Science Foundation of China51469010
the National Natural Science Foundation of China51109102
the Basic Research Project of Yunnan Province2014FB130
the Innovative Training Program for College Students201710674039

More Information
Corresponding author:LIU Xiaogang, E-mail:liuxiaogangjy@126.com


摘要
HTML全文
(7)(3)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:微润灌溉作为一种新型地下连续灌溉节水技术,可为农业水肥一体化提供有效载体。为探明不同生物质掺混比例下竖插式微润灌溉施肥湿润体内水分和养分的分布规律,开展室内入渗试验,设置3个肥液浓度(清水F0:0 g·L-1;低浓度FL:0.2 g·L-1;高浓度FH:0.4 g·L-1)和4个土壤生物质(花生壳粉末)掺混比例(无掺混B0:0;低掺混BL:1.5%;中掺混BM:3.0%;高掺混BH:4.5%),研究微润灌溉施肥湿润体内土壤含水率、硝态氮、速效磷和速效钾的分布特性。结果表明:掺混生物质后湿润体内水肥分布范围显著增大,而肥液浓度对水肥分布范围的影响不显著。土壤水肥含量随着与微润管水平距离的增加而逐渐减小,水肥含量最大值出现在微润管周围。在与微润管水平距离为0~10 cm范围内,土壤含水率和硝态氮分布较均匀,速效磷和速效钾则形成累积区。肥液浓度和生物质掺混比例对湿润体内水肥含量均值影响显著。与F0相比,增加肥液浓度提高土壤含水率和养分(硝态氮、速效磷和速效钾)含量均值3.94%~14.09%和124.92%~458.05%;与B0相比,增大生物质掺混比例提高土壤含水率和养分含量均值12.89%~33.32%和28.37%~115.44%。微润灌溉施肥湿润体内土壤含水率和硝态氮的分布均匀性较高,而速效磷和速效钾分布均匀性较低。增大肥液浓度和生物质掺混比例可提高湿润体内土壤含水率和硝态氮的分布均匀系数,而降低速效磷和速效钾的分布均匀系数。微润灌溉施肥湿润体内水肥含量均值与至微润管水平距离的关系符合四参数Log-logistic模型。总之,在土壤中掺混生物质有利于微润灌溉施肥下水分和养分的运移,增加肥液浓度和土壤生物质掺混比例可显著提高湿润体内的水肥含量,增大水分和硝态氮的分布均匀性,促使速效磷和速效钾在微润管周围的累积量增多。研究结果可为微润灌溉水肥一体化技术提供理论依据和实践参考。
关键词:微润灌溉施肥/
肥液浓度/
生物质掺混/
水肥分布/
均匀系数
Abstract:Moistube irrigation is a new water-saving technology for continuous underground irrigation that can provide an effective carrier for agricultural fertigation technology. In order to investigate the mode of distribution of water and nutrients in wetted soils in moistube fertigation in vertical insert mode under different proportions of biomass mixture of soil, a series of indoor soil box infiltration simulation experiments were carried out using peanut shell power as mixed biomass. In the experiments, three fertilizer solution concentrations (F0:pure water at 0 g·L-1; FL:low concentration at 0.2 g·L-1; and FH:high concentration at 0.4 g·L-1) and four proportions of biomass mixture (B0:no mixing at 0; BL:low mixing at 1.5%; BM:moderate mixing at 3.0%; and BH:high mixing at 4.5%) were designed to study the distribution characteristics of soil water content, nitrate nitrogen, available phosphorus and available potassium in wetted soils under moistube fertigation in vertical insert mode. The results showed that the distribution areas of water and nutrients significantly expended after biomass mixture, but fertilizer solution concentration had no significant effect on the distribution areas of water and nutrients. Water and nutrients contents gradually decreased with increasing horizontal distance from moistube in wetted soils and the maximum water and nutrients contents occurred just next to the moistube. The distribution of soil water and nitrate nitrogen were more uniform, while available phosphorus and available potassium formed accumulation area within 0-10 cm in the horizontal distance from the moistube. Fertilizer solution concentration and mixing proportion of biomass significantly influenced the mean contents of water and nutrients in the wetted soils. Compared with F0, mean soil water content and soil nutrients (nitrate nitrogen, available phosphorus and available potassium) contents increased with increasing fertilizer solution concentration respectively by 3.94%-14.09% and 124.92%-458.05%. Mean soil water content and soil nutrients contents increased with increasing proportion of biomass mixture respectively by 12.89%-33.32% and 28.37%-115.44%, compared with those of B0. The distribution uniformity of soil water and nitrate nitrogen was higher, but that of available phosphorus and available potassium was lower in the wetted soils under moistube fertigation in vertical insert mode. The distribution uniformity coefficient of soil water and nitrate nitrogen increased with increasing fertilizer solution concentration and biomass mixing proportion, while that of available phosphorus and available potassium decreased in the wetted soils. The relationship between mean soil water and nutrients and horizontal distance from the moistube conformed to the fourth log-Logistic model in the wetted soils under moistube fertigation in vertical insert mode. In summary, mixing biomass with soil was improved water and nutrients movement in the wetted soils under moistube fertigation in vertical insert mode. Also increasing the concentration of fertilizer solution and proportion of soil biomass mixture significantly increased soil water and nutrients contents. This in turn increased the uniformity of soil water and nitrate nitrogen, and promoted the accumulation of available phosphorus and available potassium around moistube. The research results provided solid theoretical basis and practical reference for moistube fertigation technology.
Key words:Moistube fertigation/
Fertilizer solution concentration/
Biomass mixture of soil/
Water and nutrients distribution/
Uniformity coefficient

HTML全文


图1试验装置示意图
Figure1.Schematic diagram of the experimental device


下载: 全尺寸图片幻灯片


图2取样点分布示意图
Figure2.Sample point distribution diagram


下载: 全尺寸图片幻灯片


图3不同肥液浓度和生物质掺混比例下微润灌溉湿润体内土壤含水率分布
F0:清水对照(0 g·L-1); FL:低浓度(0.2 g·L-1)肥液处理; FH:高浓度(0.4 g·L-1)肥液处理。B0:无掺混生物质(0); BL:低掺混生物质比例(1.5%); BM:中掺混生物质比例(3.0%); BH:高掺混生物质比例(4.5%)。
Figure3.Water distribution in wetted soil under moistube irrigation with different fertilizer concentrations and biomass mixing proportions
F0: pure water (0 g·L-1); FL: low fertilizer concentration (0.2 g·L-1); FH: high fertilizer concentration (0.4 g·L-1). B0: no mixing biomass (0); BL: low mixing proportion of biomass (1.5%); BM: moderate mixing proportion of biomass (3.0%); BH: high mixing proportion of biomass (4.5%).


下载: 全尺寸图片幻灯片


图4不同肥液浓度和生物质掺混比例下微润灌溉湿润体内硝态氮分布
FL:低浓度(0.2 g·L-1)肥液处理; FH:高浓度(0.4 g·L-1)肥液处理。B0:无掺混生物质(0); BL:低掺混生物质比例(1.5%); BM:中掺混生物质比例(3.0%); BH:高掺混生物质比例(4.5%)。
Figure4.Nitrate nitrogen distribution in wetted soil under moistube irrigation with different fertilizer concentrations and biomass mixing proportions
FL: low fertilizer concentration (0.2 g·L-1); FH: high fertilizer concentration (0.4 g·L-1). B0: no mixing biomass (0); BL: low mixing proportion of biomass (1.5%); BM: moderate mixing proportion of biomass (3.0%); BH: high mixing proportion of biomass (4.5%).


下载: 全尺寸图片幻灯片


图5不同肥液浓度和生物质掺混比例下微润灌溉湿润体内速效磷分布
FL:低浓度(0.2 g·L-1)肥液处理; FH:高浓度(0.4 g·L-1)肥液处理。B0:无掺混生物质(0); BL:低掺混生物质比例(1.5%); BM:中掺混生物质比例(3.0%); BH:高掺混生物质比例(4.5%)。
Figure5.Available phosphorus distribution in wetted soil under moistube irrigation with different fertilizer concentrations and biomass mixing proportions
FL: low fertilizer concentration (0.2 g·L-1); FH: high fertilizer concentration (0.4 g·L-1). B0: no mixing biomass (0); BL: low mixing proportion of biomass (1.5%); BM: moderate mixing proportion of biomass (3.0%); BH: high mixing proportion of biomass (4.5%).


下载: 全尺寸图片幻灯片


图6不同肥液浓度和生物质掺混比例下微润灌溉湿润体内速效钾分布
FL:低浓度(0.2 g·L-1)肥液处理; FH:高浓度(0.4 g·L-1)肥液处理。B0:无掺混生物质(0); BL:低掺混生物质比例(1.5%); BM:中掺混生物质比例(3.0%); BH:高掺混生物质比例(4.5%)。
Figure6.Available potassium distribution in wetted soil under moistube irrigation with different fertilizer solution concentrations and biomass mixing proportions
FL: low fertilizer concentration (0.2 g·L-1); FH: high fertilizer concentration (0.4 g·L-1). B0: no mixing biomass (0); BL: low mixing proportion of biomass (1.5%); BM: moderate mixing proportion of biomass (3.0%); BH: high mixing proportion of biomass (4.5%).


下载: 全尺寸图片幻灯片


图7微润灌溉施肥湿润体内水肥含量均值拟合值与实测值的关系
Figure7.Relationship between fitted values and measured values of mean contents of water and fertilizer in wetted soil of moistube fertigation


下载: 全尺寸图片幻灯片

表1入渗结束时各处理的累积入渗量
Table1.Cumulative infiltration of different treatments at the end of infiltration
L
F0B0 F0BL F0BM F0BH FLB0 FLBL FLBM FLBH FHB0 FHBL FHBM FHBH
2.58 2.75 3.19 3.47 2.65 3.08 3.35 3.78 2.85 3.25 3.57 4.18
F0:清水对照(0 g·L-1); FL:低浓度(0.2 g·L-1)肥液处理; FH:高浓度(0.4 g·L-1)肥液处理。B0:无掺混生物质(0); BL:低掺混生物质比例(1.5%); BM:中掺混生物质比例(3.0%); BH:高掺混生物质比例(4.5%)。F0: pure water (0 g·L-1); FL: low fertilizer concentration (0.2 g·L-1); FH: high fertilizer concentration (0.4 g·L-1). B0: no mixing biomass (0); BL: low mixing proportion of biomass (1.5%); BM: moderate mixing proportion of biomass (3.0%); BH: high mixing proportion of biomass (4.5%).


下载: 导出CSV
表2微润灌溉施肥湿润体内水肥含量均值及分布均匀系数
Table2.Means and uniformity coefficients of water and fertilizer contents in wetted soil of moistube fertigation
处理Treatment 土壤含水率均值Mean soil water content (%) 养分含量均值Mean nutrient content (mg·kg-1) 均匀系数Uniformity coefficient (%)
硝态氮Nitrate nitrogen 速效磷Available phosphorus 速效钾Available potassium 土壤含水率Soil water content 硝态氮Nitrate nitrogen 速效磷Available phosphorus 速效钾Available phosphorus
F0 B0 24.43±1.90g 25.73±2.78g 5.16±0.54fg 35.58±2.31g 74.16±2.17d 91.93±3.18a 90.84±4.01a 91.00±4.50a
F0 BL 27.56±1.31ef 24.74±1.53g 4.35±0.38g 34.48±4.35g 78.08±2.07cd 91.23±3.14a 92.62±4.00a 89.85±5.76a
F0 BM 29.37±1.60de 26.10±4.02g 4.45±0.52g 38.99±3.13g 80.60±1.43bc 93.18±3.13a 90.87±3.33a 89.28±3.29a
F0 BH 32.46±0.92bc 29.86±2.48g 5.08±0.79fg 35.20±3.40g 82.81±1.75abc 88.99±2.01ab 87.75±2.38a 91.40±3.84a
FL B0 25.17±0.80fg 46.25±2.99f 8.76±1.66ef 95.44±9.88f 77.29±3.13cd 65.89±3.14g 68.27±1.11b 63.55±5.02b
FL BL 28.02±1.60e 53.67±3.59e 11.46±2.22de 124.96±9.85e 80.23±4.04bc 70.28±1.58fg 63.93±3.66bc 54.48±4.14cd
FL BM 30.71±1.54cd 65.51±3.27d 15.30±2.81cd 151.73±11.52d 82.60±2.77abc 77.64±2.41de 59.71±3.06cd 47.99±4.90def
FL BH 34.41±2.09ab 73.16±2.87c 18.74±3.79bc 193.78±6.96c 83.43±4.13abc 81.76±4.48cd 54.53±2.05d 43.17±2.48f
FH B0 27.66±0.72ef 67.24±2.58d 13.06±2.88d 149.48±14.30d 79.32±2.73bcd 67.88±4.15g 64.05±4.26bc 60.05±3.96bc
FH BL 31.63±1.76cd 76.09±3.87c 18.87±2.72bc 189.44±13.93c 81.52±5.07abc 74.93±2.88ef 58.42±2.79cd 51.54±3.65de
FH BM 34.46±0.77ab 81.68±3.06b 22.66±3.24b 214.01±10.50b 84.41±4.97ab 80.66±1.38cd 54.71±3.90d 45.25±2.58ef
FH BH 36.12±1.26a 91.24±2.99a 28.27±2.49a 252.05±9.68a 86.82±1.63a 84.08±2.16bc 48.07±3.21e 40.69±5.96f
F0:清水对照(0 g·L-1); FL:低浓度(0.2 g·L-1)肥液处理; FH:高浓度(0.4 g·L-1)肥液处理。B0:无掺混生物质(0); BL:低掺混生物质比例(1.5%); BM:中掺混生物质比例(3.0%); BH:高掺混生物质比例(4.5%)。同列不同小写字母表示差异显著(P < 0.05)。F0: pure water (0 g·L-1); FL: low fertilizer concentration (0.2 g·L-1); FH: high fertilizer concentration (0.4 g·L-1). B0: no mixing biomass (0); BL: low mixing proportion of biomass (1.5%); BM: moderate mixing proportion of biomass (3.0%); BH: high mixing proportion of biomass (4.5%). Different lowercase letters in the same column mean significant differences at 0.05 level.


下载: 导出CSV
表3不同肥液浓度和生物质掺混比例下微润灌溉湿润体内水肥含量拟合方程
Table3.Fitted equations of water and fertilizer contents in wetted soil under moistube irrigation with different fertilizer concentrations and biomass mixing proportions
项目
Item
拟合方程
Fitted equation
决定系数R2
Determination coefficient
土壤含水率
Soil water content
$C = 3.099\;7 + \frac{{\;\;\;\;\;\;\;\;\;\;\left( {10.297\;3F + 1.621\;6B + 28.550\;1 - 3.099\;7} \right)\;\;\;\;\;\;\;\;\;\;}}{{1 + {{10}^{\left( {0.191\;4 - 0.058\;0F - 0.010\;0B} \right)\left[ {l - \left( {1.072\;3F + 0.366\;7B + 13.591\;6} \right)} \right]}}}}$ 0.997 9
硝态氮
Nitrate nitrogen
$C = 19.952\;4 + \frac{{\;\;\;\;\;\;\;\;\;\;\left( {97.710\;6F + 5.360\;6B + 37.906\;7} \right)- 19.952\;4\;\;\;\;\;\;\;\;\;\; }}{{1 + {{10}^{\left( {0.272\;8 - 0.235\;4F - 0.012\;2B} \right)\left[ {l - \left( {5.777\;4F + 0.433\;2B + 9.590\;9} \right)} \right]}}}} $ 0.996 3
速效磷
Available phosphorus
$C = 4.334\;1 + \frac{{\;\;\;\;\;\;\;\;\;\;\left( {69.077\;5F + 4.065\;6B - 1.0414} \right) - 4.334\;1\;\;\;\;\;\;\;\;\;\;}}{{1 + {{10}^{\left( {0.260\;5 - 0.010\;61F - 0.017\;0B} \right)\left[ {l - \left( {1.122\;1F + 0.490\;8B + 5.521\;7} \right)} \right]}}}} $ 0.995 4
速效钾
Available potassium
$ C = 37.809\;7 + \frac{{\;\;\;\;\;\;\;\;\;\;\left( {485.145\;7F + 36.966\;3B + 55.608\;9} \right)- 37.809\;7\;\;\;\;\;\;\;\;\;\; }}{{1 + {{10}^{\left( {0.235\;0 - 0.084\;4F - 0.007\;7B} \right)\left[ {l - \left( {3.085\;5F + 0.197\;5B + 5.606\;7} \right)} \right]}}}}$ 0.999 0
F:肥液浓度(g·L-1); B:生物质掺混比例(%)。F: fertilizer concentration (g·L-1); B: biomass mixing proportion (%).


下载: 导出CSV

参考文献(32)
[1]ZHANG H X, CHI D C, WANG Q, et al. Yield and quality response of cucumber to irrigation and nitrogen fertilization under subsurface drip irrigation in solar greenhouse[J]. Agricultural Sciences in China, 2011, 10(6):921-930 doi: 10.1016/S1671-2927(11)60077-1
[2]SHARMA S, PATRA S K, ROY G B, et al. Influence of drip irrigation and nitrogen fertigation on yield and water productivity of guava[J]. The Bioscan, 2013, 8(3):783-786 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b60ddf45acbbbbeacc25786bc5dd1c44
[3]MOHAMMAD M J. Utilization of applied fertilizer nitrogen and irrigation water by drip-fertigated squash as determined by nuclear and traditional techniques[J]. Nutrient Cycling in Agroecosystems, 2004, 68(1):1-11 doi: 10.1023/B:FRES.0000012229.61906.6c
[4]王锐, 孙权.基于水肥一体化的酿酒葡萄高效栽培与效益分析[J].农业机械学报, 2016, 47(10):115-121 doi: 10.6041/j.issn.1000-1298.2016.10.016
WANG R, SUN Q. High-efficiency cultivation and benefit analysis of wine grape based on fertigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10):115-121 doi: 10.6041/j.issn.1000-1298.2016.10.016
[5]BADR M A, EL-YAZIED A A. Effect of fertigation frequency from subsurface drip irrigation on tomato yield grown on sandy soil[J]. Australian Journal of Basic and Applied Sciences, 2007, 1(3):279-285
[6]BADR M A. Response of drip-irrigated tomatoes to nitrogen supply under different fertigation strategies[J]. American-Eurasian Journal of Agricultural & Environmental Sciences, 2007, 2(6):702-710
[7]栗岩峰, 李久生, 李蓓.滴灌系统运行方式和施肥频率对番茄根区土壤氮素动态的影响[J].水利学报, 2007, 38(7):857-865 doi: 10.3321/j.issn:0559-9350.2007.07.015
LI Y F, LI J S, LI B. Nitrogen dynamics in soil as affected by fertigation strategies and frequencies for drip-irrigated tomato[J]. Journal of Hydraulic Engineering, 2007, 38(7):857-865 doi: 10.3321/j.issn:0559-9350.2007.07.015
[8]EBRAHIMIAN H, LIAGHAT A, PARSINEJAD M, et al. Simulation of 1D surface and 2D subsurface water flow and nitrate transport in alternate and conventional furrow fertigation[J]. Irrigation Science, 2013, 31(3):301-316 doi: 10.1007/s00271-011-0303-3
[9]?IM?NEK J, BRISTOW K L, HELALIA S A, et al. The effect of different fertigation strategies and furrow surface treatments on plant water and nitrogen use[J]. Irrigation Science, 2016, 34(1):53-69 doi: 10.1007/s00271-015-0487-z
[10]李久生, 张建君, 饶敏杰.滴灌施肥灌溉的水氮运移数学模拟及试验验证[J].水利学报, 2005, 36(8):932-938 doi: 10.3321/j.issn:0559-9350.2005.08.007
LI J S, ZHANG J J, RAO M J. Model verification of water and nitrate transport from a surface point source[J]. Journal of Hydraulic Engineering, 2005, 36(8):932-938 doi: 10.3321/j.issn:0559-9350.2005.08.007
[11]王虎, 王旭东.滴灌施肥条件下土壤水分和速效磷的分布规律[J].西北农林科技大学学报:自然科学版, 2007, 35(5):141-146 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb200705030
WANG H, WANG X D. Distribution of soil water and available phosphorus under drip fertigation[J]. Journal of Northwest A & F University:Natural Science Edition, 2007, 35(5):141-146 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb200705030
[12]王虎, 王旭东, 赵世伟.滴灌施肥条件下土壤水分和速效钾的分布规律[J].土壤通报, 2011, 42(1):27-32 http://d.old.wanfangdata.com.cn/Periodical/trtb201101006
WANG H, WANG X D, ZHAO S W. Soil water and available K in Lou soil under drip fertilization[J]. Chinese Journal of Soil Science, 2011, 42(1):27-32 http://d.old.wanfangdata.com.cn/Periodical/trtb201101006
[13]魏新平.漫灌和喷灌条件下土壤养分运移特征的初步研究[J].农业工程学报, 1999, 15(4):83-87 doi: 10.3321/j.issn:1002-6819.1999.04.017
WEI X P. Preliminary study on soil solute transport under sprinkler and flood irrigation[J]. Transactions of the CSAE, 1999, 15(4):83-87 doi: 10.3321/j.issn:1002-6819.1999.04.017
[14]费良军, 程东娟, 朱兴华.单膜孔点源肥液入渗水氮分布特性试验研究[J].农业工程学报, 2006, 22(10):12-15 doi: 10.3321/j.issn:1002-6819.2006.10.003
FEI L J, CHENG D J, ZHU X H. Water and NO3--N distribution characteristics in single film hole point source fertile solution infiltration[J]. Transactions of the CSAE, 2006, 22(10):12-15 doi: 10.3321/j.issn:1002-6819.2006.10.003
[15]费良军, 傅渝亮, 何振嘉, 等.涌泉根灌肥液入渗水氮运移特性研究[J].农业机械学报, 2015, 46(6):121-129 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201506018
FEI L J, FU Y L, HE Z J, et al. Transport characteristics of water and nitrogen under bubbled-root irrigation with fertilizer solution[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6):121-129 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201506018
[16]杨文君, 田磊, 杜太生, 等.半透膜节水灌溉技术的研究进展[J].水资源与水工程学报, 2008, 19(6):60-63 http://d.old.wanfangdata.com.cn/Periodical/xbszyysgc200806015
YANG W J, TIAN L, DU T S, et al. Research prospect of the water-saving irrigation by semi-permeable film[J]. Journal of Water Resources & Water Engineering, 2008, 19(6):60-63 http://d.old.wanfangdata.com.cn/Periodical/xbszyysgc200806015
[17]QUI?ONES-BOLA?OS E, ZHOU H D, SOUNDARARAJAN R, et al. Water and solute transport in pervaporation hydrophilic membranes to reclaim contaminated water for micro-irrigation[J]. Journal of Membrane Science, 2005, 252(1/2):19-28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=178f7fa2afaee993ce743e0dfc1ca985
[18]张俊, 牛文全, 张琳琳, 等.微润灌溉线源入渗湿润体特性试验研究[J].中国水土保持科学, 2012, 10(6):32-38 doi: 10.3969/j.issn.1672-3007.2012.06.006
ZHANG J, NIU W Q, ZHANG L L, et al. Experimental study on characters of wetted soil in moistube irrigation[J]. Science of Soil and Water Conservation, 2012, 10(6):32-38 doi: 10.3969/j.issn.1672-3007.2012.06.006
[19]韩庆忠, 向琳, 姜学枝, 等.微灌施肥一体化技术在柑桔园的应用试验[J].现代园艺, 2015, (9):8-10 doi: 10.3969/j.issn.1006-4958.2015.09.003
HAN Q Z, XIANG L, JIANG X Z, et al. Application experiment of micro-irrigation fertigation technology in citrus orchard[J]. Xiandai Horticulture, 2015, (9):8-10 doi: 10.3969/j.issn.1006-4958.2015.09.003
[20]刘小刚, 朱益飞, 余小弟, 等.不同水头和土壤容重下微润灌湿润体内水盐分布特性[J].农业机械学报, 2017, 48(7):189-197 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201707024
LIU X G, ZHU Y F, YU X D, et al. Water-salinity distribution characteristics in wetted soil of moistube irrigation under different pressure heads and soil bulk densities[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7):189-197 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201707024
[21]朱敏, 石云翔, 孙志友, 等.秸秆还田与旋耕对川中土壤物理性状及玉米机播质量的影响[J].中国生态农业学报, 2017, 25(7):1025-1033 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2017710&flag=1
ZHU M, SHI Y X, SUN Z Y, et al. Effect of straw return and rotary tillage on soil physical properties and mechanical sowing quality of maize in Central Sichuan[J]. Chinese Journal of Eco-Agriculture, 2017, 25(7):1025-1033 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2017710&flag=1
[22]王珍, 冯浩.秸秆不同还田方式对土壤入渗特性及持水能力的影响[J].农业工程学报, 2010, 26(4):75-80 doi: 10.3969/j.issn.1002-6819.2010.04.012
WANG Z, FENG H. Effect of straw-incorporation on soil infiltration characteristics and soil water holding capacity[J]. Transactions of the CSAE, 2010, 26(4):75-80 doi: 10.3969/j.issn.1002-6819.2010.04.012
[23]王燕, 郑健, 冀宏, 等.植物混掺物对甘肃景泰砂壤土入渗过程的影响[J].农业机械学报, 2010, 41(1):63-67 doi: 10.3969/j.issn.1000-1298.2010.01.012
WANG Y, ZHENG J, JI H, et al. Impacts of plant additive on the infiltration with sandy loam[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1):63-67 doi: 10.3969/j.issn.1000-1298.2010.01.012
[24]邢旭光, 张盼, 马孝义.掺混菜籽油渣减少土壤入渗改善持水特性[J].农业工程学报, 2017, 33(2):102-108 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201702014
XING X G, ZHANG P, MA X Y. Rapeseed dreg additive reducing soil infiltration and improving water retention[J]. Transactions of the CSAE, 2017, 33(2):102-108 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201702014
[25]陈猛.秸秆还田对农田土壤磷钾迁移转化影响的试验研究[D].扬州: 扬州大学, 2011: 5-11
CHEN M. Tentative research on the effects of the move and transfer of phosphorous and Kalium in farmland soil mixing with straws[D]. Yangzhou: Yangzhou University, 2011: 5-11
[26]邢旭光, 刘烨, 马孝义.土壤添加物对土-水曲线和土体收缩的影响[J].水科学进展, 2016, 27(1):40-48 http://d.old.wanfangdata.com.cn/Periodical/skxjz201601005
XING X G, LIU Y, MA X Y. Effects of soil additive on soil-water characteristic curve and soil shrinkage[J]. Advances in Water Science, 2016, 27(1):40-48 http://d.old.wanfangdata.com.cn/Periodical/skxjz201601005
[27]牛文全, 张俊, 张琳琳, 等.埋深与压力对微润灌湿润体水分运移的影响[J].农业机械学报, 2013, 44(12):128-134 doi: 10.6041/j.issn.1000-1298.2013.12.021
NIU W Q, ZHANG J, ZHANG L L, et al. Effects of buried depth and pressure head on water movement of wetted soil during moistube-irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12):128-134 doi: 10.6041/j.issn.1000-1298.2013.12.021
[28]MOHAMMAD M J, ZURAIQI S. Enhancement of yield and nitrogen and water use efficiencies by nitrogen drip-fertigation of garlic[J]. Journal of Plant Nutrition, 2002, 26(9):1749-1766 doi: 10.1081/PLN-120023280
[29]ROBINSON D, RORISON I H. Relationship between root morphology and nitrogen availability in a recent theoretical model describing nitrogen uptake from soil[J]. Plant, Cell and Environment, 1983, 6(8):641-647 doi: 10.1111/1365-3040.ep11589228/full
[30]吴军虎, 费良军, 赵茜, 等.土壤间歇入渗水肥耦合特性试验研究[J].农业工程学报, 2006, 22(4):28-31 doi: 10.3321/j.issn:1002-6819.2006.04.006
WU J H, FEI L J, ZHAO Q, et al. Coupling characteristics of soil water and nitrogen under intermittent infiltration[J]. Transactions of the CSAE, 2006, 22(4):28-31 doi: 10.3321/j.issn:1002-6819.2006.04.006
[31]孔清华, 李光永, 王永红, 等.地下滴灌施氮及灌水周期对青椒根系分布及产量的影响[J].农业工程学报, 2009, 25(增刊2):38-42 http://d.old.wanfangdata.com.cn/Conference/7189498
KONG Q H, LI G Y, WANG Y H, et al. Effects of nitrogen application and irrigation cycle on bell pepper root distribution and yield under subsurface drip irrigation[J]. Transactions of the CSAE, 2009, 25(S2):38-42 http://d.old.wanfangdata.com.cn/Conference/7189498
[32]王建东, 龚时宏, 于颖多, 等.地面灌灌水频率对土壤水与温度及春玉米生长的影响[J].水利学报, 2008, 39(4):500-505 doi: 10.3321/j.issn:0559-9350.2008.04.017
WANG J D, GONG S H, YU Y D, et al. Effect of surface irrigation frequency on soil water and temperature as well as growth of spring maize[J]. Journal of Hydraulic Engineering, 2008, 39(4):500-505 doi: 10.3321/j.issn:0559-9350.2008.04.017

相关话题/生物 比例 土壤 图片 技术