删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同深度土壤控水对稻田土壤微生物区系及细菌群落多样性的影响

本站小编 Free考研考试/2022-01-01

张静,
可文静,
刘娟,
王留行,
陈浩,
彭廷,
赵全志,
河南农业大学农学院/河南粮食作物协同创新中心/河南省水稻生物学重点实验室 郑州 450046
基金项目: 国家自然科学基金项目31271651
国家重点研发计划项目2016YFD0300505
国家重点研发计划项目2016YFD0300900
河南省水稻产业技术体系S2012-04-G02
公益性行业(农业)科研专项201303102

详细信息
作者简介:张静, 主要研究方向为水稻生理生态。E-mail:zhjing98@126.com
通讯作者:赵全志, 主要研究方向为水稻生理生态。E-mail:qzzhaoh@126.com
中图分类号:S511;S275

计量

文章访问数:865
HTML全文浏览量:4
PDF下载量:673
被引次数:0
出版历程

收稿日期:2018-04-12
录用日期:2018-09-07
刊出日期:2019-02-01

Influence of water controlling depth on soil microflora and bacterial community diversity in paddy soil

ZHANG Jing,
KE Wenjing,
LIU Juan,
WANG Liuhang,
CHEN Hao,
PENG Ting,
ZHAO Quanzhi,
College of Agronomy, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/Key Laboratory of Rice Biology in Henan Province, Zhengzhou 450046, China
Funds: the National Natural Science Foundation of China31271651
the National Key Research and Development Project of China2016YFD0300505
the National Key Research and Development Project of China2016YFD0300900
the Industrial Technology System of Rice of Henan ProvinceS2012-04-G02
the Special Fund for Agro-scientific Research in the Public Interest of China201303102

More Information
Corresponding author:ZHAO Quanzhi, E-mail:qzzhaoh@126.com


摘要
HTML全文
(6)(3)
参考文献(28)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为研究不同深度土壤控水对壤土稻田土壤水势、微生物区系和细菌群落多样性的影响,通过土培池栽试验,在水稻生育后期设置土壤深度0~5 cm(S05)、0~10 cm(S10)和0~15 cm(S15)控水处理,以保持水层为对照,分析了不同深度控水处理下5 cm、10 cm、15 cm深土壤水势与土壤微生物区系、细菌群落多样性的变化。结果表明:土壤5 cm、10 cm、15 cm深度的水势随着控水深度增加而降低,S05控水处理主要影响上层(5 cm)土壤水势,S10控水处理影响上、中层(10 cm)土壤水势,S15控水处理土壤水势随土层深度的增加而升高。花后8 d和32 d,S05控水处理上层土壤细菌数量显著高于S10、S15控水处理;花后16~24 d,S05控水处理中层、下层(15 cm)土壤细菌数量均显著高于S15控水处理;土壤水势与水稻生育后期中、下层土壤细菌数量呈极显著正相关关系。S05控水处理10 cm、15 cm土层的细菌丰富度Chao指数均显著高于S15控水处理及CK。3个控水处理中,5 cm土层细菌的多样性Shannon指数以S05控水处理最低。优势细菌菌群分析发现,优势群落主要为变形菌门、绿弯菌门、酸杆菌门、拟杆菌门,四者总相对丰度在80%以上;S15控水处理中层土壤变形菌门相对丰度低于S05和S10控水处理。3个控水处理土壤样品中优势纲(相对丰度大于2%)达15个,主要包括α-变形菌纲、β-变形菌纲、δ-变形菌纲、厌氧绳菌纲等,这4个纲的总相对丰度在47%以上,其中厌氧绳菌纲相对丰度最高;上层土壤中S05控水处理的β-变形菌纲相对丰度显著低于S10和S15控水处理。因此,不同深度土壤控水对壤土土壤水势、细菌数量存在影响,改变了细菌的多样性及丰富度,对土壤细菌优势菌种类无显著影响。
关键词:水稻土/
控水深度/
土壤水势/
土壤微生物/
土壤细菌群落
Abstract:Soil water potential as one of the main indexes of irrigation during alternation of wetting and drying process, has been widely applied in rice production and scientific research. To investigate the influence of soil water potential on soil micoflora and bacterial community diversity, 3 treatments of soil water controlling depth[0-5 cm (S05), 0-10 cm (S10) and 0-15 cm (S15)] were set in a pool-culture experiment. Dilution-plate method and the technology of high-throughput sequencing on Illumina Miseq platform were used to detect the numbers of fungi, bacteria and actinomycetes, and bacterial community structure and diversity under different treatments (CK, keeping 2 cm surface water layer). The results showed that soil water potential decreased with the increase of water controlling depth. The treatment of S05 mainly affected soil water potential of the upper soil layer (5 cm), while the treatment of S10 affected soil water potential of the top and middle soil layer (5 cm and 10 cm). Soil water potential of S15 treatment enhanced with the increase of soil layer depth. Soil bacteria number at the upper layer (5 cm) under S05 treatment was higher than that under S10 and S15 treatments at 8 and 32 days after rice flowering, while that at the middle and lower soil layer (10 cm and 15 cm) under S05 treatment was higher than that under S15 treatments at 16-24 days after rice flowering. Soil water potential was significantly correlated with soil bacterial number at the late period of rice growth. The bacterial community structure was profiled by sequencing the V4 16S rDNA gene. A total of 1 124 229 sequences were obtained, and 9 020 OTUs (Operational Taxonomic Units) were generated at 3% cutoff level. The richness (Chao index) of bacterial community at the 10 cm and 15 cm soil layers under S05 treatment were significantly higher than that under S15 and CK treatments. The diversity of bacterial community (Shannon index) in 5 cm soil layer was lowest under S05 treatment. The dominant bacteria phylums were Proteobacteria, Chloroflexi, Acidobacteria, and Bacteroidetes, whose relative abundance were more than 80%. The relative abundance of Proteobacteria of the 10 cm soil under S15 treatment was less than that under S05 and S10 treatments. Fifteen predominant classes (relative abundance > 2%) were found in these samples, in which the total relative abundance of Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, and Anaerolineae was above 47%. Anaerolineae was the most abundant class. The relative abundance of Betaproteobacteria in 5 cm soil layer under S05 treatment was less than that under S10 and S15 treatments. Therefore, water controlling depth in loam influenced soil water potential and soil microbial number, and then affected the diversity and abundance of bacterial community. The water controlling depth of 0-5 cm in loam was helpful to improve the soil bacterial number and diversity at the 10 cm and 15 cm soil layers.
Key words:Paddy soil/
Water controlling depth/
Soil water potential/
Soil microflora/
Soil bacterial community

HTML全文


图1不同土壤控水深度处理的池栽试验简图
CK:稻田保持2 cm左右水层; S05: 0~5 cm土层控水, 5 cm土壤水势低于-10 kPa时灌水; S10: 0~10 cm土层控水, 5 cm土壤水势低于-15 kPa时灌水; S15: 0~15 cm土层控水, 5 cm土壤水势低于-25~-30 kPa时灌水。图中空心圆点为孔洞, 用于控制土壤水分。
Figure1.Schematic diagram of different treatments of soil water controlling depth of the cement pool culture experiment
CK: keeping water about 2 cm deep on the soil surface of paddy field; S05: water controlling at 0-5 cm soil layer, irrigating when the soil water potential at 5 cm was lower than-10 kPa; S10: water controlling at 0-10 cm soil layer, irrigating when the soil water potential at 5 cm was lower than-15 kPa; S15: water controlling at 0-15 cm soil layer, irrigating when the soil water potential at 5 cm was lower than-25--30 kPa. The circles are holes used to control soil water.


下载: 全尺寸图片幻灯片


图20~5 cm、0~10 cm、0~15 cm控水处理下5 cm土壤深度(a), 0~10 cm、0~15 cm控水处理下10 cm土壤深度(b)和0~15 cm控水处理下15 cm土壤深度(c)的水势变化
因控水处理开始13~21 d出现连续阴天降雨、27 d和34 d因灌水使土壤水势较高超出仪器检测范围, 故出现断点。
Figure2.Changes of soil water potentials at 5 cm for treatments of 0-5 cm, 0-10 cm and 0-15 cm water controlling (a), at 10 cm for treatments of 0-10 cm and 0-15 cm water controlling (b), and at 15 cm for treatments of 0-15 cm water controlling (c)
The missing data occurred at 13-21 d caused by continuous cloudy rain and at 27 d and 34 d caused by irrigation, when soil water potential exceeded the detection limit of soil water potential sensor.


下载: 全尺寸图片幻灯片


图3不同深度土壤控水处理中稻田5 cm (a、d、g)、10 cm (b、e、h)、15 cm (c、f、i)土层土壤细菌、真菌和放线菌的数量
不同小写字母表示同一天不同处理间在0.05水平差异显著。
Figure3.Numbers of fungi, bacteria and actinomycetes at 5 cm (a, d, g), 10 cm (b, e, h) and 15 cm (c, f, i) soil depths under different water controlling treatments
Different lowercase letters indicate significant differences among different treatments at the same day at 0.05 level.


下载: 全尺寸图片幻灯片


图4不同深度土壤控水处理中5 cm、10 cm和15 cm土层样品的稀释曲线(各曲线表示在97%的相似性上的总OTUs数)
S后前两位数值代表控水深度, 后两位数值代表土壤取样深度。
Figure4.Rarefaction curves of soil samples at 5 cm, 10 cm and 15 cm depths under different water controlling treatments [Each curve indicates the cumulative OTUs number (observed species) at 97% similarity]
In the legends, the first two numbers after "S" represent the depth of water controlling, and the latter two numbers represent the depth of soil sampled.


下载: 全尺寸图片幻灯片


图5不同深度土壤控水处理中土壤细菌前10大门的相对丰度
S后前两位数值代表控水深度, 后两位数值代表土壤取样深度。
Figure5.Relative abundance of soil bacterial top 10 phylum under different water controlling treatments
For the water treatments, the first two numbers after "S" represent the depth of water controlling, and the latter two numbers represent the depth of soil sampled.


下载: 全尺寸图片幻灯片


图6不同深度土壤控水处理中土壤细菌在纲水平(丰度高于2%)上的分布
S后前两位数值代表控水深度, 后两位数值代表土壤取样深度。
Figure6.Relative abundance of soil bacterial at class level (above 2%) under different water controlling treatments
For the water treatments, the first two numbers after "S" represent the depth of water controlling, and the latter two numbers represent the depth of soil sampled.


下载: 全尺寸图片幻灯片

表1试验用土壤颗粒组成及基本理化性质
Table1.Soil particle distribution and physiochemical properties of the tested soil
土壤类型
Soil type
颗粒组成Particle distribution (%) 速效氮
Available N (mg·kg-1)
速效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
容重
Soil bulk density (g·cm-3)
pH
砂粒Sand
(0.05~2 mm)
粉粒Silt
(0.002~0.05 mm)
黏粒Clay
(< 0.002 mm)
壤土Loam 66.61 16.59 16.80 23.27 18.63 70.64 1.46 6.55


下载: 导出CSV
表2水稻生育后期5 cm、10 cm和15 cm土壤水势与微生物数量的相关系数
Table2.Correlation between soil water potential and soil microbial numbers of 5 cm, 10 cm and 15 cm soil depths respectively at the late growth stage of rice
5 cm 10 cm 15 cm
真菌Fungi 细菌Bacteria 放线菌Actinomycetes 真菌Fungi 细菌Bacteria 放线菌Actinomycetes 真菌Fungi 细菌Bacteria 放线菌Actinomycetes
0.189 0.356 0.135 0.347 0.730** 0.161 -0.284 0.644** 0.283
**表示0.01水平显著相关。** indicates significant correlation at 0.01 level.


下载: 导出CSV
表3不同深度土壤控水处理中稻田不同深度土壤细菌群落多样性指数
Table3.Diversity indexes of bacterial communities in paddy loam soil at different depths under different water controlling treatments
控水处理
Water controlling treatment
土壤深度
Soil depth (cm)
Chao指数
Chao index
Shannon指数
Shannon index
观测到的物种数
Species (OTU)
Simpson指数
Simpson index
S05 5 3 619.23±67cd 6.95±0.001bcd 2 773.0±3f 0.002 155±2.02E-06c
10 4 065.35±24a 7.16±0.032a 3 234.5±14a 0.001 790±3.88E-05c
15 4 080.22±16a 7.13±0.017ab 3 119.4±4abc 0.002 156±2.16E-04c
S10 5 4 062.14±16a 7.13±0.016ab 3 194.5±8ab 0.002 061±6.38E-05c
10 4 070.59±31a 7.17±0.001a 3 152.0±23abc 0.001 793±3.75E-05c
15 3 808.11±46b 6.83±0.004d 2 936.5±1de 0.003 585±2.33E-04b
S15 5 3 585.75±76d 7.11±0.098ab 2 683.0±109f 0.001 953±1.60E-04c
10 3 822.44±55b 7.10±0.036ab 3 009.5±67cde 0.001 796±4.07E-05c
15 3 738.18±22bc 6.94±0.009bcd 2 971.5±6de 0.003 198±6.44E-05b
CK 5 3 959.68±6a 7.05±0.001abc 3 084.0±2bcd 0.002 331±1.15E-06c
10 3 696.95±59bcd 6.89±0.050cd 2 932.5±68e 0.001 799±1.09E-04c
15 3 704.66±15bcd 6.36±0.121e 2 703.5±39f 0.005 850±1.28E-03a
不同小写字母表示处理间在0.05水平差异显著。Different lowercase letters indicate significant differences among treatments at 0.05 level.


下载: 导出CSV

参考文献(28)
[1]WANG F, PENG S B. Yield potential and nitrogen use efficiency of China's super rice[J]. Journal of Integrative Agriculture, 2017, 16(5):1000-1008 doi: 10.1016/S2095-3119(16)61561-7
[2]LIMAMI A M, DIAB H, LOTHIER J. Nitrogen metabolism in plants under low oxygen stress[J]. Planta, 2014, 239(3):531-541 doi: 10.1007/s00425-013-2015-9
[3]胡继杰, 朱练峰, 胡志华, 等.土壤增氧方式对其氮素转化和水稻氮素利用及产量的影响[J].农业工程学报, 2017, 33(1):167-174 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201701023
HU J J, ZHU L F, HU Z H, et al. Effects of soil aeration methods on soil nitrogen transformation, rice nitrogen utilization and yield[J]. Transactions of the CSAE, 2017, 33(1):167-174 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201701023
[4]JOSHI R, SHUKLA A, MANI S C, et al. Hypoxia induced non-apoptotic cellular changes during aerenchyma formation in rice (Oryza sativa L.) roots[J]. Physiology and Molecular Biology of Plants, 2010, 16(1):99-106 doi: 10.1007/s12298-010-0012-z
[5]董明辉, 谢裕林, 刘晓斌, 等.结实期土壤水势对水稻籽粒品质及其粒间差异的影响[J].中国生态农业学报, 2011, 19(2):305-311 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110213&flag=1
DONG M H, XIE Y L, LIU X B, et al. Effect of soil water potential on grain quality at different spike positions during grain filling in rice[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2):305-311 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110213&flag=1
[6]耿艳秋, 金峰, 朱明霞, 等.灌浆乳熟期土壤水势对苏打盐渍土水稻产量及生理性状的影响[J].中国水稻科学, 2014, 28(5):534-540 doi: 10.3969/j.issn.1001-7216.2014.05.14
GENG Y Q, JIN F, ZHU M X, et al. Effects of soil water potential at grain filling-milky stage on rice yield and physiological traits in saline-alkali soil[J]. Chinese Journal of Rice Science, 2014, 28(5):534-540 doi: 10.3969/j.issn.1001-7216.2014.05.14
[7]ZHANG J, WANG H B, LIU J. Influence of water potential and soil type on conventional japonica super rice yield and soil enzyme activities[J]. Journal of Integrative Agriculture, 2017, 16(5):1044-1052 doi: 10.1016/S2095-3119(16)61575-7
[8]陶水龙, 林启美, 赵小蓉.土壤微生物量研究方法进展[J].土壤肥料, 1998, (5):15-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800921604
TAO S L, LIN Q M, ZHAO X R. Research progress on the soil microorganism[J]. Soils and Fertilizers, 1998, (5):15-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800921604
[9]徐华勤, 肖润林, 邹冬生, 等.长期施肥对茶园土壤微生物群落功能多样性的影响[J].生态学报, 2007, 27(8):3355-3361 doi: 10.3321/j.issn:1000-0933.2007.08.031
XU H Q, XIAO R L, ZOU D S, et al. Effects of long-term fertilization on functional diversity of soil microbial community of the tea plantation[J]. Acta Ecologica Sinica, 2007, 27(8):3355-3361 doi: 10.3321/j.issn:1000-0933.2007.08.031
[10]罗希茜, 郝晓晖, 陈涛, 等.长期不同施肥对稻田土壤微生物群落功能多样性的影响[J].生态学报, 2009, 29(2):740-748 doi: 10.3321/j.issn:1000-0933.2009.02.024
LUO X Q, HAO X H, CHEN T, et al. Effects of long-term different fertilization on microbial community functional diversity in paddy soil[J]. Acta Ecologica Sinica, 2009, 29(2):740-748 doi: 10.3321/j.issn:1000-0933.2009.02.024
[11]林先贵, 胡君利.土壤微生物多样性的科学内涵及其生态服务功能[J].土壤学报, 2008, 45(5):892-900 doi: 10.3321/j.issn:0564-3929.2008.05.016
LIN X G, HU J L. Scientific connotation and ecological service function of soil microbial diversity[J]. Acta Pedologica Sinica, 2008, 45(5):892-900 doi: 10.3321/j.issn:0564-3929.2008.05.016
[12]张传更, 高阳, 张立明, 等.水分管理措施对施用有机肥麦田土壤酶活性和微生物群落结构的影响[J].灌溉排水学报, 2018, 37(2):38-44 http://d.old.wanfangdata.com.cn/Periodical/ggps201802006
ZHANG C G, GAO Y, ZHANG L M, et al. Effects of water management on soil enzyme activities and microbial community structure in wheat fields with organic fertilizer application[J]. Journal of Irrigation and Drainage, 2018, 37(2):38-44 http://d.old.wanfangdata.com.cn/Periodical/ggps201802006
[13]林瑞余, 戎红, 周军建, 等.苗期化感水稻对根际土壤微生物群落及其功能多样性的影响[J].生态学报, 2007, 27(9):3644-3654 doi: 10.3321/j.issn:1000-0933.2007.09.012
LIN R Y, RONG H, ZHOU J J, et al. Impact of rice seedling allelopathy on rhizospheric microbial populations and their functional diversities[J]. Acta Ecologica Sinica, 2007, 27(9):3644-3654 doi: 10.3321/j.issn:1000-0933.2007.09.012
[14]刘岳燕.水分条件与水稻土壤微生物生物量、活性及多样性的关系研究[D].杭州: 浙江大学, 2009: 86-95
LIU Y Y. Relationship between soil moisture regime and microbial biomass, activity, diversity in paddy soils[D]. Hangzhou: Zhejiang University, 2009: 86-95
[15]邱泽森, 丁艳峰, 童晓明, 等.土水势在水稻节水灌溉中的应用[J].江苏农业科学, 1993, (2):5-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001773801
QIU Z S, DING Y F, TONG X M, et al. Application of soil water potential in water saving irrigation of rice[J]. Jiangsu Agricultural Sciences, 1993, (2):5-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001773801
[16]朱庆森, 邱泽森, 姜长鉴, 等.水稻各生育期不同土壤水势对产量的影响[J].中国农业科学, 1994, 27(6):15-22 doi: 10.3321/j.issn:0578-1752.1994.06.001
ZHU Q S, QIU Z S, JIANG C J, et al. Effect of low soil water potential on rice yield[J]. Scientia Agricultura Sinica, 1994, 27(6):15-22 doi: 10.3321/j.issn:0578-1752.1994.06.001
[17]付景, 刘洁, 曹转勤, 等.结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响[J].作物学报, 2014, 40(6):1056-1065 doi: 10.3969/j.issn.1000-2561.2014.06.003
FU J, LIU J, CAO Z Q, et al. Effects of alternate wetting and drying irrigation during grain filling on the seed-setting rate and grain weight of two super rice cultivars[J]. Acta Agronomica Sinica, 2014, 40(6):1056-1065 doi: 10.3969/j.issn.1000-2561.2014.06.003
[18]武汉大学, 复旦大学生物系微生物教研室.微生物学[M].北京:高等教育出版社, 1987:30-35
Wuhan University, Microbiology Teaching and Research Office in the Department of Biology in Fudan University. Science of Microbiology[M]. Beijing:Higher Education Press, 1987:30-35
[19]张静, 刘娟, 陈浩, 等.干湿交替条件下稻田土壤氧气和水分变化规律研究[J].中国生态农业学报, 2014, 22(4):408-413 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014405&flag=1
ZHANG J, LIU J, CHEN H, et al. Change in soil oxygen and water contents under alternate wetting and drying in paddy fields[J]. Chinese Journal of Eco-Agriculture, 2014, 22(4):408-413 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014405&flag=1
[20]王娟.稻田土壤碳氮转化与微生物群落结构及活性之间的联系机制[D].杭州: 浙江大学, 2015: 29-43
WANG J. The relationship of microbial community structure and activity to carbon and nitrogen transformations in paddy soil[D]. Hangzhou: Zhejiang University, 2015: 29-43
[21]侯海军, 张文钊, 沈建林, 等.水分管理对稻田细菌丰度与群落结构的影响[J].生态环境学报, 2016, 25(9):1431-1438 http://d.old.wanfangdata.com.cn/Periodical/tryhj201609002
HOU H J, ZHANG W Z, SHEN J L, et al. Effect of water management on soil bacterial abundance and community in the rice paddy field[J]. Ecology and Environmental Sciences, 2016, 25(9):1431-1438 http://d.old.wanfangdata.com.cn/Periodical/tryhj201609002
[22]AHRING B K. Perspectives for anaerobic digestion[J]. Advances in Biochemical Engineering/Biotechnology, 2003, 81:1-30 doi: 10.1007/3-540-45839-5
[23]FIERER N, JACKSON R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3):626-631 doi: 10.1073/pnas.0507535103
[24]JANSSEN P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes[J]. Applied and Environmental Microbiology, 2006, 72(3):1719-1728 doi: 10.1128/AEM.72.3.1719-1728.2006
[25]LIU J J, SUI Y Y, YU Z H, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology and Biochemistry, 2014, 70:113-122 doi: 10.1016/j.soilbio.2013.12.014
[26]罗培宇.轮作条件下长期施肥对棕壤微生物群落的影响[D].沈阳: 沈阳农业大学, 2014
LUO P Y. Effect of Long-term fertilization on microbial community in a brown soil under crop-rotation system[D]. Shenyang: Shenyang Agricultural University, 2014
[27]邵颖, 刘长海.土壤微生物与植被、温度及水分关系的研究进展[J].延安大学学报:自然科学版, 2017, 36(4):43-48 http://d.old.wanfangdata.com.cn/Periodical/yadxxb201704009
SHAO Y, LIU C H. Research progress on the relationship between soil microorganism and vegetation, temperature and moisture[J]. Journal of Yan'an University:Natural Science Edition, 2017, 36(4):43-48 http://d.old.wanfangdata.com.cn/Periodical/yadxxb201704009
[28]刘振香.不同水肥处理对夏玉米田土壤理化性质及微生物特性的影响[D].泰安: 山东农业大学, 2014
LIU Z X. Effects of irrigation and nitrogen on physical and chemical properties and microbiologic properties of soil on summer corn field[D]. Tai'an: Shandong Agricultural University, 2014

相关话题/土壤 微生物 图片 生态 生育