吕贝贝1,
张丽萍1,
刘珍1,
范巧兰1,
魏明峰1,
姚众1,
袁嘉玮1,
柴跃进2
1.山西省农业科学院棉花研究所 运城 044000
2.山西省临汾市农机局 临汾 041000
基金项目: 山西省重点研发计划项目201703D321009-3
山西省自然科学基金项目2014011029-3
山西省农业科学院博士基金项目YBSJJ1405
详细信息
作者简介:张贵云, 主要从事植物营养学和菌根学研究。E-mail:guiyunzhang@126.com
中图分类号:S154.3计量
文章访问数:759
HTML全文浏览量:28
PDF下载量:660
被引次数:0
出版历程
收稿日期:2018-06-28
录用日期:2018-10-25
刊出日期:2019-03-01
Effect of long-term no-tillage with stubble on soil fertility and diversity of prokaryotic microbiome in dryland wheat soils on the Loess Plateau, China
ZHANG Guiyun1,,,LYU Beibei1,
ZHANG Liping1,
LIU Zhen1,
FAN Qiaolan1,
WEI Mingfeng1,
YAO Zhong1,
YUAN Jiawei1,
CHAI Yuejin2
1. Cotton Research Institute, Shanxi Academy of Agricultural Sciences, Yuncheng 044000, China
2. Agricultural Machinery Bureau of Linfen City, Linfen 041000, China
Funds: Shanxi Key Research and Development Project201703D321009-3
the Natural Science Foundation of Shanxi Province2014011029-3
the Doctor Fund Project of Shanxi Academy of Agricultural SciencesYBSJJ1405
More Information
Corresponding author:ZHANG Guiyun, E-mail: guiyunzhang@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为明确黄土高原旱作麦田长期保护性耕作对土壤肥力和土壤原核微生物的效应,以位于山西省临汾市实施保护性耕作26年的小麦田为试验基地,采用Illumina Hiseq 2500高通量测序等手段,开展了不同耕作措施[免耕覆盖(NTS)、深松免耕覆盖(SNTS)和传统耕作(TT1)]对土壤理化性质和土壤原核微生物多样性的影响分析。研究结果表明:1)NTS和SNTS处理比TT1处理显著提高了土壤全氮、碱解氮、速效磷及速效钾的含量,降低了土壤pH,提高了土壤贮水能力和水分含量,降低了0~10 cm土层的土壤容重,但提高了10~20 cm土层的土壤容重;同时,SNTS处理显著增加了土壤的有机质含量。2)Illumina Hiseq高通量16S rRNA基因Ⅴ4区测序结果表明:NTS和SNTS处理比TT1处理显著降低了绿弯菌门的相对丰度;NTS比SNTS处理显著降低了土壤中疣微菌门和绿弯菌门的相对丰度;NTS处理显著增加了土壤原核微生物群落的多样性,但未显著改变原核微生物群落的丰度;SNTS对原核微生物群落的多样性和丰富度均未有显著改变;NTS处理的显著性差异物种(Biomarker)高于其他2个处理;其他原核微生物门的相对丰度,在3个处理间尚未有明显差异。3)聚类分析可见:NTS和SNTS处理与TT1处理的微生物群落结构差异较大;NTS处理与SNTS处理间的微生物群落结构差异较小。4)CCA分析可知:土壤pH、有机质、速效氮、速效磷、速效钾含量对土壤原核微生物群落遗传多样性的变化起着重要作用;与TT1处理相比,NTS和SNTS处理在一定程度上改变了土壤原核微生物群落结构,但仍存在结构的相似性。综上所述,长期进行NTS和SNTS处理对黄土高原旱地麦田土壤微生物多样性、丰富度以及土壤肥力因子等的正效作用明显。
关键词:保护性耕作/
免耕覆盖/
深松免耕/
高通量测序/
土壤原核微生物
Abstract:In dryland regions, conservation tillage has the advantages of reducing soil erosion, maintaining soil structure, improving soil physical and chemical properties, and promoting microbial reproduction, compared with traditional farming methods. Up to now, the effect of long-term conservation tillage on soil prokaryotic microbial community has not been adequately reported for the China's Loess Plateau region. To understand the effects of long-term conservation tillage on soil prokaryotic microbial community diversity and soil fertility in dryland wheat fields on the Loess Plateau, the Illumina Hiseq 2500 high-throughput sequencing and physicochemical test methods were used to analyze the effects of different tillage measures on soil physical and chemical properties and the diversity of soil prokaryotic microbial community in the wheat fields in Linfen City, Shanxi Province. Tillage measures adopted in the study area for 26 years included no-tillage with stubble (NTS), no-tillage with stubble after subsoiling (SNTS) and traditional tillage (TT1). The results showed that:1) while soil contents of total nitrogen, available nitrogen, available phosphorus, available potassium, and soil water storage capacity and water content under NTS and SNTS treatments were significantly higher than those under TT1, soil pH under NTS and SNTS was lower than that under TT1. NTS and SNTS treatments reduced soil bulk density in the 0-10 cm soil layer, but increased it in 10-20 cm soil layer compared with TT1 treatment. Meanwhile, SNTS treatment significantly increased soil organic matter content. 2) The results of the Illumina Hiseq high-throughput 16S rRNA gene sequencing in area Ⅴ4 indicated that:SNTS treatment significantly reduced the relative abundance of Chloroflexi, compared with TT1 treatment. NTS treatment significantly reduced the relative abundance of Verrucomicrobia and Chloroflexi, compared with SNTS treatment. NTS treatment significantly increased the diversity of soil prokaryote community, but not significantly changed the abundance of prokaryote community. SNTS treatment not significantly changed the diversity and richness of prokaryote community. Biomarkers under NTS treatment were higher than under other treatments. The relative abundance of other prokaryotes at the phylum division was not significantly different among three treatments. 3) UPGMA analysis showed that prokaryote community structures of NTS and SNTS were significantly different from those of TT1, and the differences between NTS and SNTS were small. 4) CCA analysis showed that soil pH, contents of organic matter, available nitrogen, available phosphorus and available potassium were important for changes in genetic diversity of soil prokaryote communities. Although NTS and SNTS treatments could change soil prokaryotic microbiome structure greatly, there was still structural similarity among the soil prokaryotic microbiomes among three treatments. To sum up, long-term conservation tillage had obvious positive effects on soil microbial diversity, richness and soil fertility in dryland wheat fields on the Loess Plateau.
Key words:Conservation tillage/
No-tillage with stubble/
No-tillage with stubble after subsoiling/
High-throughput sequencing/
Soil prokaryotic microbiome
HTML全文
图1长期不同耕作方式下土壤原核微生物稀释曲线
NTS:免耕覆盖; SNTS:深松免耕覆盖; TT1:传统耕作。
Figure1.Soil bacterial rarefaction curves under different long term tillage treatments
NTS: no-tillage with stubble; SNTS: no-tillage with stubble after subsoiling; TT1: traditional tillage.
下载: 全尺寸图片幻灯片
图2长期不同耕作方式下土壤原核微生物Venn图
NTS:免耕覆盖; SNTS:深松免耕覆盖; TT1:传统耕作。
Figure2.OTUs Venn of soil bacteria in the soil samples under different long term tillage treatments
NTS: no-tillage with stubble; SNTS: no-tillage with stubble after subsoiling; TT1: traditional tillage.
下载: 全尺寸图片幻灯片
图3长期不同耕作方式下土壤原核微生物群落在门水平上的组成及相对丰度
NTS:免耕覆盖; SNTS:深松免耕覆盖; TT1:传统耕作。
Figure3.Soil bacterial community composition and relative abundance at phylum level under different long term tillage treatments
NTS: no-tillage with stubble; SNTS: no-tillage with stubble after subsoiling; TT1: traditional tillage.
下载: 全尺寸图片幻灯片
图4长期不同耕作方式下土壤原核微生物群落在属水平上的组成及相对丰度
TT1:传统耕作; NTS:免耕覆盖; SNTS:深松免耕覆盖。
Figure4.Soil bacterial community composition and relative abundance at genus level under different long term tillage treatments
TT1: traditional tillage; NTS: no-tillage with stubble; SNTS: no-tillage with stubble after subsoiling; TT1: traditional tillage.
下载: 全尺寸图片幻灯片
图5长期不同耕作方式下土壤原核微生物群落相似性聚类树
NTS:免耕覆盖; SNTS:深松免耕覆盖; TT1:传统耕作。
Figure5.Similarity tree of soil bacterial communities under different long term tillage treatments
NTS: no-tillage with stubble; SNTS: no-tillage with stubble after subsoiling; TT1: traditional tillage.
下载: 全尺寸图片幻灯片
图6长期不同耕作方式下土壤原核微生物群落处理间差异LEfSe分析图(A)和进化分支图(B)
NTS:免耕覆盖; SNTS:深松免耕覆盖; TT1:传统耕作。
Figure6.Histogram (A) and cladogram (B) based on LEfSe analysis of soil bacterial communities under different long term tillage treatments
NTS: no-tillage with stubble; SNTS: no-tillage with stubble after subsoiling; TT1: traditional tillage.
下载: 全尺寸图片幻灯片
图7门水平下长期不同耕作处理的土壤原核微生物群落与土壤理化因子的典型对应分析
TN、AN、AP、AK、OM分别代表土壤全氮、碱解氮、速效磷、速效钾、有机质含量。NTS:免耕覆盖; SNTS:深松免耕覆盖; TT1:传统耕作。
Figure7.Canonical correspondence analysis (CCA) ordination biplot between bacterial community structure and soil environmental factors at phylum level under different long term tillage treatments
TN, AN, AP, AK and OM represented total N, available N, available P, available K and organic matter, respectively. NTS: no-tillage with stubble; SNTS: no-tillage with stubble after subsoiling; TT1: traditional tillage.
下载: 全尺寸图片幻灯片
表1长期不同耕作方式下土壤的理化性质
Table1.Soil physical-chemical characteristics under different long-term tillage treatments
处理 Treatment | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 碱解氮 Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 土壤水分 Soil water content (%) | 土壤容重 Soil bulk density (g×cm-3) | |||
0~10 cm | 10~20 cm | 0~10 cm | 10~20 cm | ||||||||
NTS | 8.32±0.01a | 18.12±0.45a | 1.08±0.01b | 91.00±7.00b | 63.30±3.25b | 368.54±20.15b | 9.47±1.69b | 15.45±2.44b | 1.22±0.29a | 1.46±0.47b | |
SNTS | 8.33±0.00a | 24.08±1.99b | 1.14±0.03b | 86.33±2.33b | 75.80±1.07b | 326.13±11.62b | 8.56±1.20b | 14.95±2.58b | 1.21±0.20a | 1.44±0.48b | |
TT1 | 8.46±0.02b | 14.91±0.61a | 0.77±0.02a | 58.33±2.33a | 49.87±1.48a | 220.05±10.12a | 7.08±1.35a | 8.89±1.61a | 1.30±0.35b | 1.34±0.41a | |
同列数字后不同小写字母表示差异显著(P < 0.05)。NTS:免耕覆盖; SNTS:深松免耕覆盖; TT1:传统耕作。Different lowercase letters in the same column indicate significant differences at 0.05 level. NTS: no-tillage with stubble; SNTS: no-tillage with stubble after subsoiling; TT1: traditional tillage. |
下载: 导出CSV
表2长期不同耕作方式下土壤原核微生物群落的多样性指数
Table2.Diversity and richness of soil bacteria communities under different long term tillage treatments
处理 Treatment | Chao1指数 Chao1 index | ACE指数 ACE index | Shannon指数 Shannon index | Simpson指数 Simpson index | 覆盖率 Good's-coverage |
NTS | 5 839.393 0±592.538 8a | 6 241.998 0±730.496 8a | 10.286 7±0.023 4b | 0.996 4±0.000 6b | 0.980 8±0.004 0a |
SNTS | 5 033.266 0±171.921 9a | 5 325.330 3±203.092 8a | 9.961 1±0.099 6a | 0.996 5±0.000 4a | 0.985 0±0.001 0a |
TT1 | 4 897.630 7±31.920 0a | 5 159.809 3±35.957 2a | 9.925 1±0.047 9a | 0.997 9±0.000 0a | 0.985 7±0.000 3a |
同列数字后不同小写字母表示差异显著(P < 0.05)。NTS:免耕覆盖; SNTS:深松免耕覆盖; TT1:传统耕作。Different lowercase letters in the same column indicate significant differences at 0.05 level. NTS: no-tillage with stubble; SNTS: no-tillage with stubble after subsoiling; TT1: traditional tillage. |
下载: 导出CSV
参考文献
[1] | 向新华, 魏巍, 张兴义, 等.保护性耕作对大豆生长发育及土壤微生物多样性影响[J].大豆科学, 2013, 32(3):321-327 http://d.old.wanfangdata.com.cn/Periodical/ddkx201303009 XIANG X H, WEI W, ZHANG X Y, et al. Effect of conservation tillage systems on soybean growth and soil microbial diversity[J]. Soybean Science, 2013, 32(3):321-327 http://d.old.wanfangdata.com.cn/Periodical/ddkx201303009 |
[2] | 高旺盛.论保护性耕作技术的基本原理与发展趋势[J].中国农业科学, 2007, 40(12):2702-2708 doi: 10.3321/j.issn:0578-1752.2007.12.006 GAO W S. Development trends and basic principles of conservation tillage[J]. Scientia Agricultura Sinica, 2007, 40(12):2702-2708 doi: 10.3321/j.issn:0578-1752.2007.12.006 |
[3] | KITTIWORAWAT S, YOUPENSUK S, RERKASEM B. Diversity of arbuscular mycorrhizal fungi in Mimosa invisa and effect of the soil pH on the symbiosis[J]. Chiang Mai Journal of Science, 2010, 37(3):517-527 |
[4] | HELGASON B L, WALLEY F L, GERMIDA J J. Fungal and bacterial abundance in long-term no-till and intensive-till soils of the Northern Great Plains[J]. Soil Science Society of America Journal, 2009, 73(1):120-127 doi: 10.2136/sssaj2007.0392 |
[5] | TREONIS A M, AUSTIN E E, BUYER J S, et al. Effects of organic amendment and tillage on soil microorganisms and microfauna[J]. Applied Soil Ecology, 2010, 46(1):103-110 doi: 10.1016/j.apsoil.2010.06.017 |
[6] | 曹鹏.典型生态系统土壤微生物分布特征及生态学机制[D].北京: 中国科学院研究生院, 2015 http://www.irgrid.ac.cn/handle/1471x/1110451?mode=full&submit_simple=Show+full+item+record CAO P. Distribution patterns and the ecological mechanisms of soil microorganism in typical ecosystems[D]. Beijing: University of Chinese Academy of Sciences, 2015 http://www.irgrid.ac.cn/handle/1471x/1110451?mode=full&submit_simple=Show+full+item+record |
[7] | 何玉梅, 张仁陟, 张丽华, 等.不同耕作措施对土壤真菌群落结构与生态特征的影响[J].生态学报, 2007, 27(1):113-119 http://d.old.wanfangdata.com.cn/Periodical/stxb200701013 HE Y M, ZHANG R Z, ZHANG L H, et al. Effects of different tillage practices on fungi community structure and ecologic characteristics in loess soils[J]. Acta Ecologica Sinica, 2007, 27(1):113-119 http://d.old.wanfangdata.com.cn/Periodical/stxb200701013 |
[8] | YAN F, MCBRATNEY A B, COPELAND L. Functional substrate biodiversity of cultivated and uncultivated A horizons of vertisols in NW New South Wales[J]. Geoderma, 2000, 96(4):321-343 doi: 10.1016/S0016-7061(00)00018-5 |
[9] | 李彤, 王梓廷, 刘露, 等.保护性耕作对西北旱区土壤微生物空间分布及土壤理化性质的影响[J].中国农业科学, 2017, 50(5):859-870 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201705009 LI T, WANG Z T, LIU L, et al. Effect of conservation tillage practices on soil microbial spatial distribution and soil physico-chemical properties of the northwest dryland[J]. Scientia Agricultura Sinica, 2017, 50(5):859-870 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201705009 |
[10] | 高焕文.保护性耕作技术与机具[M].北京:化学工业出版社, 2004 GAO H W. Conservation Tillage Technology and Machinery Tools[M]. Beijing:Chemical Industry Press, 2004 |
[11] | 王碧胜, 蔡典雄, 武雪萍, 等.长期保护性耕作对土壤有机碳和玉米产量及水分利用的影响[J].植物营养与肥料学报, 2015, 21(6):1455-1464 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201506011 WANG B S, CAI D X, WU X P, et al. Effects of long-term conservation tillage on soil organic carbon, maize yield and water utilization[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6):1455-1464 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201506011 |
[12] | 张贵云, 张丽萍, 魏明峰, 等.长期保护性耕作对丛枝菌根真菌多样性的影响[J].中国生态农业学报, 2018, 26(7):1048-1055 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0712&flag=1 ZHANG G Y, ZHANG L P, WEI M F, et al. Effect of long-term conservation tillage on arbuscular mycorrhizal fungi diversity[J]. Chinese Journal of Eco-Agriculture, 2018, 26(7):1048-1055 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0712&flag=1 |
[13] | 迟凤琴, 刘晶鑫, 匡恩俊, 等.黑土长期定位试验原状土搬迁对土壤细菌群落多样性的影响[J].土壤通报, 2015, 46(6):1420-1427 http://d.old.wanfangdata.com.cn/Periodical/trtb201506022 CHI F Q, LIU J X, KUANG E J, et al. Effects of black soil long-term test undisturbed soil moved on soil bacterial community diversity[J]. Chinese Journal of Soil Science, 2015, 46(6):1420-1427 http://d.old.wanfangdata.com.cn/Periodical/trtb201506022 |
[14] | 李桥.基于高通量测序技术下土壤微生物群落结构的研究[D].济南: 山东师范大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10445-1014191510.htm LI Q. Research of soil microbial community structure based on high-throughput sequencing technology[D]. Jinan: Shandong Normal University, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10445-1014191510.htm |
[15] | 韩亚飞, 伊文慧, 王文波, 等.基于高通量测序技术的连作杨树人工林土壤细菌多样性研究[J].山东大学学报:理学版, 2014, 49(5):1-6 http://d.old.wanfangdata.com.cn/Periodical/sddxxb201405001 HAN Y F, YI W H, WANG W B, et al. Soil bacteria diversity in continuous cropping poplar plantation by high throughput sequencing[J]. Journal of Shandong University:Natural Science, 2014, 49(5):1-6 http://d.old.wanfangdata.com.cn/Periodical/sddxxb201405001 |
[16] | 岳桂东, 高强, 罗龙海, 等.高通量测序技术在动植物研究领域中的应用[J].中国科学:生命科学, 2012, 42(2):107-124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200090590 YUE G D, GAO Q, LUO L H, et al. The application of high-throughput sequencing technology in plant and animal research[J]. Scientia Sinica Vitae, 2012, 42(2):107-124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200090590 |
[17] | 牛世全, 龙洋, 李海云, 等.应用Illumina MiSeq高通量测序技术分析河西走廊地区盐碱土壤微生物多样性[J].微生物学通报, 2017, 44(9):2067-2078 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201709007 NIU S Q, LONG Y, LI H Y, et al. Microbial diversity in saline alkali soil from Hexi Corridor analyzed by Illumina MiSeq high-throughput sequencing system[J]. Microbiology China, 2017, 44(9):2067-2078 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201709007 |
[18] | VERE D. Research into Conservation Tillage for Dryland Cropping in Australia and China[R]. Canberra:The Australian Centre for International Agricultural Research, 2005:8-46 |
[19] | 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000 BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agriculture Press, 2000 |
[20] | PITTA D W, PARMAR N, PATEL A K, et al. Bacterial diversity dynamics associated with different diets and different primer pairs in the rumen of Kankrej cattle[J]. PLoS One, 2014, 9(11):e111710 doi: 10.1371/journal.pone.0111710 |
[21] | SUN R B, ZHANG X X, GUO X S, et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Soil Biology and Biochemistry, 2015, 88:9-18 doi: 10.1016/j.soilbio.2015.05.007 |
[22] | 曹辉, 李燕歌, 周春然, 等.炭化苹果枝对苹果根区土壤细菌和真菌多样性的影响[J].中国农业科学, 2016, 49(17):3413-3424 doi: 10.3864/j.issn.0578-1752.2016.17.014 CAO H, LI Y G, ZHOU C R, et al. Effect of carbonized apple branches on bacterial and fungal diversities in apple root-zone soil[J]. Scientia Agricultura Sinica, 2016, 49(17):3413-3424 doi: 10.3864/j.issn.0578-1752.2016.17.014 |
[23] | ZHANG C H, LI S F, YANG L, et al. Structural modulation of gut microbiota in life-long calorie-restricted mice[J]. Nature Communications, 2013, 4:2163 doi: 10.1038/ncomms3163 |
[24] | 戴雅婷, 闫志坚, 解继红, 等.基于高通量测序的两种植被恢复类型根际土壤细菌多样性研究[J].土壤学报, 2017, 54(3):735-748 http://d.old.wanfangdata.com.cn/Periodical/trxb201703018 DAI Y T, YAN Z J, XIE J H, et al. Soil bacteria diversity in rhizosphere under two types of vegetation restoration based on high throughput sequencing[J]. Acta Pedologica Sinica, 2017, 54(3):735-748 http://d.old.wanfangdata.com.cn/Periodical/trxb201703018 |
[25] | 厉桂香, 马克明.土壤微生物多样性海拔格局研究进展[J].生态学报, 2018, 38(5):1521-1529 http://d.old.wanfangdata.com.cn/Periodical/stxb201805001 LI G X, MA K M. Progress in the study of elevational patterns of soil microbial diversity[J]. Acta Ecologica Sinica, 2018, 38(5):1521-1529 http://d.old.wanfangdata.com.cn/Periodical/stxb201805001 |
[26] | 李玉洁, 王慧, 赵建宁, 等.耕作方式对农田土壤理化因子和生物学特性的影响[J].应用生态学报, 2015, 26(3):939-948 http://d.old.wanfangdata.com.cn/Periodical/yystxb201503038 LI Y J, WANG H, ZHAO J N, et al. Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland:A review[J]. Chinese Journal of Applied Ecology, 2015, 26(3):939-948 http://d.old.wanfangdata.com.cn/Periodical/yystxb201503038 |
[27] | DOLAN M S, CLAPP C E, ALLMARAS R R, et al. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management[J]. Soil and Tillage Research, 2006, 89(2):221-231 doi: 10.1016/j.still.2005.07.015 |
[28] | FILHO C C, LOUREN?O A, DE F GUIMAR?ES M, et al. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil[J]. Soil and Tillage Research, 2002, 65(1):45-51 doi: 10.1016/S0167-1987(01)00275-6 |
[29] | 杨培培, 杨明欣, 董文旭, 等.保护性耕作对土壤养分分布及冬小麦吸收与分配的影响[J].中国生态农业学报, 2011, 19(4):755-759 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110405&flag=1 YANG P P, YANG M X, DONG W X, et al. Effect of conservation tillage on wheat and soil nutrient distribution and absorption[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4):755-759 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110405&flag=1 |
[30] | 李友军, 黄明, 吴金芝, 等.不同耕作方式对豫西旱区坡耕地水肥利用与流失的影响[J].水土保持学报, 2006, 20(2):42-45 doi: 10.3321/j.issn:1009-2242.2006.02.011 LI Y J, HUANG M, WU J Z, et al. Effects of Different Tillage on utilization and run-off of water and nutrient in sloping farmland of Yuxi dryland area[J]. Journal of Soil and Water Conservation, 2006, 20(2):42-45 doi: 10.3321/j.issn:1009-2242.2006.02.011 |
[31] | 戴亮.耕作方式对土壤微生物及土壤腐殖质影响的研究[D].长春: 吉林农业大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10193-1013127113.htm DAI L. Tillage practices on soil microbes and soil humus impact[D]. Changchun: Jilin Agricultural University, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10193-1013127113.htm |
[32] | 许菁, 李晓莎, 许姣姣, 等.长期保护性耕作对麦-玉两熟农田土壤碳氮储量及固碳固氮潜力的影响[J].水土保持学报, 2015, 29(6):191-196 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201506034 XU J, LI X S, XU J J, et al. Effects of long-term conservation tillage on soil organic carbon and nitrogen storages, soil carbon sequestration potential and nitrogen fixation potential in wheat-maize crop system[J]. Journal of Soil and Water Conservation, 2015, 29(6):191-196 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201506034 |
[33] | 王克鹏, 张仁陟, 董博, 等.长期保护性耕作对黄土高原旱地土壤水分及作物叶水势的影响[J].生态学报, 2014, 34(13):3752-3761 http://d.old.wanfangdata.com.cn/Periodical/stxb201413030 WANG K P, ZHANG R Z, DONG B, et al. Effect of long-term conservation tillage on soil water regimes and leaf water potential of crops in rainfed areas of the Loess Plateau[J]. Acta Ecologica Sinica, 2014, 34(13):3752-3761 http://d.old.wanfangdata.com.cn/Periodical/stxb201413030 |
[34] | 郁鑫, 王旭东.黄土高原不同耕作方式对土壤理化性质及作物产量的影响[J].安徽农业科学, 2018, 46(5):144-146 doi: 10.3969/j.issn.0517-6611.2018.05.043 YU X, WANG X D. Effects of different tillage methods on soil physical-chemical properties and crop yield in Loess Plateau[J]. Journal of Anhui Agricultural Sciences, 2018, 46(5):144-146 doi: 10.3969/j.issn.0517-6611.2018.05.043 |
[35] | 严洁, 邓良基, 黄剑.保护性耕作对土壤理化性质和作物产量的影响[J].中国农机化, 2005, (2):31-34 doi: 10.3969/j.issn.1006-7205.2005.02.010 YAN J, DENG L J, HUANG J. Effect of conservation tillage on soil physicochemical properties and crop yields[J]. Chinese Agricultural Mechanization, 2005, (2):31-34 doi: 10.3969/j.issn.1006-7205.2005.02.010 |
[36] | 李娟.渭北旱塬玉米田轮耕下土壤质量及生产性能响应研究[D].杨凌: 西北农林科技大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10712-1017100363.htm LI J. Research on soil quality and production capability under rotation tillage on maize field in Weibei highland[D]. Yangling: Northwest A & F University, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10712-1017100363.htm |
[37] | 赵洪利, 李军, 贾志宽, 等.不同耕作方式对黄土高原旱地麦田土壤物理性状的影响[J].干旱地区农业研究, 2009, 27(3):17-21 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200903004 ZHAO H L, LI J, JIA Z K, et al. Effect of different tillages on soil physical properties of dryland wheat field in the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2009, 27(3):17-21 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200903004 |
[38] | DUNBAR J, BARNS S M, TICKNOR L O, et al. Empirical and theoretical bacterial diversity in four Arizona soils[J]. Applied and Environmental Microbiology, 2002, 68(6):3035-3045 doi: 10.1128/AEM.68.6.3035-3045.2002 |
[39] | ROESCH L F W, FULTHORPE R R, RIVA A, et al. Pyrosequencing enumerates and contrasts soil microbial diversity[J]. The ISME Journal, 2007, 1(4):283-290 doi: 10.1038/ismej.2007.53 |
[40] | 刘洋, 曾全超, 黄懿梅.基于454高通量测序的黄土高原不同乔木林土壤细菌群落特征[J].中国环境科学, 2016, 36(11):3487-3494 doi: 10.3969/j.issn.1000-6923.2016.11.035 LIU Y, ZENG Q C, HUANG Y M. Soil microbial communities by 454prosequencing under different arbor forests on the Loess Plateau[J]. China Environmental Science, 2016, 36(11):3487-3494 doi: 10.3969/j.issn.1000-6923.2016.11.035 |
[41] | LIU J J, SUI Y Y, YU Z H, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology and Biochemistry, 2014, 70:113-122 doi: 10.1016/j.soilbio.2013.12.014 |
[42] | DORAN J W. Soil microbial and biochemical changes associated with reduced tillage[J]. Soil Science Society of America Journal, 1980, 44(4):765-771 doi: 10.2136/sssaj1980.03615995004400040022x |
[43] | LIU X, LINDEMANN W C, WHITFORD W G, et al. Microbial diversity and activity of disturbed soil in the northern Chihuahuan Desert[J]. Biology and Fertility of Soils, 2000, 32(3):243-249 doi: 10.1007/s003740000242 |
[44] | BENDING G D, TURNER M K, JONES J E. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities[J]. Soil Biology and Biochemistry, 2002, 34(8):1073-1082 doi: 10.1016/S0038-0717(02)00040-8 |
[45] | 王伏伟, 王晓波, 李金才, 等.施肥及秸秆还田对砂姜黑土细菌群落的影响[J].中国生态农业学报, 2015, 23(10):1302-1311 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151012&flag=1 WANG F W, WANG X B, LI J C, et al. Effects of fertilization and straw incorporation on bacterial communities in lime concretion black soil[J]. Chinese Journal of Eco-Agriculture, 2015, 23(10):1302-1311 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151012&flag=1 |
[46] | 罗培宇.轮作条件下长期施肥对棕壤微生物群落的影响[D].沈阳: 沈阳农业大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10157-1014295053.htm LUO P Y. Effect of long-term fertilization on microbial community in a brown soil under crop-rotation system[D]. Shenyang: Shenyang Agricultural University, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10157-1014295053.htm |