删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

硒砂瓜连作对土壤真菌群落结构的影响

本站小编 Free考研考试/2022-01-01

冯翠娥,
岳思君,,
简阿妮,
陈丽萍,
郭洋,
郑蕊,
苏建宇,
宁夏大学生命科学学院/西部特色生物资源保护与利用教育部重点实验室 银川 750021
基金项目: 国家自然科学基金项目31360025
国家自然科学基金项目31560418
宁夏回族自治区重点研发计划项目2017BY081

详细信息
作者简介:冯翠娥, 主要研究方向为微生物技术与工程。E-mail:13519291697@163.com
通讯作者:岳思君, 主要研究方向为微生物学, E-mail:sijunyue@126.com
苏建宇, 主要研究方向为工业微生物, E-mail:su_jy@nxu.edu.cn
中图分类号:S154.3

计量

文章访问数:785
HTML全文浏览量:16
PDF下载量:1108
被引次数:0
出版历程

收稿日期:2018-08-07
录用日期:2018-11-26
刊出日期:2019-04-01

The effect of continuous cropping of selenium melon on soil fungal community structure

FENG Cui'e,
YUE Sijun,,
JIAN Ani,
CHEN Liping,
GUO Yang,
ZHENG Rui,
SU Jianyu,
College of Life Sciences, Ningxia University/Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China
Funds: the National Natural Science Foundation of China31360025
the National Natural Science Foundation of China31560418
Ningxia Key Research and Development Program2017BY081

More Information
Corresponding author:YUE Sijun, E-mail: sijunyue@126.com;SU Jianyu, E-mail: su_jy@nxu.edu.cn


摘要
HTML全文
(5)(3)
参考文献(34)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:硒砂瓜是宁夏地区重要的经济作物,其连作严重影响硒砂瓜产量和品质。目前硒砂瓜连作对土壤真菌群落结构的影响尚不清楚。本研究采用Illumina MiSeq高通量测序技术,探讨硒砂瓜连作对土壤真菌群落结构的影响。研究发现,硒砂瓜连作土壤中真菌群落多样性指数和丰富度指数随连作年限的增加先上升后下降。供试土壤样本中共检测到真菌8门、25纲、244属,其中子囊菌门(Ascomycota)、接合菌门(Zygomycota)是优势菌门,占90%以上。与对照相比,连作30年土壤中子囊菌门丰度下降32.51%,接合菌门丰度上升29.89%。供试土壤中真菌主要的优势属为被孢霉属(Mortierella)、绿僵菌属(Metarhiziun)、假霉样真菌属(Pseudallescheria)、镰刀菌属(Fusarium)和青霉属(Penicillium)。与对照相比,连作5年土壤中假霉样真菌属丰度增加45.81%,连作10年土壤中镰刀菌属丰度增加26.74%,连作15年土壤中绿僵菌属下降26.83%,连作20年土壤中青霉属增加29.68%,连作25年土壤中绿僵菌属减少18.30%,连作30年土壤中被孢霉属丰度上升29.89%。土壤理化性质与硒砂瓜连作年限间无显著相关性,而与土壤真菌群落结构存在显著的相关性。土壤全磷、碱解氮、有效磷含量是影响土壤真菌群落最主要的因素。研究结果表明,导致硒砂瓜连作障碍的主要原因不是土壤理化性质变化,而是土壤真菌群落结构的改变。研究结果可为硒砂瓜土传病害的生物防治提供参考依据。
关键词:连作/
土壤真菌/
群落结构/
Illumina高通量测序/
土壤理化性质/
硒砂瓜
Abstract:Selenium-melon is an important cash crop in Ningxia, but its yield and quality decrease when continuously cropped. The decrease may be related to soil fungal community changes that take place during continuous cropping, which was determined in this study. Soil samples from continuous cropping of selenium-melon were analyzed using Illumina Miseq high-throughput sequencing. The analysis showed that, after an initial increase, the diversity and density of the fungal community in the soil of continuous cropping decreased. Eight fungal phyla, 25 classes, and 244 genera were identified in the soil samples. Ascomycota and Zygomycota were the predominant phyla, accounting for > 90% of the fungi. The abundance decreased 32.51% for Ascomycota, but increased 29.89% for Zygomycota, after 30 years of continuous cropping. The most predominant genera were Mortierella, Metarhiziun, Pseudallescheria, Fusarium, and Penicillium, and the abundance changes included a 45.81% increase for Pseudallescheria after 5 years, a 26.74% increase for Fusarium after 10 years, a 26.83% decrease for Metarhiziun after 15 years, a 29.68% increase for Penicillium after 20 years, a 18.30% decrease for Metarhiziun after 25 years, and a 29.89% increase for Mortierella after 30 years of continuous cropping. Soil physical and chemical properties were not related to years of continuous cropping, but affected the fungal community structure. Soil total phosphorus, alkaline nitrogen, and available phosphorus were the most influential factors for fungal genus changes. A significant positive correlation was observed between the abundance of Metarhizium and soil total potassium, between the abundance of Pseudomycetes and soil total phosphorus and available potassium, and between the abundance of Penicillium and soil pH, whereas a significant negative correlation was observed between the abundance of Fusarium and soil total phosphorus and alkali-hydrolyzed nitrogen. Diminished production of selenium-melon in continuous cropping was related to soil fungal community changes rather than soil physicochemical properties, demonstrating that selenium-melon soil-borne diseases might be controlled through biological means.
Key words:Continuous cropping/
Soil fungi/
Community structure/
High-throughput sequencing/
Soil physicochemical properties/
Selenium melon

HTML全文


图1硒砂瓜连作土壤样本在OUT水平Sobs指数稀释曲线
T0、T5、T10、T15、T20、T25、T30分别指未种植硒砂瓜处理及连作5年、10年、15年、20年、25年和30年处理。
Figure1.Rarefaction curves of OUT level Sobs index in soil samples of selenium-melon continuous cropping
T0, T5, T10, T15, T20, T25, and T30 refer to the treatments of non-planting and continuous cropping for 5, 10, 15, 20, 25 and 30 years of selenium melon, respectively.


下载: 全尺寸图片幻灯片


图2硒砂瓜不同连作年限土壤真菌群落在门水平的相对丰度
T0、T5、T10、T15、T20、T25、T30分别指未种植硒砂瓜处理及连作5年、10年、15年、20年、25年和30年处理。
Figure2.Relative abundances of soil fungal communities at phylum level in different continuous cropping years of selenium-melon
T0, T5, T10, T15, T20, T25, and T30 refer to the treatments of non-planting and continuous cropping for 5, 10, 15, 20, 25 and 30 years of selenium melon, respectively.


下载: 全尺寸图片幻灯片


图3硒砂瓜不同连作年限土壤真菌群落在纲水平相对丰度
T0、T5、T10、T15、T20、T25、T30分别指未种植硒砂瓜处理及连作5年、10年、15年、20年、25年和30年处理。
Figure3.Relative abundances of soil fungal communities at class level in different continuous cropping years of selenium-melon
T0, T5, T10, T15, T20, T25, and T30 refer to the treatments of non-planting and continuous cropping for 5, 10, 15, 20, 25 and 30 years of selenium melon, respectively.


下载: 全尺寸图片幻灯片


图4硒砂瓜不同连作年限土壤真菌群落在属水平Heatmap图
T0、T5、T10、T15、T20、T25、T30分别指未种植硒砂瓜处理及连作5年、10年、15年、20年、25年和30年处理。
Figure4.Heatmap of soil fungal community at genus level in different continuous cropping years of selenium-melon
T0, T5, T10, T15, T20, T25, and T30 refer to the treatments of non-planting and continuous cropping for 5, 10, 15, 20, 25 and 30 years of selenium melon, respectively.


下载: 全尺寸图片幻灯片


图5硒砂瓜不同连作年限土壤真菌基于OTU水平的NMDS分析
T0、T5、T10、T15、T20、T25、T30分别指未种植硒砂瓜处理及连作5年、10年、15年、20年、25年和30年处理。
Figure5.NMDS analysis of soil fungi based on OTU level in different continuous cropping years of selenium-melon
T0, T5, T10, T15, T20, T25, and T30 refer to the treatments of non-planting and continuous cropping for 5, 10, 15, 20, 25 and 30 years of selenium melon, respectively.


下载: 全尺寸图片幻灯片

表1硒砂瓜连作对土壤理化性质的影响
Table1.Effects of selenium-melon continuous cropping on soil physical and chemical properties
处理
Treatment
pH 有机质
Organic matter
(g·kg-1)
全氮
Total N
(g·kg-1)
速效磷
Available P
(mg·kg-1)
全磷
Total P
(g·kg-1)
速效钾
Available K
(mg·kg-1)
全钾
Total K
(g·kg-1)
碱解氮
Alkali-hydrolysis N
(mg·kg-1)
T0 8.07±0.26c 9.17±0.41ab 0.41±0.04ab 7.90±0.91b 0.61±0.03ab 122±22.07ab 24.10±0.69a 29.87±5.94a
T5 8.22±0.10bc 9.45±0.43a 0.53±0.12a 18.90±4.52a 0.90±0.25a 141±7.77a 23.40±0.66ab 34.83±3.38a
T10 8.51±0.01ab 9.22±1.52ab 0.47±0.12ab 4.00±0.99b 0.60±0.08b 112±4.24ab 24.50±1.69a 21.95±8.69a
T15 8.67±0.06a 10.32±0.58a 0.45±0.02ab 5.00±2.00b 0.66±0.05ab 138±10.07a 23.90±0.26ab 28.80±4.00a
T20 8.58±0.04ab 9.17±1.44ab 0.43±0.02ab 6.50±1.54b 0.64±0.03ab 136±8.18a 23.77±0.26ab 27.13±4.09a
T25 8.49±0.10ab 9.32±1.11ab 0.42±0.04ab 2.47±1.10b 0.65±0.07ab 119±2.31ab 23.67±0.23ab 28.10±5.64a
T30 8.30±0.23bc 7.45±0.04b 0.33±0.02b 3.50±0.42b 0.64±0.01ab 100±15.56b 21.60±2.12b 29.20±7.60a
T0、T5、T10、T15、T20、T25、T30分别指未种植硒砂瓜处理及连作5年、10年、15年、20年、25年和30年处理。T0, T5, T10, T15, T20, T25, and T30 refer to the treatments of non-planting and continuous cropping for 5, 10, 15, 20, 25 and 30 years of selenium melon, respectively.


下载: 导出CSV
表2硒砂瓜连作土壤真菌Alpha多样性指数
Table2.Alpha diversity indexes of soil fungal under selenium-melon continuous cropping
样本
Sample
Shannon指数
Shannon Index
辛普森指数
Simpson Index
Ace指数
Ace Index
Chao指数
Chao 1 Index
T0 2.61±1.41 0.28±0.17 346.65±34.07 347.81±43.78
T5 1.97±0.79 0.37±0.19 250.83±48.33 252.55±47.45
T10 3.03±1.05 0.17±0.13 408.25±171.99 411.57±174.03
T15 3.50±0.43 0.11±0.05 496.99±36.03 506.77±38.04
T20 2.92±1.46 0.22±0.02 374.92±42.56 361.88±63.91
T25 1.91±0.81 0.32±0.19 194.89±87.11 192.85±86.26
T30 2.58±0.87 0.17±0.11 202.22±24.55 207.53±14.91
T0、T5、T10、T15、T20、T25、T30分别指未种植硒砂瓜处理及连作5年、10年、15年、20年、25年和30年处理。T0, T5, T10, T15, T20, T25, and T30 refer to the treatments of non-planting and continuous cropping for 5, 10, 15, 20, 25 and 30 years of selenium melon, respectively.


下载: 导出CSV
表3土壤真菌优势菌(属水平)丰度与土壤理化性质的相关性
Table3.Correlation between abundance of soil fungal dominant bacteria (genus level) and soil physicochemical properties
优势属
Dominant genera
pH 有机质
Organic matter
全磷
Total P
全钾
Total K
碱解氮
Alkali-hydrolysis N
速效钾
Available K
速效磷
Available P
被孢霉属Mortierella 0.159 0.066 -0.022 -0.314 -0.079 -0.283 -0.395
绿僵菌属Metarhizium 0.326 0.354 -0.404 0.515* -0.399 0.107 0.111
假霉样真菌属Pseudallescheria -0.065 0.187 0.486* 0.008 0.402 0.636** 0.417
镰刀菌属Fusarium 0.105 0.058 -0.597** 0.372 -0.610** -0.267 -0.208
青霉属Penicillium 0.438* -0.068 -0.183 0.143 -0.052 -0.027 -0.079
Unclassified_Ascomycota 0.180* 0.379 0.088 -0.029 -0.198 0.091 -0.384
毛壳属Chaetomium 0.318 0.219 0.206 0.129 0.050 0.487* 0.160
**P < 0.01, *P < 0.05.


下载: 导出CSV

参考文献(34)
[1]TEDERSOO L, BAHRAM M, P LME S, et al. Global diversity and geography of soil fungi[J]. Science, 2014, 346(6213):1256688 doi: 10.1126/science.1256688
[2]商鸿生.现代植物免疫学[M].北京:中国农业出版社, 2013
SHANG H S. Modern Immunology of Plants[M]. Beijing:China Agriculture Press, 2013
[3]李锐, 刘瑜, 褚贵新, 等.棉花连作对北疆土壤酶活性、致病菌及拮抗菌多样性的影响[J].中国生态农业学报, 2015, 23(4):432-440 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015406&flag=1
LI R, LIU Y, CHU G X, et al. Response of soil enzyme activity and microbial community structure, diversity to continuous cotton cropping in northern Xinjiang[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4):432-440 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015406&flag=1
[4]蒋婧, 宋明华.植物与土壤微生物在调控生态系统养分循环中的作用[J].植物生态学报, 2010, 34(8):979-988 doi: 10.3773/j.issn.1005-264x.2010.08.011
JIANG J, SONG M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chinese Journal of Plant Ecology, 2010, 34(8):979-988 doi: 10.3773/j.issn.1005-264x.2010.08.011
[5]赵帆.不同连作年限草莓根际土壤微生物多样性变化[D].合肥: 安徽大学, 2018
ZHAO F. Biodiversity of microorganism in rhizosphere soil of strawberry with different continuous cropping years[D]. Hefei: Anhui University, 2018
[6]SONG X H, PAN Y, LI L Y, et al. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields[J]. PLoS One, 2018, 13(3):e0193811 doi: 10.1371/journal.pone.0193811
[7]纪莉景, 王连生, 栗秋生, 等.西瓜枯萎病菌分离及致病力测定[J].河北农业科学, 2010, 14(8):137-138 doi: 10.3969/j.issn.1088-1631.2010.08.044
JI L J, WANG L S, LI Q S, et al. Isolation and pathogenicity determination of watermelon wilt[J]. Journal of Hebei Agricultural Sciences, 2010, 14(8):137-138 doi: 10.3969/j.issn.1088-1631.2010.08.044
[8]BOUGHALLEB N, EL MAHJOUB M. Frequency of Fusarium oxysporum F. sp. niveum and F. solani F. sp. cucurbitae from watermelon seeds and their effect on disease incidence[J]. Research Journal of Parasitology, 2007, 2(1):32-38 doi: 10.3923/jp.2007.32.38
[9]LING N, DENG K Y, SONG Y, et al. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer[J]. Microbiological Research, 2014, 169(7/8):570-578 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f9ba5ee72bba9faa271c88fa9e84d8e9
[10]袁旭东.中宁县无公害硒砂瓜机械化生产技术探讨[J].当代农机, 2017, (11):61-63 doi: 10.3969/J.ISSN.1673—632X.2017.11.06
YUAN X D. Discussion on mechanized production technology of pollution-free selenium sand melon in Zhongning County[J]. Contemporary Farm Machinery, 2017, (11):61-63 doi: 10.3969/J.ISSN.1673—632X.2017.11.06
[11]单治彬, 孔金玲, 张永庭, 等.面向对象的特色农作物种植遥感调查方法研究[J].地球信息科学学报, 2018, 20(10):1509-1519 doi: 10.12082/dqxxkx.2018.180116
SHAN Z B, KONG J L, ZHANG Y T, et al. Remote sensing investigation method of object-oriented crops with special characteristics[J]. Journal of Geo-Information Science, 2018, 20(10):1509-1519 doi: 10.12082/dqxxkx.2018.180116
[12]刘苹, 赵海军, 万书波, 等.连作对花生根系分泌物化感作用的影响[J].中国生态农业学报, 2011, 19(3):639-644 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110326&flag=1
LIU P, ZHAO H J, WAN S B, et al. Effect of continuous cropping on allelopathy of peanut root exudates[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3):639-644 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110326&flag=1
[13]BOLGER A M, LOHSE M, USADEL B. Trimmomatic:A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120 doi: 10.1093/bioinformatics/btu170
[14]EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19):2460-2461 doi: 10.1093/bioinformatics/btq461
[15]EDGAR R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998 doi: 10.1038/nmeth.2604
[16]DESHPANDE V, WANG Q, GREENFIELD P, et al. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences[J]. Mycologia, 2016, 108(1):1-5 doi: 10.3852/14-293
[17]KNUDSEN I M B, HOCKENHULL J, JENSEN D F. Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana:Effects of selected fungal antagonists on growth and yield components[J]. Plant Pathology, 1995, 44(3):467-477 doi: 10.1111/ppa.1995.44.issue-3
[18]王娟英, 许佳慧, 吴林坤, 等.不同连作年限怀牛膝根际土壤理化性质及微生物多样性[J].生态学报, 2017, 37(17):5621-5629 http://d.old.wanfangdata.com.cn/Periodical/stxb201717006
WANG J Y, XU J H, WU L K, et al. Analysis of physicochemical properties and microbial diversity in rhizosphere soil of Achyranthes bidentata under different cropping years[J]. Acta Ecologica Sinica, 2017, 37(17):5621-5629 http://d.old.wanfangdata.com.cn/Periodical/stxb201717006
[19]阎海涛, 殷全玉, 丁松爽, 等.生物炭对褐土理化特性及真菌群落结构的影响[J].环境科学, 2018, 39(5):2412-2419 http://d.old.wanfangdata.com.cn/Periodical/hjkx201805050
YAN H T, YIN Q Y, DING S S, et al. Effect of biochar amendment on physicochemical properties and fungal community structures of cinnamon soil[J]. Environmental Science, 2018, 39(5):2412-2419 http://d.old.wanfangdata.com.cn/Periodical/hjkx201805050
[20]赵帆, 赵密珍, 王钰, 等.不同连作年限草莓根际细菌和真菌多样性变化[J].微生物学通报, 2017, 44(6):1377-1386 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201706015
ZHAO F, ZHAO M Z, WANG Y, et al. Biodiversity of bacteria and fungi in rhizosphere of strawberry with different continuous cropping years[J]. Microbiology China, 2017, 44(6):1377-1386 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201706015
[21]MAZZOLA M, MANICI L M. Apple replant disease:Role of microbial ecology in cause and control[J]. Annual Review of Phytopathology, 2012, 50:45-65 doi: 10.1146/annurev-phyto-081211-173005
[22]康亚龙, 孙文庆, 刘建国, 等. PLFA方法研究连作对加工番茄根际土壤微生物群落结构的影响[J].中国生态农业学报, 2017, 25(4):594-604 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170413&flag=1
KANG Y L, SUN W Q, LIU J G, et al. Microbial community structure in rhizosphere soils of long-term continuously cropped processing tomato based on PLFA method[J]. Chinese Journal of Eco-Agriculture, 2017, 25(4):594-604 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170413&flag=1
[23]SCHOCH C L, SUNG G H, L PEZ-GIR LDEZ F, et al. The Ascomycota tree of life:A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits[J]. Systematic Biology, 2009, 58(2):224-239 doi: 10.1093/sysbio/syp020
[24]BURNHAM-MARUSICH A R, BREEANA H, KVAM A J, et al. Conservation of Mannan Synthesis in fungi of the Zygomycota and Ascomycota reveals a broad diagnostic target[J]. mSphere, 2018, 3(3):e00094-18 http://europepmc.org/articles/PMC5932377/
[25]OLDROYD G E D. Speak, friend, and enter:Signalling systems that promote beneficial symbiotic associations in plants[J]. Nature Reviews Microbiology, 2013, 11(4):252-263 doi: 10.1038/nrmicro2990
[26]GOMES N C M, FAGBOLA O, COSTA R, et al. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics[J]. Applied and Environmental Microbiology, 2003, 69(7):3758-3766 doi: 10.1128/AEM.69.7.3758-3766.2003
[27]ZHANG H S, WU X H, LI G, et al. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities[J]. Biology and Fertility of Soils, 2011, 47(5):543-554 doi: 10.1007/s00374-011-0563-3
[28]LIAO X G, FANG W G, LIN L C, et al. Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization[J]. PLoS One, 2013, 8(10):e78118 doi: 10.1371/journal.pone.0078118
[29]MANICI L M, KELDERER M, FRANKE-WHITTLE I H, et al. Relationship between root-endophytic microbial communities and replant disease in specialized apple growing areas in Europe[J]. Applied Soil Ecology, 2013, 72:207-214 doi: 10.1016/j.apsoil.2013.07.011
[30]罗清, 彭程, 叶波平.青霉属真菌研究新进展[J].药物生物技术, 2016, 23(5):452-456 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ywswjs201605017
LUO Q, PENG C, YE B P. New advances in research of the genus Penicillium[J]. Pharmaceutical Biotechnology, 2016, 23(5):452-456 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ywswjs201605017
[31]华菊玲, 刘光荣, 黄劲松.连作对芝麻根际土壤微生物群落的影响[J].生态学报, 2012, 32(9):2936-2942 http://d.old.wanfangdata.com.cn/Periodical/stxb201209033
HUA J L, LIU G R, HUANG J S. Effect of continuous cropping of sesame on rhizospheric microbial communities[J]. Acta Ecologica Sinica, 2012, 32(9):2936-2942 http://d.old.wanfangdata.com.cn/Periodical/stxb201209033
[32]焦润安, 徐雪风, 杨宏伟, 等.连作对马铃薯生长和土壤健康的影响及机制研究[J].干旱区农业研究, 2018, 36(4):94-100 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201804014
JIAO R A, XU X F, YANG H W, et al. Study on the effect and its mechanism of continuous cropping on potato growth and soil health[J]. Agricultural Research in the Arid Areas, 2018, 36(4):94-100 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201804014
[33]秦越, 马琨, 刘萍.马铃薯连作栽培对土壤微生物多样性的影响[J].中国生态农业学报, 2015, 23(2):225-232 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015212&flag=1
QIN Y, MA K, LIU P. Effect of potato continuous cropping on genetic diversity of soil microorganisms[J]. Chinese Journal of Eco-Agriculture, 2015, 23(2):225-232 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015212&flag=1
[34]HUHE, CHEN X J, HOU F J, et al. Bacterial and fungal community structures in loess plateau grasslands with different grazing intensities[J]. Frontiers in Microbiology, 2017, 8:606 doi: 10.3389/fmicb.2017.00606

相关话题/土壤 理化 微生物 结构 图片