张向前,
赵金莉,
河北大学生命科学学院 保定 071002
基金项目: 河北省自然科学基金项目C2017201044
河北大学大学生创新训练项目2017126
详细信息
作者简介:韩娟, 主要从事菌根生物技术方面的研究。E-mail:junhan_hbu@126.com
通讯作者:赵金莉, 主要从事土壤生态学方面的研究。E-mail:plant@hbu.edu.cn
中图分类号:S154.3计量
文章访问数:737
HTML全文浏览量:13
PDF下载量:653
被引次数:0
出版历程
收稿日期:2018-11-29
录用日期:2018-12-05
刊出日期:2019-04-01
Effect of arbuscular mycorrhizal fungi on metabolic characteristics of microbial community in Solanum nigrum rhizosphere soil with lead stress
HAN Juan,ZHANG Xiangqian,
ZHAO Jinli,
College of Life Sciences, Hebei University, Baoding 071002, China
Funds: the Natural Science Foundation of Hebei ProvinceC2017201044
the Student Innovation Training Project of Hebei University2017126
More Information
Corresponding author:ZHAO Jinli, E-mail: plant@hbu.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为从微生态角度探索接种AM真菌对铅污染根际土壤微生物群落代谢特征的影响,以摩西管柄囊霉(Funneliformis mosseae)和幼套近明囊霉(Claroideoglomus etunicatum)为接种菌剂,在温室盆栽条件下以Pb4+含量为0 mg·kg-1、200 mg·kg-1、400 mg·kg-1和800 mg·kg-1土壤种植龙葵(Solanum nigrum)10周后采集根际土壤,采用Biolog微平板法测定龙葵根际土壤微生物群落的代谢变化。结果表明:1)微生物平均代谢活性(AWCD)随铅浓度增加呈降—升—降趋势;接种AM真菌显著提高了铅胁迫下根际土壤微生物的AWCD值,仅中浓度(400 mg·kg-1)下未达显著差异。2)中浓度铅处理能显著提高根际土壤微生物对糖类及其衍生物、氨基酸类、脂肪酸和脂类及代谢产物类四大类碳源底物利用能力;接种AM真菌,高浓度(800 mg·kg-1)铅处理显著提高了根际土壤微生物对氨基酸类底物的利用能力。3)铅胁迫下接种AM真菌提高了根际土壤微生物多样性指数,在中浓度下丰富度指数、Shannon-Wiener多样性指数、Simpson优势度指数均达显著水平。4)主成分分析显示,代谢产物类在PC1和PC2中种类最多,分别为6种和4种;糖类及其衍生物在PC3中种类最多(5种)。5)在铅胁迫和接种AM真菌共同作用下,微生物碳源利用主要受铅浓度调节,并且二者对微生物碳源利用具有显著交互效应。综上可知,接种AM真菌能够提高铅胁迫下龙葵根际土壤微生物多样性指数,增强根际土壤微生物对碳源底物的利用能力。该研究为进一步探究AM真菌强化植物联合修复技术提供了依据。
Abstract:Pot experiments were conducted to explore the effect of arbuscular mycorrhiza (AM) fungi on the characteristics and differences in rhizosphere soils of Solanum nigrum under different levels of lead stress[0 mg·kg-1 (CK), 200 mg·kg-1, 400 mg·kg-1, 800 mg·kg-1). To this end, S. nigrum was inoculated with Funneliformis mosseae and Claroideoglomus etunicatum, and the resulting rhizosphere soils collected after 10 weeks of growth under 16 h/8 h, 28℃/20℃ with 12 000 Lux light intensity in a greenhouse. The characteristics and differences in carbon metabolic profiles of microbes were evaluated using the Biolog-ECO micro-plate method. The results showed that:1) the average metabolic activity of microorganisms, described by average well color development (AWCD), decreased-increased-decreased with increasing lead stress. Inoculation with AM fungi improved AWCD significantly under lead stresses, except for 400 mg·kg-1 Pb4+. 2) The ability of soil microbes to utilize the four types of carbon substrates (carbohydrate and derivatives, fatty acid and lipids, amino acids, and metabolites) was higher under 400 mg·kg-1 Pb4+ than under low (200 mg·kg-1) and high (800 mg·kg-1) stresses of Pb4+. Inoculation with AM fungi significantly improved the ability of soil microbes to utilize amino acid substrates under high lead concentration. 3) Lead stress reduced McIntosh evenness index of rhizosphere soil microbial community, but had no significant impact on richness index, Shannon-Wiener diversity index and Simpson index. Inoculation with AM fungi increased microbial diversity index under lead treatment, and had significant effects on Species richness index, Shannon-Wiener diversity index and Simpson dominance index at medium stress. 4) Under the same Pb4+ stress, inoculation of AM fungi enhanced metabolic capacity of soil microorganisms for the four major carbon sources, but only had significant effect on amino acids. Principal component analysis showed that metabolites were the most abundant in PC1 and PC2, with respective values of 6 and 4. Sugar was the most abundant in PC3. 5) Under combined effects of lead stress and AM fungi, microbial carbon source utilization was mainly regulated by lead concentration, both had significant interaction effects on microbial carbon source utilization. In conclusion, inoculation with AM fungi increased microbial diversity index of rhizosphere soils of S. nigrum under lead stress, and enhanced utilization of carbon source substrate by rhizosphere soil microbes. This study provided theoretical basis for the application of AM fungi which could strengthen the use of phytoremediation technology in soil remediation for heavy metal pollution.
HTML全文
图1菌剂接种及播种方式
Figure1.Method of inoculation and seeding
下载: 全尺寸图片幻灯片
图2接种AM真菌对铅胁迫下龙葵根际土壤微生物平均颜色变化率(AWCD)的影响
CK:未接种AM真菌, Pb4+为0 mg·kg-1; AM:接种AM真菌; Pb1: Pb4+浓度为200 mg·kg-1(低浓度); Pb2: Pb4+浓度为400 mg·kg-1(中浓度); Pb3: Pb4+浓度为800 mg·kg-1(高浓度)。*和**分别表示在P < 0.05和P < 0.01水平差异显著。
Figure2.Effect of AM fungi inoculation on the average well color development (AWCD) of microbia in rhizosphere soil of Solanum nigrum under lead stress
CK: no AM with 0 mg·kg-1 Pb4+; AM: inoculation of AM; Pb1: low Pb4+ concentration (200 mg·kg-1); Pb2: medium Pb4+ concentration (400 mg·kg-1); Pb3: high Pb4+ concentration (800 mg·kg-1). * and ** mean significant difference at P < 0.05 and P < 0.01 levels, respectively.
下载: 全尺寸图片幻灯片
图3接种AM真菌和铅胁迫下龙葵根际土壤微生物群落碳源代谢特征的主成分分析
CK:未接种AM真菌, Pb4+为0 mg·kg-1; AM:接种AM真菌; Pb1: Pb4+浓度为200 mg·kg-1(低浓度); Pb2: Pb4+浓度为400 mg·kg-1(中浓度); Pb3: Pb4+浓度为800 mg·kg-1(高浓度)。
Figure3.Principal component analysis for carbon source utilization of soil microbes in Solanum nigrum rhizosphere under inoculation of AM and lead stress
CK: no AM with 0 mg·kg-1 Pb4+; AM: inoculation AM; Pb1: low Pb4+ concentration (200 mg·kg-1); Pb2: medium Pb4+ concentration (400 mg·kg-1); Pb3: high Pb4+ concentration (800 mg·kg-1).
下载: 全尺寸图片幻灯片
表1接种AM真菌和铅胁迫对各测定指标影响的方差分析
Table1.ANOVA analysis results of effects of AM inoculation and lead stress on the investigated indexes of the experiment
指标 Index | 变异来源Source of variation | |||||||
AM接种(AM) AM inoculation | 铅处理(Pb) Pb treatment | AMxPb | ||||||
F | P | F | P | F | P | |||
平均颜色变化率Average well color development (AWCD) | 11.456 | ** | 5.851 | ** | 3.793 | * | ||
物种多样性指数Shannon-Wiener diversity index (H') | 24.750 | *** | 1.031 | NS | 0.269 | NS | ||
优势度指数Simpson dominance index (D) | 30.727 | *** | 0.438 | NS | 0.511 | NS | ||
丰富度指数Species richness index (S) | 19.678 | *** | 2.444 | NS | 0.611 | NS | ||
McIntosh均匀度指数McIntosh evenness index (U) | 5.270 | * | 5.232 | ** | 3.428 | * | ||
糖类及其衍生物Carbohydrate and its derivates | 0.030 | NS | 22.922 | *** | 23.623 | *** | ||
氨基酸类Amino acid | 0.268 | NS | 4.380 | * | 3.951 | * | ||
脂肪酸及脂类Fatty acid and lipid | 0.072 | NS | 7.814 | ** | 10.344 | *** | ||
代谢产物Metabolites | 5.709 | * | 6.952 | ** | 6.538 | ** | ||
NS:不显著; *:显著水平为P < 0.05; **:显著水平为P < 0.01; ***:显著水平为P < 0.001。NS: no significant difference; *: significant difference at P < 0.05; **: significant difference at P < 0.01; ***: significant difference at P < 0.001. |
下载: 导出CSV
表2接种AM真菌对铅胁迫下龙葵根际土壤微生物功能多样性指数的影响
Table2.Effect of AM fungi inoculation on soil microbial function diversity indexes of Solanum nigrum rhizosphere soil under lead stress
处理 Treatment | 丰富度指数 Species richness index | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Simpson优势度指数 Simpson dominance index | McIntosh均匀度指数 McIntosh evenness index |
CK | 24.67±1.33aA | 3.175 4±0.002 9aA | 0.951 5±0.000 4aA | 3.760 4±0.045 0aA |
Pb1 | 22.67±0.88bA | 3.079 0±0.054 5aA | 0.945 6±0.003 9aA | 3.494 7±0.320 1aA |
Pb2 | 24.67±2.03aA | 3.128 1±0.085 8aA | 0.950 0±0.004 7aA | 3.037 3±0.654 4bA |
Pb3 | 24.00±1.15aA | 3.139 0±0.022 3aA | 0.948 9±0.001 2aA | 3.593 7±0.337 7aA |
AM+CK | 29.67±0.33aB | 3.303 7±0.024 3aA | 0.960 0±0.001 4aB | 5.774 5±0.154 0aB |
AM+Pb1 | 26.00±1.15bA | 3.263 7±0.008 5aB | 0.957 4±0.000 7aB | 4.225 0±0.248 8bA |
AM+Pb2 | 29.00±0.58aB | 3.277 4±0.027 1aB | 0.957 9±0.001 6aB | 4.771 1±0.345 4abA |
AM+Pb3 | 26.33±0.33bA | 3.238 4±0.009 1aA | 0.955 8±0.000 5aA | 4.212 7±0.337 4bA |
CK:未接种AM真菌, Pb4+为0 mg·kg-1; AM:接种AM真菌; Pb1: Pb4+浓度为200 mg·kg-1(低浓度); Pb2: Pb4+浓度为400 mg·kg-1(中浓度); Pb3: Pb4+浓度为800 mg·kg-1(高浓度)。同列不同小写字母分别表示接种AM真菌或未接种AM真菌处理下不同Pb4+浓度间差异显著(P < 0.05);同列不同大写字母表示同一Pb4+浓度下接种AM和不接种AM处理间差异显著(P < 0.05)。CK: no AM with 0 mg·kg-1 Pb4+; AM: inoculation of AM; Pb1: low Pb4+ concentration (200 mg·kg-1); Pb2: medium Pb4+ concentration (400 mg·kg-1); Pb3: high Pb4+ concentration (800 mg·kg-1). Different lowercase letters in the same column indicate significant differences among different concentrations of Pb4+ at P < 0.05. Different capital letters in the same column indicate significant differences between AM inoculation and no inoculation under the same Pb4+ concentration at P < 0.05. |
下载: 导出CSV
表3接种AM真菌对铅胁迫下龙葵根际土壤微生物碳源利用强度的影响
Table3.Effect of AM fungi inoculation on carbon source utilization of soil microbes in Solanum nigrum rhizosphere under lead stress
处理 Treatment | 碳源类型Carbon sources | |||
糖类及其衍生物 Carbohydrate and derivatives | 氨基酸类 Amino acids | 脂肪酸和脂类 Fatty acid and lipids | 代谢产物 Metabolites | |
CK | 0.664 4±0.046 9aA | 0.573 5±0.028 6aA | 0.575 9±0.062 6aA | 0.315 5±0.022 9aA |
Pb1 | 0.553 4±0.012 5aA | 0.722 7±0.048 2aA | 0.507 2±0.071 7aA | 0.334 8±0.080 7aA |
Pb2 | 0.914 3±0.062 8bA | 0.808 8±0.063 1aA | 0.604 0±0.131 2aA | 0.503 2±0.105 9bA |
Pb3 | 0.614 3±0.097 0aA | 0.554 0±0.054 5aA | 0.549 7±0.076 1aA | 0.305 7±0.032 6aA |
AM+CK | 0.981 6±0.041 1aB | 1.032 7±0.015 4aB | 0.941 2±0.061 8aB | 0.774 4±0.018 6aB |
AM+Pb1 | 0.748 5±0.057 0abA | 0.744 3±0.036 9bA | 0.640 9±0.042 1bA | 0.479 0±0.060 4bA |
AM+Pb2 | 0.842 3±0.066 1abA | 0.848 2±0.050 9abA | 0.687 9±0.024 8bA | 0.571 7±0.039 4bA |
AM+Pb3 | 0.683 4±0.032 4bA | 0.849 2±0.119 7abB | 0.637 5±0.0577 bA | 0.444 9±0.070 4bA |
CK:未接种AM真菌, Pb4+为0 mg·kg-1; AM:接种AM真菌; Pb1: Pb4+浓度为200 mg·kg-1(低浓度); Pb2: Pb4+浓度为400 mg·kg-1(中浓度); Pb3: Pb4+浓度为800 mg·kg-1(高浓度)。同列不同小写字母分别表示接种AM真菌或未接种AM真菌处理下不同Pb4+浓度间差异显著(P < 0.05);同列不同大写字母表示同一Pb4+浓度下接种AM和不接种AM处理间差异显著(P < 0.05)。CK: no AM with 0 mg·kg-1 Pb4+; AM: inoculation of AM; Pb1: low Pb4+ concentration (200 mg·kg-1); Pb2: medium Pb4+ concentration (400 mg·kg-1); Pb3: high Pb4+ concentration (800 mg·kg-1). Different lowercase letters in the same column indicate significant differences among concentrations of Pb4+ at P < 0.05. Different capital letters in the same column indicate significant differences between AM inoculation and no inoculation under the same Pb4+ concentration at P < 0.05. |
下载: 导出CSV
表4接种AM真菌和铅胁迫下龙葵根际土壤微生物Biolog-ECO板上碳源利用的主成分载荷矩阵
Table4.Principal components loading matrix for soil microbes carbon source utilization of Biolog-ECO in Solanum nigrum rhizosphere under inoculation of AM and lead stress
碳源编号 Code of carbon source | 碳源类别 Carbon sources | 底物 Substrate | 提取的主成分 Principal component of extraction | |||||
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | |||
A2 | 糖类及其衍生物 Saccharides and derivates | -甲基D-葡萄糖β-methyl-D-glucoside | -0.112 | 0.167 | 0.072 | -0.968 | 0.021 | -0.112 |
A3 | D-半乳糖酸γ内酯D-galactonic acid γ-lactone | 0.137 | 0.286 | 0.624 | -0.060 | 0.254 | 0.653 | |
B2 | D-木糖D-xylose | 0.717 | 0.452 | 0.369 | -0.186 | 0.316 | 0.014 | |
B3 | D-半乳糖醛酸D-galacturonic acid | -0.492 | 0.349 | 0.292 | 0.159 | -0.113 | 0.709 | |
C2 | i-赤藓糖醇i-erythritol | 0.577 | 0.357 | 0.225 | 0.101 | 0.614 | -0.316 | |
D2 | D-甘露醇D-mannitol | 0.575 | 0.303 | 0.751 | -0.011 | -0.040 | 0.104 | |
E1 | α环状糊精α-cyclodextrin | 0.768 | 0.353 | 0.206 | 0.226 | 0.087 | -0.014 | |
E2 | N-乙酰基-D-葡萄糖氨N-acetyl-D-glucosamine | 0.096 | -0.123 | 0.889 | 0.168 | 0.202 | 0.028 | |
F1 | 肝糖Glycogen | 0.159 | 0.719 | 0.559 | -0.080 | 0.276 | 0.250 | |
F2 | D-氨基葡萄糖酸D-glucosaminic acid | 0.588 | 0.277 | 0.178 | 0.723 | 0.131 | -0.078 | |
G1 | D-纤维二糖D-cellobiose | 0.400 | 0.216 | 0.845 | 0.120 | 0.231 | 0.107 | |
H1 | α-D-乳糖α-D-lactose | 0.407 | 0.177 | 0.309 | 0.079 | 0.804 | 0.218 | |
A4 | 氨基酸类 Amino acid | L-精氨酸L-arginine | 0.377 | 0.503 | 0.200 | 0.741 | 0.089 | -0.090 |
B4 | L-天冬酰胺L-asparagine | 0.206 | -0.414 | -0.815 | 0.249 | 0.178 | 0.077 | |
C4 | L-苯丙氨酸L-phenylalanine | -0.045 | 0.397 | 0.774 | -0.323 | -0.346 | 0.129 | |
D4 | L-丝氨酸L-serine | 0.095 | 0.061 | 0.833 | 0.429 | 0.059 | 0.309 | |
E4 | L-苏氨酸L-threonine | 0.795 | 0.525 | 0.139 | 0.080 | 0.137 | -0.098 | |
F4 | 甘氨酰-L-谷氨酸Glycyl-L-glutamic acid | 0.380 | 0.761 | 0.109 | 0.402 | 0.303 | 0.099 | |
B1 | 脂肪酸和脂类 Fatty acids and lipids | 丙酮酸甲酯Pyruvic acid methyl ester | 0.795 | 0.258 | 0.035 | 0.488 | 0.150 | 0.198 |
C1 | 吐温40 Tween40 | 0.367 | 0.809 | 0.095 | -0.257 | 0.206 | 0.299 | |
D1 | 吐温80 Tween 80 | 0.325 | 0.835 | 0.386 | 0.131 | 0.034 | 0.170 | |
E3 | γ-羟基丁酸γ-hydroxybutyric acid | 0.737 | 0.316 | -0.095 | 0.492 | 0.216 | -0.156 | |
F3 | 衣康酸Itaconic acid | 0.193 | 0.863 | 0.405 | 0.004 | -0.076 | -0.207 | |
C3 | 代谢产物类 Metabolites | 2-羟基苯甲酸2-hydroxy benzoic acid | 0.968 | -0.100 | 0.015 | 0.107 | 0.161 | 0.019 |
D3 | 4-羟基苯甲酸4-hydroxy benzoic acid | 0.554 | 0.671 | 0.310 | 0.377 | -0.017 | 0.024 | |
G2 | 葡萄糖-1-磷酸盐Glucose-1-phosphate | 0.817 | 0.565 | 0.031 | 0.047 | -0.072 | -0.062 | |
G3 | α-丁酮酸α-ketobutyric acid | 0.768 | 0.227 | 0.134 | 0.318 | 0.472 | -0.127 | |
G4 | 苯乙胺Phenylethylamine | 0.071 | 0.302 | 0.879 | 0.066 | 0.345 | -0.008 | |
H2 | D, L-a-磷酸甘油D, L-α-glycerol phosphate | 0.163 | 0.947 | 0.016 | 0.126 | 0.215 | 0.146 | |
H3 | D-苹果酸D-malic acid | 0.577 | 0.672 | 0.317 | 0.184 | -0.194 | 0.182 | |
H4 | 腐胺Putrescine | 0.641 | 0.209 | 0.380 | 0.428 | 0.248 | 0.396 |
下载: 导出CSV
参考文献
[1] | 张敏, 郜春花, 李建华, 等.重金属污染土壤生物修复技术研究现状及发展方向[J].山西农业科学, 2017, 45(4):674-676 doi: 10.3969/j.issn.1002-2481.2017.04.44 ZHANG M, GAO C H, LI J H, et al. Research status and development direction of bioremediation technique on heavy metal contaminated soil[J]. Journal of Shanxi Agricultural Sciences, 2017, 45(4):674-676 doi: 10.3969/j.issn.1002-2481.2017.04.44 |
[2] | 朱剑飞, 李铭红, 谢佩君, 等.紫花苜蓿、黑麦草和狼尾草对Cu、Pb复合污染土壤修复能力的研究[J].中国生态农业学报, 2018, 26(2):303-313 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0216&flag=1 ZHU J F, LI M H, XIE P J, et al. Phytoremediation of single and combined pollution of Cu and Pb by Medicago sativa, Lolium perenne, and Pennisetum alopecuroides[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2):303-313 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0216&flag=1 |
[3] | ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals-Concepts and applications[J]. Chemosphere, 2013, 91(7):869-881 doi: 10.1016/j.chemosphere.2013.01.075 |
[4] | RAJKUMAR M, SANDHYA S, PRASAD M N V, et al. Perspectives of plant-associated microbes in heavy metal phytoremediation[J]. Biotechnology Advances, 2012, 30(6):1562-1574 doi: 10.1016/j.biotechadv.2012.04.011 |
[5] | SCHWARZOTT D, WALKER C, SCH LER A. Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic[J]. Molecular Phylogenetics and Evolution, 2001, 21(2):190-197 doi: 10.1006/mpev.2001.1007 |
[6] | 孙吉庆, 刘润进, 李敏.丛枝菌根真菌提高植物抗逆性的效应及其机制研究进展[J].植物生理学报, 2012, 48(9):845-852 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201209003 SUN J Q, LIU R J, LI M. Advances in the study of increasing plant stress resistance and mechanisms by arbuscular mycorrhizal fungi[J]. Plant Physiology Journal, 2012, 48(9):845-852 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201209003 |
[7] | DE ANDRADE S A L, DA SILVEIRA A P D. Mycorrhiza influence on maize development under Cd stress and P supply[J]. Brazilian Journal of Plant Physiology, 2008, 20(1):39-50 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001567665 |
[8] | 申鸿, 刘于, 李晓林, 等.丛枝菌根真菌(Glomus caledonium)对铜污染土壤生物修复机理初探[J].植物营养与肥料学报, 2005, 11(2):199-204 doi: 10.3321/j.issn:1008-505X.2005.02.011 SHEN H, LIU Y, LI X L, et al. Influence of arbuscular mycorrhizal fungus (Glomus caledonium) on maize seedlings grown in copper contaminated soil[J]. Plant Nutrition and Fertilizer Science, 2005, 11(2):199-204 doi: 10.3321/j.issn:1008-505X.2005.02.011 |
[9] | MEIER S, BORIE F, BOLAN N, et al. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(7):741-775 doi: 10.1080/10643389.2010.528518 |
[10] | 刘灵芝, 张玉龙, 李培军, 等.铅锌矿区分离丛枝菌根真菌对万寿菊生长与吸镉的影响[J].土壤学报, 2012, 49(1):43-49 http://d.old.wanfangdata.com.cn/Periodical/trxb201201006 LIU L Z, ZHANG Y L, LI P J, et al. Effect of arbuscular mycorrhizal fungi isolated from mining area on growth and Cd uptake of Tagetes erecta L.[J]. Acta Pedologica Sinica, 2012, 49(1):43-49 http://d.old.wanfangdata.com.cn/Periodical/trxb201201006 |
[11] | 李霞, 彭霞薇, 伍松林, 等.丛枝菌根对翅荚木生长及吸收累积重金属的影响[J].环境科学, 2014, 35(8):3142-3148 http://d.old.wanfangdata.com.cn/Periodical/hjkx201408048 LI X, PENG X W, WU S L, et al. Effect of arbuscular mycorrhizae on growth, heavy metal uptake and accumulation of Zenia insignis Chun seedlings[J]. Environmental Science, 2014, 35(8):3142-3148 http://d.old.wanfangdata.com.cn/Periodical/hjkx201408048 |
[12] | 祖艳群, 卢鑫, 湛方栋, 等.丛枝菌根真菌在土壤重金属污染植物修复中的作用及机理研究进展[J].植物生理学报, 2015, 51(10):1538-1548 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201510003 ZU Y Q, LU X, ZHAN F D, et al. A review on roles and mechanisms of arbuscular mycorrhizal fungi in phytoremediation of heavy metals-polluted soils[J]. Plant Physiology Journal, 2015, 51(10):1538-1548 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201510003 |
[13] | 谢桂英, 游秀峰, 孙淑君, 等.龙葵种子休眠解除方法研究[J].杂草科学, 2013, 31(1):37-39 doi: 10.3969/j.issn.1003-935X.2013.01.009 XIE G Y, YOU X F, SUN S J, et al. A dormancy breaking technique for Solanum nigrum L. seeds[J]. Weed Science, 2013, 31(1):37-39 doi: 10.3969/j.issn.1003-935X.2013.01.009 |
[14] | O'DONNELL A G, SEASMAN M, MACRAE A, et al. Plants and fertilisers as drivers of change in microbial community structure and function in soils[J]. Plant and Soil, 2001, 232(1/2):135-145 doi: 10.1023/A:1010394221729 |
[15] | ABAYE D A, LAWLOR K, HIRSCH P R, et al. Changes in the microbial community of an arable soil caused by long-term metal contamination[J]. European Journal of Soil Science, 2005, 56(1):93-102 doi: 10.1111/ejs.2005.56.issue-1 |
[16] | GARLAND J L. Analysis and interpretation of community-level physiological profiles in microbial ecology[J]. FEMS Microbiology Ecology, 1997, 24(4):289-300 doi: 10.1111/j.1574-6941.1997.tb00446.x |
[17] | KONOPKA A, OLIVER L, TURCO JR R F. The use of carbon substrate utilization patterns in environmental and ecological microbiology[J]. Microbial Ecology, 1998, 35(2):103-115 doi: 10.1007/s002489900065 |
[18] | 廖敏, 陈雪花, 陈承利, 等.土壤-青菜系统中铅污染对土壤微生物活性及多样性的影响[J].环境科学学报, 2007, 27(2):220-227 doi: 10.3321/j.issn:0253-2468.2007.02.008 LIAO M, CHEN X H, CHEN C L, et al. The influence of lead contamination on soil-microbial activity and community structure diversity in a soil-greengrocery system[J]. Acta Scientiae Circumstantiae, 2007, 27(2):220-227 doi: 10.3321/j.issn:0253-2468.2007.02.008 |
[19] | GADKAR V, RILLIG M C. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60[J]. FEMS Microbiology Letters, 2006, 263(1):93-101 doi: 10.1111/fml.2006.263.issue-1 |
[20] | 陈卫莉, 赵晓改, 王浩, 等. Pb胁迫下接种丛枝菌根真菌对茶树解毒能力的影响[J].河南科学, 2014, 32(4):511-515 http://d.old.wanfangdata.com.cn/Periodical/hnkx201404010 CHEN W L, ZHAO X G, WANG H, et al. Effects of arbuscular mycorrhizal fungi (AMF) inoculation on detoxification capacity of tea tree under Pb stress[J]. Henan Science, 2014, 32(4):511-515 http://d.old.wanfangdata.com.cn/Periodical/hnkx201404010 |
[21] | VODNIK D, GR?MAN H, MACěK I, et al. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil[J]. Science of the Total Environment, 2008, 392(1):130-136 doi: 10.1016/j.scitotenv.2007.11.016 |
[22] | STARK S, STR MMER R, TUOMI J. Reindeer grazing and soil microbial processes in two suboceanic and two subcontinental tundra heaths[J]. Oikos, 2002, 97(1):69-78 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c3118c383bdc1a1af47f29935d647940 |
[23] | 房君佳, 李强, 刘畅, 等.铅锌尾矿砂污染下的岩溶土壤微生物群落碳源代谢特征[J].环境科学, 2018, 39(5):2420-2430 http://d.old.wanfangdata.com.cn/Periodical/hjkx201805051 FANG J J, LI Q, LIU C, et al. Carbon metabolism characteristics of the karst soil microbial community for Pb-Zn mine tailings[J]. Environmental Science, 2018, 39(5):2420-2430 http://d.old.wanfangdata.com.cn/Periodical/hjkx201805051 |
[24] | SOL S-DOM NGUEZ F A, VALENT N-VARGAS A, CHOROVER J, et al. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings[J]. Science of the Total Environment, 2011, 409(6):1009-1016 doi: 10.1016/j.scitotenv.2010.11.020 |
[25] | NOGUEIRA M A, MAGALHAES G C, CARDOSO E J B N. Manganese toxicity in mycorrhizal and phosphorus-fertilized soybean plants[J]. Journal of Plant Nutrition, 2004, 27(1):141-156 doi: 10.1081/PLN-120027552 |
[26] | 周艳丽, 吴亮, 龙光强, 等.镉污染下不同类型水稻土氮素供应特征及其影响因素[J].土壤, 2013, 45(5):821-829 http://d.old.wanfangdata.com.cn/Periodical/tr201305009 ZHOU Y L, WU L, LONG G Q, et al. Characteristics and determinants for nitrogen supply of different types of paddy soils under spiked-cadmium conditions[J]. Soils, 2013, 45(5):821-829 http://d.old.wanfangdata.com.cn/Periodical/tr201305009 |
[27] | 刘涛, 梁永超, 褚贵新.氯甲基吡啶对滴灌棉田土壤微生物群落功能多样性的影响[J].中国生态农业学报, 2017, 25(7):968-974 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170703&flag=1 LIU T, LIANG Y C, CHU G X. Effect of nitrapyrin on functional diversity of soil microbial community in drip-fertigated cotton field[J]. Chinese Journal of Eco-Agriculture, 2017, 25(7):968-974 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170703&flag=1 |