陈平,
杜青,
张晓娜,
周颖,
任建锐,
王甜,
雍太文,
四川农业大学农学院/四川省作物带状复合种植工程技术研究中心/农业部西南作物生理生态与耕作重点实验室 成都 611130
基金项目: 国家自然科学基金面上项目31671625
国家重点研发计划项目2016YFD0300202
详细信息
作者简介:汪锦, 主要从事根瘤形成及根系分泌物方面的研究。E-mail:Wjinida@163.com
通讯作者:雍太文, 主要从事作物生理生态研究。E-mail:yongtaiwen@sicau.edu.cn
中图分类号:Q945计量
文章访问数:730
HTML全文浏览量:4
PDF下载量:684
被引次数:0
出版历程
收稿日期:2018-09-14
录用日期:2018-11-01
刊出日期:2019-03-01
The role of reactive oxygen in regulating early nodulation of legumes
WANG Jin,CHEN Ping,
DU Qing,
ZHANG Xiaona,
ZHOU Ying,
REN Jianrui,
WANG Tian,
YONG Taiwen,
College of Agronomy, Sichuan Agricultural University/Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
Funds: This study was supported by the National Natural Science Foundation of China31671625
the National Key Research and Development Project of China2016YFD0300202
More Information
Corresponding author:YONG Taiwen, E-mail:yongtaiwen@sicau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:活性氧(reactive oxygen species,ROS)是一类具有高反应活性的氧衍生物,包括超氧阴离子(·O2-)、羟自由基(·OH)、过氧羟自由基(·HO2)以及过氧化氢(H2O2)等。植物在进行有氧代谢或遭遇生物与非生物胁迫时会产生ROS,它不仅仅是有氧代谢的有毒副产物,同时能作为信号分子调节体内代谢过程,对抗外界环境。豆科植物形成根瘤时同样会产生ROS,这种ROS的变化区别于病原体入侵,而是作为一种信号物质参与结瘤过程。结瘤因子(nod factor,NF)诱导下ROS的产生参与了浸染线形成时细胞壁的重建、植物基质糖蛋白(matrix glycoprotein,MGP)的交联和肌动蛋白微丝的成核和延长过程。细胞质膜NADPH氧化酶(respiratory burst oxidase homologue,RBOHs)是共生过程中ROS产生的主要途径,Rboh基因的过表达会促进根瘤菌浸染和根瘤形成,同时根瘤中的共生微粒体数量增加,固氮效率提高,而表达受抑制后会减少ROS的产生,同时下调结瘤相关基因RIPs、NIN、ENOD2的表达,抑制固氮酶活性。此外,ROS时空上的变化与Ca2+相关联,协同调控根系结瘤。ROS的产生是植物与微生物早期的识别信号,通过认识ROS在早期结瘤过程中的作用有助于我们进一步理解共生关系建立的特异性。本文就ROS在早期结瘤过程中的产生及其发挥的作用做了综述,指出ROS通过直接或间接作用诱导结瘤基因的表达,是豆科植物根瘤形成以及功能固氮的重要信号分子。
关键词:活性氧/
结瘤信号/
根瘤形成/
固氮/
豆科作物
Abstract:Research on the production and function of reactive oxygen species (ROS) formed during early nodulation in legumes was reviewed. The ROS are highly reactive oxygen derivatives, including superoxide anion (·O2-), hydroxyl radical (·OH), hydroperoxyl radical (·HO2), and hydrogen peroxide (H2O2). These radicals were produced during aerobic metabolism and when plants were under biotic and abiotic stresses. While toxic, these compounds serve as signalers that can trigger metabolism regulations to combat adverse environments. The ROS are produced during nodulation in legumes, induced by the nod factor (NF), to participate in infection formation, contributing to cell wall reconstruction, cross-linking of matrix glycoprotein (MGP), and actin microfilament nucleation and branching. Symbiotic production of ROS is primarily through cytoplasmic membrane NADPH respiratory burst oxidase homologue (RBOHs). Overexpression of Rboh stimulates rhizobia infection and nodule formation, resulting in increased number of symbiotic microsomes and nitrogen fixation efficiencies. Conversely, inhibition of Rboh decreases the production of ROS and down-regulates the expression of related RIPs, NIN, and ENOD2. The ROS regulate nodulation also in conjunction with Ca2+ through spatial and temporal alterations. In conclusion, ROS in legumes are a group of signaler molecules that function to regulate nodulation through genes expression.
Key words:ROS/
Nodulation signal/
Nodulation/
Nitrogen fixation/
Legume
HTML全文
图1活性氧的产生和信号调控
Figure1.Generation and signal transduction of reactive oxygen species (ROS)
下载: 全尺寸图片幻灯片
图2活性氧(ROS)与Ca2+在豆科作物结瘤信号传递中扮演的角色
LysM RLKs:受体激酶; RBOH:细胞质膜NADPH氧化酶。
Figure2.Roles of reactive oxygen species (ROS) and Ca2+ in nodulation signal transduction of Leguminosae crops
LysM RLKs: receptor kinases; RBOH: respiratory burst oxidase homologue.
下载: 全尺寸图片幻灯片
参考文献
[1] | JANCZAREK M, RACHWA? K, MARZEC A, et al. Signal molecules and cell-surface components involved in early stages of the legume-rhizobium interactions[J]. Applied Soil Ecology, 2015, 85:94-113 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7a84f57b92f12f9f43f8f80e1b8275b |
[2] | HAAG A F, ARNOLD M F F, MYKA K K, et al. Molecular insights into bacteroid development during Rhizobium-legume symbiosis[J]. FEMS Microbiology Reviews, 2013, 37(3):364-383 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229889107/ |
[3] | UDVARDI M, POOLE P S. Transport and metabolism in legume-rhizobia symbioses[J]. Annual Review of Plant Biology, 2013, 64:781-805 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48c752fa9942c2b5e95289d818defda0 |
[4] | HAYASHI S, GRESSHOFF P M, FERGUSON B J. Systemic signalling in legume nodulation: Nodule formation and its regulation[M]//BALU?KA F. Long-Distance Systemic Signaling and Communication in Plants. Berlin, Heidelberg: Springer, 2013: 219-229 |
[5] | LéVY J, BRES C, GEURTS R, et al. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses[J]. Science, 2004, 303(5662):1361-1364 doi: 10.1126-science.1093038/ |
[6] | MITRA R M, GLEASON C A, EDWARDS A, et al. A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development:Gene identification by transcript-based cloning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(13):4701-4705 http://europepmc.org/articles/PMC384810 |
[7] | SMIT P, RAEDTS J, PORTYANKO V, et al. NSP1 of the GRAS protein family is essential for Rhizobial nod factor-induced transcription[J]. Science, 2005, 308(5729):1789-1791 doi: 10.1126/science.1111025 |
[8] | KALó P, GLEASON C, EDWARDS A, et al. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators[J]. Science, 2005, 308(5729):1786-1789 http://europepmc.org/abstract/MED/15961668 |
[9] | MIDDLETON P H, JAKAB J, PENMETSA R V, et al. An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction[J]. The Plant Cell, 2007, 19(4):1221-1234 http://onlinelibrary.wiley.com/resolve/reference/PMED?id=17449807 |
[10] | BORISOV A Y, MADSEN L H, TSYGANOV V E, et al. The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus[J]. Plant Physiology, 2003, 131(3):1009-1017 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_166866 |
[11] | SCHAUSER L, ROUSSIS A, STILLER J, et al. A plant regulator controlling development of symbiotic root nodules[J]. Nature, 1999, 402(6758):191-195 doi: 10.1038-46058/ |
[12] | FERGUSON B J, INDRASUMUNAR A, HAYASHI S, et al. Molecular analysis of legume nodule development and autoregulation[J]. Journal of Integrative Plant Biology, 2010, 52(1):61-76 doi: 10.1111-j.1744-7909.2010.00899.x/ |
[13] | MITTLER R, VANDERAUWERA S, SUZUKI N, et al. ROS signaling:The new wave?[J]. Trends in Plant Science, 2011, 16(6):300-309 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0222008946/ |
[14] | PUPPO A, PAULY N, BOSCARI A, et al. Hydrogen peroxide and nitric oxide:Key regulators of the legume-Rhizobium and mycorrhizal symbioses[J]. Antioxidants & Redox Signaling, 2013, 18(16):2202-2219 http://jxb.oxfordjournals.org/external-ref?access_num=10.1089/ars.2012.5136&link_type=DOI |
[15] | O'BRIEN J A, DAUDI A, BUTT V S, et al. Reactive oxygen species and their role in plant defence and cell wall metabolism[J]. Planta, 2012, 236(3):765-779 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=96a41a6a4fcd574315a39925b8cac9ee |
[16] | TSUKAGOSHI H, BUSCH W, BENFEY P N. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root[J]. Cell, 2010, 143(4):606-616 doi: 10.1016-j.cell.2010.10.020/ |
[17] | LU D D, WANG T, PERSSON S, et al. Transcriptional control of ROS homeostasis by KUODA1 regulates cell expansion during leaf development[J]. Nature Communications, 2014, 5:3767 http://europepmc.org/abstract/MED/24806884 |
[18] | SCHMIDT R, KUNKOWSKA A B, SCHIPPERS J H M. Role of reactive oxygen species during cell expansion in leaves[J]. Plant Physiology, 2016, 172(4):2098-2106 http://www.ncbi.nlm.nih.gov/pubmed/27794099 |
[19] | YI J, MOON S, LEE Y S, et al. Defective tapetum cell death 1(DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration[J]. Plant Physiology, 2016, 170(3):1611-1623 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3736ab26beaecec211c5c61374d58f67 |
[20] | JIMéNEZ-QUESADA M J, TRAVERSO J A, DE DIOS ALCHé J. NADPH oxidase-dependent superoxide production in plant reproductive tissues[J]. Frontiers in Plant Science, 2016, 7:359 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004618635 |
[21] | MHAMDI A, VAN BREUSEGEM F. Reactive oxygen species in plant development[J]. Development, 2018, 145(15):dev164376 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2937961 |
[22] | PELEG-GROSSMAN S, MELAMED-BOOK N, LEVINE A. ROS production during symbiotic infection suppresses pathogenesis-related gene expression[J]. Plant Signaling & Behavior, 2012, 7(3):409-415 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227885274/ |
[23] | CáRDENAS L, MARTíNEZ A, SáNCHEZ F, et al. Fast, transient and specific intracellular ROS changes in living root hair cells responding to Nod factors (NFs)[J]. The Plant Journal, 2008, 56(5):802-813 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d59369969a181206f138a98f1279136 |
[24] | RAMU S K, PENG H M, COOK D R. Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago truncatula[J]. Molecular Plant-Microbe Interactions, 2002, 15(6):522-528 http://www.ncbi.nlm.nih.gov/pubmed/12059100 |
[25] | BREAKSPEAR A, LIU C W, ROY S, et al. The root hair "Infectome" of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection[J]. The Plant Cell, 2014, 26(12):4680-4701 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3a0308318561828bfe07c0b7ec2ebbe |
[26] | MARINO D, DUNAND C, PUPPO A, et al. A burst of plant NADPH oxidases[J]. Trends in Plant Science, 2012, 17(1):9-15 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2801269 |
[27] | MARINO D, ANDRIO E, DANCHIN E G J, et al. A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning[J]. New Phytologist, 2011, 189(2):580-592 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c95819241790a6269b7cc9958f548802 |
[28] | SHAW S L, LONG S R. Nod factor inhibition of reactive oxygen efflux in a host legume[J]. Plant Physiology, 2003, 132(4):2196-2204 |
[29] | MORIERI G, MARTINEZ E A, JARYNOWSKI A, et al. Host-specific Nod-factors associated with Medicago truncatula nodule infection differentially induce calcium influx and calcium spiking in root hairs[J]. New Phytologist, 2013, 200(3):656-662 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f8a5fced4f8381d745289fa59d0283d0 |
[30] | LOHAR D P, HARIDAS S, GANTT J S, et al. A transient decrease in reactive oxygen species in roots leads to root hair deformation in the legume-rhizobia symbiosis[J]. New Phytologist, 2007, 173(1):39-49 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f62ae9aa06c0da179e3b12f16e7f7219 |
[31] | MU?OZ V, IBá?EZ F, TORDABLE M, et al. Role of reactive oxygen species generation and Nod factors during the early symbiotic interaction between bradyrhizobia and peanut, a legume infected by crack entry[J]. Journal of Applied Microbiology, 2015, 118(1):182-192 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8668da5056bee782c3870f65323321ce |
[32] | MATAMOROS M A, DALTON D A, RAMOS J, et al. Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis[J]. Plant Physiology, 2003, 133(2):499-509 http://www.onacademic.com/detail/journal_1000038347595410_26d2.html |
[33] | VASSE J, DE BILLY F, TRUCHET G. Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction[J]. The Plant Journal, 1993, 4(3):555-566 doi: 10.1046-j.1365-313X.1993.04030555.x/ |
[34] | Santos R, Hérouart D, Sigaud S, et al. Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction[J]. Molecular Plant-Microbe Interactions, 2001, 14(1):86-89 http://www.ncbi.nlm.nih.gov/pubmed/11194876 |
[35] | D'HAEZE W, DE RYCKE R, MATHIS R, et al. Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(20):11789-11794 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_208836 |
[36] | ZEPEDA I, SáNCHEZ-LóPEZ R, KUNKEL J G, et al. Visualization of highly dynamic F-actin plus ends in growing Phaseolus vulgaris root hair cells and their responses to Rhizobium etli nod factors[J]. Plant and Cell Physiology, 2014, 55(3):580-592 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000006278029 |
[37] | SHAILES S, OLDROYD G E D. Biological Nitrogen Fixation[M]. Hoboken:John Wiley & Sons, Inc, 2015:533-546 |
[38] | LISZKAY A, KENK B, SCHOPFER P. Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth[J]. Planta, 2003, 217(4):658-667 http://www.ncbi.nlm.nih.gov/pubmed/12739149 |
[39] | RUBIO M C, JAMES E K, CLEMENTE M R, et al. Localization of superoxide dismutases and hydrogen peroxide in legume root nodules[J]. Molecular Plant-Microbe Interactions, 2004, 17(12):1294-1305 http://jxb.oxfordjournals.org/external-ref?access_num=10.1094/MPMI.2004.17.12.1294&link_type=DOI |
[40] | WISNIEWSKI J P, RATHBUN E A, KNOX J P, et al. Involvement of diamine oxidase and peroxidase in insolubilization of the extracellular matrix:implications for pea nodule initiation by Rhizobium leguminosarum[J]. Molecular Plant-Microbe Interactions, 2000, 13(4):413-420 http://www.cabdirect.org/abstracts/20000708126.html;jsessionid=5207936C9FB91B7C0331E7459F9E7303;jsessionid=0B7909F99FE7942C429A2A07D08656DB |
[41] | ANDRIO E, MARINO D, MARMEYS A, et al. Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis[J]. New Phytologist, 2013, 198(1):179-189 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f0bb69c66d55f51fa60ec6f1d58ab4a3 |
[42] | PELEG-GROSSMAN S, VOLPIN H, LEVINE A. Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species[J]. Journal of Experimental Botany, 2007, 58(7):1637-1649 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d5b53a3b47dd7de82687db7aaf26f17d |
[43] | MONTIEL J, NAVA N, CáRDENAS L, et al. A Phaseolus vulgaris NADPH oxidase gene is required for root infection by rhizobia[J]. Plant and Cell Physiology, 2012, 53(10):1751-1767 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000003241970 |
[44] | ARTHIKALA M K, SáNCHEZ-LóPEZ R, NAVA N, et al. RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization[J]. New Phytologist, 2014, 202(3):886-900 http://europepmc.org/abstract/med/24571730 |
[45] | JAMET A, MANDON K, PUPPO A, et al. H2O2 is required for optimal establishment of the Medicago sativa/Sinorhizobium meliloti symbiosis[J]. Journal of Bacteriology, 2007, 189(23):8741-8745 doi: 10.1128/JB.01130-07 |
[46] | DAVIES J M. Annexin-mediated calcium signalling in plants[J]. Plants, 2014, 3(1):128-140 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=plants-03-00128 |
[47] | WILKINS K A, MATTHUS E, SWARBRECK S M, et al. Calcium-mediated abiotic stress signaling in roots[J]. Frontiers in Plant Science, 2016, 7:1296 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004732567 |
[48] | CARRASCO-CASTILLA J, ORTEGA-ORTEGA Y, JáUREGUI- Zú?IGA D, et al. Down-regulation of a Phaseolus vulgaris annexin impairs rhizobial infection and nodulation[J]. Environmental and Experimental Botany, 2018, 153:108-119 doi: 10.1016/j.envexpbot.2018.05.016 |
[49] | VAN DE VELDE W, ZEHIROV G, SZATMARI A, et al. Plant peptides govern terminal differentiation of bacteria in symbiosis[J]. Science, 2010, 327(5969):1122-1126 doi: 10.1126/science.1184057 |
[50] | MU?OZ V, IBá?EZ F, FIGUEREDO M S, et al. An oxidative burst and its attenuation by bacterial peroxidase activity is required for optimal establishment of the Arachis hypogaea-Bradyrhizobium sp. symbiosis[J]. Journal of Applied Microbiology, 2016, 121(1):244-253 http://www.ncbi.nlm.nih.gov/pubmed/27037857 |
[51] | NILES B J, JOSLIN A C, FRESQUES T, et al. TOR complex 2-Ypk1 signaling maintains sphingolipid homeostasis by sensing and regulating ROS accumulation[J]. Cell Reports, 2014, 6(3):541-552 http://europepmc.org/abstract/med/24462291 |
[52] | NANJAREDDY K, BLANCO L, ARTHIKALA M K, et al. A legume TOR protein kinase regulates Rhizobium symbiosis and is essential for infection and nodule development[J]. Plant Physiology, 2016, 172(3):2002-2020 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6d5a7a8d53a9344072c432b0a5cf89d |
[53] | MARINO D, HOHNJEC N, K STER H, et al. Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state[J]. Molecular Plant-Microbe Interactions, 2008, 21(5):622-630 http://europepmc.org/abstract/MED/18393622 |
[54] | DODD A N, KUDLA J, SANDERS D. The language of calcium signaling[J]. Annual Review of Plant Biology, 2010, 61:593-620 doi: 10.1146-annurev-arplant-070109-104628/ |
[55] | ZHANG C, BOUSQUET A, HARRIS J M. Abscisic acid and lateral root organ defenctive/numerous infections and polyphenolics modulate root elongation via reactive oxygen species in Medicago truncatula[J]. Plant Physiology, 2014, 166(2):644-658 http://europepmc.org/abstract/MED/25192698 |
[56] | FOREMAN J, DEMIDCHIK V, BOTHWELL J H F, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth[J]. Nature, 2003, 422(6930):442-446 doi: 10.1038/nature01485 |
[57] | OGASAWARA Y, KAYA H, HIRAOKA G, et al. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation[J]. Journal of Biological Chemistry, 2008, 283(14):8885-8892 doi: 10.1074/jbc.M708106200 |
[58] | QIN Y M, ZHU Y X. How cotton fibers elongate:A tale of linear cell-growth mode[J]. Current Opinion in Plant Biology, 2011, 14(1):106-111 doi: 10.1016/j.pbi.2010.09.010 |
[59] | ZHANG F, JIN X X, WANG L, et al. A cotton annexin affects fiber elongation and secondary cell wall biosynthesis associated with Ca2+ influx, ROS homeostasis, and actin filament reorganization[J]. Plant Physiology, 2016, 171(3):1750-1770 http://www.ncbi.nlm.nih.gov/pubmed/27255486 |
[60] | TORRES M A, DANGL J L. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development[J]. Current Opinion in Plant Biology, 2005, 8(4):397-403 http://www.ncbi.nlm.nih.gov/pubmed/15939662 |
[61] | MORI I C, SCHROEDER J I. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction[J]. Plant Physiology, 2004, 135(2):702-708 doi: 10.1104-pp.104.042069/ |
[62] | RICHARDS S L, LAOHAVISIT A, MORTIMER J C, et al. Annexin 1 regulates the H2O2-induced calcium signature in Arabidopsis thaliana roots[J]. The Plant Journal, 2014, 77(1):136-145 http://www.ncbi.nlm.nih.gov/pubmed/24180429 |
[63] | KWAK J M, MORI I C, PEI Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. The EMBO Journal, 2003, 22(11):2623-2633 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_156772 |
[64] | JIANG M, ZHANG J. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings[J]. Plant, Cell & Environment, 2003, 26(6):929-939 http://abbs.oxfordjournals.org/external-ref?access_num=10.1046/j.1365-3040.2003.01025.x&link_type=DOI |
[65] | TAKAHASHI S, KIMURA S, KAYA H, et al. Reactive oxygen species production and activation mechanism of the rice NADPH oxidase OsRbohB[J]. The Journal of Biochemistry, 2012, 152(1):37-43 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ea1d819cd8aac45ec67ee0ee7addaf9 |
[66] | KLüSENER B, YOUNG J J, MURATA Y, et al. Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells[J]. Plant Physiology, 2002, 130(4):2152-2163 doi: 10.1104-pp.012187/ |
[67] | OLDROYD G E D, DOWNIE J A. Calcium, kinases and nodulation signalling in legumes[J]. Nature Reviews Molecular Cell Biology, 2004, 5(7):566-576 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=da18a91be76e7df443449b4a84b750e5 |
[68] | ODA T, HASHIMOTO H, KUWABARA N, et al. Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications[J]. Journal of Biological Chemistry, 2010, 285(2):1435-1445 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2801269 |
[69] | GLYAN'KO A K, ISHCHENKO A A. Influence of rhizobial (Rhizobium leguminosarum) inoculation and calcium ions on the NADPH oxidase activity in roots of etiolated pea (Pisum sativum L.) seedlings[J]. Applied Biochemistry and Microbiology, 2013, 49(3):215-219 doi: 10.1134/S0003683813030083 |
[70] | TóTH K, STACEY G. Does plant immunity play a critical role during initiation of the legume-rhizobium symbiosis?[J]. Frontiers in Plant Science, 2015, 6:401 http://pubmedcentralcanada.ca/pmcc/articles/PMC4451252/?report=classic |
[71] | DAMIANI I, PAULY N, PUPPO A, et al. Reactive oxygen species and nitric oxide control early steps of the Legume-Rhizobium symbiotic interaction[J]. Frontiers in Plant Science, 2016, 7:454 http://pubmedcentralcanada.ca/pmcc/articles/PMC4824774/ |
[72] | LIANG Y, CAO Y R, TANAKA K, et al. Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response[J]. Science, 2013, 341(6152):1384-1387 doi: 10.1126/science.1242736 |
[73] | MATAMOROS M A, SAIZ A, PE?UELAS M, et al. Function of glutathione peroxidases in legume root nodules[J]. Journal of Experimental Botany, 2015, 66(10):2979-2990 http://pubmedcentralcanada.ca/pmcc/articles/PMC4423513/ |
[74] | JAMET A, SIGAUD S, VAN DE SYPE G, et al. Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process[J]. Molecular Plant-Microbe Interactions, 2003, 16(3):217-225 http://www.ncbi.nlm.nih.gov/pubmed/12650453 |
[75] | SANTOS R, H ROUART D, PUPPO A, et al. Critical protective role of bacterial superoxide dismutase in Rhizobium-legume symbiosis[J]. Molecular Microbiology, 2000, 38(4):750-759 http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ0210311893 |
[76] | GOURION B, BERRABAH F, RATET P, et al. Rhizobium-legume symbioses:The crucial role of plant immunity[J]. Trends in Plant Science, 2015, 20(3):186-194 http://www.ncbi.nlm.nih.gov/pubmed/25543258 |
[77] | BOSCARI A, MEILHOC E, CASTELLA C, et al. Which role for nitric oxide in symbiotic N2-fixing nodules:Toxic by-product or useful signaling/metabolic intermediate?[J]. Frontiers in Plant Science, 2013, 4:384 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793596/ |
[78] | SCHELER C, DURNER J, ASTIER J. Nitric oxide and reactive oxygen species in plant biotic interactions[J]. Current Opinion in Plant Biology, 2013, 16(4):534-539 http://europepmc.org/abstract/med/23880111 |
[79] | HICHRI I, BOSCARI A, CASTELLA C, et al. Nitric oxide:A multifaceted regulator of the nitrogen-fixing symbiosis[J]. Journal of Experimental Botany, 2015, 66(10):2877-2887 http://jxb.oxfordjournals.org/content/66/10/2877.short |
[80] | HICHRI I, MEILHOC E, BOSCARI A, et al. Nitric oxide:Jack-of-all-trades of the nitrogen-fixing symbiosis?[J]. Advances in Botanical Research, 2016, 77:193-218 doi: 10.1016/bs.abr.2015.10.014 |
[81] | YUN B W, FEECHAN A, YIN M H, et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity[J]. Nature, 2011, 478(7368):264-268 http://www.tandfonline.com/servlet/linkout?suffix=cit0023&dbid=8&doi=10.1080%2F15592324.2018.1428515&key=21964330 |
[82] | VANDELLE E, DELLEDONNE M. Peroxynitrite formation and function in plants[J]. Plant Science, 2011, 181(5):534-539 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2217656 |
[83] | BLANQUET P, SILVA L, CATRICE O, et al. Sinorhizobium meliloti controls nitric oxide-mediated post-translational modification of a Medicago truncatula nodule protein[J]. Molecular Plant-Microbe Interactions, 2015, 28(12):1353-1363 doi: 10.1094/MPMI-05-15-0118-R |
[84] | LIANG Y, T TH K, CAO Y R, et al. Lipochitooligosaccharide recognition:An ancient story[J]. New Phytologist, 2014, 204(2):289-296 doi: 10.1111/nph.12898/pdf |