删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

作物水分生产函数研究进展

本站小编 Free考研考试/2022-01-01

李中恺1, 2,,
刘鹄1,,,
赵文智1
1.中国科学院西北生态环境资源研究院/中国生态系统研究网络临泽内陆河流域研究站/中国科学院内陆河流域生态水文重点实验室 兰州 730000
2.中国科学院大学资源与环境学院 北京 100049
基金项目: 国家自然科学基金项目91425302

详细信息
作者简介:李中恺, 主要研究方向为干旱区生态水文。E-mail:lizhongkai16@mails.ucas.ac.cn
通讯作者:刘鹄, 主要研究方向为生态水文模型。E-mail:lhayz@lzb.ac.cn
中图分类号:S5-3

计量

文章访问数:620
HTML全文浏览量:3
PDF下载量:851
被引次数:0
出版历程

收稿日期:2018-04-11
录用日期:2018-06-20
刊出日期:2018-12-01

Revisiting crop water production functions in terms of cross-regional applications

LI Zhongkai1, 2,,
LIU Hu1,,,
ZHAO Wenzhi1
1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences/Linze Inland River Basin Research Station, Chinese Ecosystem Research Network/Key Laboratory of Ecohydrology of Inland River Basin, Chinese Academy of Sciences, Lanzhou 730000, China
2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Natural Science Foundation of China91425302

More Information
Corresponding author:LIU Hu, E-mail: lhayz@lzb.ac.cn


摘要
HTML全文
(4)(2)
参考文献(123)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:作物水分生产函数(crop water production functions,CWPF)一般指作物产量(crop yield,Y)与蒸散发(evapotranspiration,ET)之间的函数关系,是作物模型中联系水分和生产力的关键。本文系统地梳理了近半个世纪以来CWPF的相关研究,发现CWPF受多种因素影响,不同地区获得的田间试验结果往往差异较大;常用的CWPF模型多是基于统计信息,缺少坚实的物理基础和可靠的理论支撑,在跨地区、跨物种应用时存在一定缺点。同时基于碳同化过程的机制模型和更为复杂的作物模型也因为参数过多而不易在实际中应用。在以往研究的基础上,从公开发表的41篇文献中筛选出592组田间试验数据,发现小麦产量与ET基本呈线性关系,但数据分布相对离散,而玉米、棉花、水稻因数据量较少其产量与ET关系不明显。利用生长季降水量和累计蒸发皿蒸发数据对不同地区获得的小麦水分生产函数进行了修正,发现改进后的小麦水分生产函数表现出较好的跨地区应用潜力(r2从0.36提高到0.75),并提出了进一步的CWPF修正思路。指出通过改进函数关系虽然能提高统计模型的可移植性,但发展机制模型仍是未来CWPF研究的根本出路。
关键词:水分生产函数/
作物蒸散发/
作物产量/
荟萃分析/
模型修正
Abstract:As populations grow and demand for food increases in the world with limited water supply, the production of more food with less water becomes a significant global challenge facing us in the decades to come. Crop water production function (CWPF), i.e., the functional relationship between crop yield (Y) and evapotranspiration (ET), is the link between water use and crop productivity in crop models. However, most of studies on CWPF have been based on local observations and therefore results derived have not been accurate and not applicable to other regions. Most recent advances in CWPF researches were reviewed in this work, including related theories, models and field experiments. It showed that CWPF was affected by many factors, including climatic conditions, irrigation strategies, soil types, nutrient levels, crop species and even crop cultivars. However few theories had so far provided a comprehensive framework connecting these factors to CWPF. Because of the lack of solid physical foundation and reliable theoretical support, observation-based models were limited in providing beyond local prediction for a given type of crop. Also the mechanistic models and more complex crop models that were largely based on carbon assimilation processes were difficult to apply in practice because of far too many parameters. Through summary analysis of published work, a total of 592 sets of field data were screened from 41 literatures. We found that although the data distribution was relatively sparse, linear correlations (r2=0.34) existed between yield and evapotranspiration for wheat. However, similar correlations were not detected for corn, cotton and rice, probably due to the small amount of available experimental data. Using meta-analysis, a new method of modification of CWPF was proposed and tested in order to improve the performance of CWPF for cross-regional applications. It was found that the statistical method used was good to get better and more stable CWPF for given species across different cultivation environments (r2 increased from 0.36 to 0.75), when seasonal precipitation (Prec) and accumulated pan evaporation (EPan) were incorporated. Our results showed that the functional relationship between Y and ET×Prec/EPan was more universal, compared with that between Y and ET in cross-regional application. Although more reliable and even flexible CWPF models were derived by the inclusion of other calculation algorithms in this framework, we argued that mechanistic models were needed in future extrapolations of measured relationships beyond simply assuming that they were statistically significant. Future work needed to focus on:1) strengthening theoretical interpretations of the revised results; 2) testing the potentials for modification to accommodate other crops; 3) considering the growth stages in CWPF to improve its potential for cross-regional applications.
Key words:Crop water production function/
Crop evapotranspiration/
Crop yield/
Meta-analysis/
Model modification

HTML全文


图1作物水分生产函数(CWPF)发生机制示意图
β表示蒸腾占蒸散发的比例, TE与HI分别为蒸腾效率及收获指数。β indicates the ratio of transpiration to evapotranspiration, TE and HI are transpiration efficiency and harvest index, respectively.
Figure1.Schematic diagram of the crop water production function (CWPF)


下载: 全尺寸图片幻灯片


图2小麦、玉米、棉花、水稻的产量-蒸散发(Y-ET)关系(CWPF)数据集
Figure2.Date sets of yield (Y) and evapotranspiration (ET) relationship (CWPF) of wheat, maize, cotton and rice


下载: 全尺寸图片幻灯片


图3小麦、玉米产量-蒸散发(Y-ET)关系(CWPF)标准化(Stewart S-1模型)
“1-产量/最高产量”与“1-蒸散发/最大蒸散发”代表各试验的相对减产与相对蒸散发亏缺。1-Y/Ymax and 1-ET/ETmax represent relative yield reduction and relative evapotranspiration deficit of each experiment, in which Y and Ymax are yield and max yield, ET and ETmax are evapotranspiration and max evapotranspiration.
Figure3.Normalization of yield-evapotranspiration (Y-ET) relationships (CWPF) for wheat and maize (Stewart's model S-1)


下载: 全尺寸图片幻灯片


图4小麦水分生产函数的修正效果[a.产量与蒸散发的关系(r2=0.36); b:产量与降水量(Prec)和蒸发皿蒸发(EPan)修正的蒸散发(ET×Prec/EPan)的关系(r2=0.75)]
下方图例依次为国家:海拔-小麦播种季-土壤类型-灌溉方式-地下水位-气候及文献。The legends are shown in the order of “country: elevation-wheat planting season-soil type-irrigation method-groundwater table-climate-journal article”.
Figure4.Relationships between yield and evapotranspiration (ET) of wheat [a: relationship between yield and ET; b: relationship between yield and precipitation (Prec) and pan evaporation (EPan)-modified ET (ET×Prec/EPan)]


下载: 全尺寸图片幻灯片

表1典型CWPF统计模型(1958—2014年)
Table1.Typical statistical models of CWPF (1958-2014)
模型分类
Model classification
表达式
Function
作者(年份)
Author (year)
全生育期线性模型
Line models for whole growing period
$\left( {1 - \frac{{{Y_{\text{a}}}}}{{{Y_{\text{m}}}}}} \right) = {K_{\text{y}}}\left( {1 - \frac{{{\text{E}}{{\text{T}}_{\text{a}}}}}{{{\text{E}}{{\text{T}}_{\text{m}}}}}} \right)$Stewart et al.[48] (1977) (S-1)
$\frac{{{Y_{\text{a}}}}}{{{Y_{\text{m}}}}} = \frac{{{\text{E}}{{\text{T}}_{\text{a}}}}}{{{\text{E}}{{\text{T}}_{\text{m}}}}};\;\;\frac{Y}{{{Y_{\text{m}}}}} = \frac{T}{{{T_{\text{m}}}}}$Hanks[54] (1974) (H-1)
$\left( {\frac{{{Y_{\text{m}}} - {Y_{\text{a}}}}}{{{Y_{\text{m}}}}}} \right) = {K_{\text{y}}}\left( {\frac{{{\text{E}}{{\text{T}}_{\text{p}}} - {\text{E}}{{\text{T}}_{\text{a}}}}}{{{\text{E}}{{\text{T}}_{\text{p}}}}}} \right)$Doorenbos et al.[51] (1980)
$Y = {\text{m}}\frac{T}{{{E_0}}}$De Wit[14] (1958)
$\left( {1 - \frac{{{Y_{\text{a}}}}}{{{Y_{\text{m}}}}}} \right) = {K_{\text{y}}}\left( {1 - \frac{{{T_{\text{a}}}}}{{{T_{\text{m}}}}}} \right)$Ngigi et al.[53] (2006)
全生育期非线性模型
Non-line models for whole growing period
${Y_{\text{a}}} = {\text{a}} + {\text{b}}\left[ {1 - {{\left( {1 - \frac{{{\text{E}}{{\text{T}}_{\text{a}}}}}{{{\text{E}}{{\text{T}}_{\text{m}}}}}} \right)}^2}} \right]$Hiler et al.[57] (1971)
$Y = {Y_{{\rm{max}}}}\frac{{{\rm{ET}}_{{\rm{seas}}}^{\rm{a}}}}{{{\rm{ET}}_{{\rm{seas}}, 50\% }^{\rm{a}} + {\rm{ET}}_{{\rm{seas}}}^{\rm{a}}}} $Vico et al.[58] (2011)
$1 - \frac{Y}{{{Y_{\text{m}}}}} = \frac{{ - {c_2}{\text{ET}}_{\text{m}}^2}}{{{Y_{\text{m}}}}}{\left( {1 - \frac{{{\text{ET}}}}{{{\text{E}}{{\text{T}}_{\text{m}}}}}} \right)^2}$Liu et al.[56] (2002)
生长阶段连加模型
Addition models for growth stages
$1 - \frac{{{Y_{\text{a}}}}}{{{Y_{\text{m}}}}} = \mathop \sum \limits_{i = 1}^n {K_{{\text{y}}i}}{\left( {1 - \frac{{{\text{E}}{{\text{T}}_{\text{a}}}}}{{{\text{E}}{{\text{T}}_{\text{m}}}}}} \right)_i}$Stewart et al.[48] (1977) (S-2)
$\frac{{{Y_{\text{a}}}}}{{{Y_{\text{m}}}}} = \mathop \sum \limits_{i = 1}^n {A_i}{\left( {\frac{{{\text{E}}{{\text{T}}_{\text{a}}}}}{{{\text{E}}{{\text{T}}_{\text{m}}}}}} \right)_i}$Kang et al.[59] (1996)
$\frac{{{Y_{\text{a}}}}}{{{Y_{\text{m}}}}} = \mathop \sum \limits_{i = 1}^n {B_i}\left[ {1 - {{\left( {1 - \frac{{{\text{E}}{{\text{T}}_{\text{a}}}}}{{{\text{E}}{{\text{T}}_{{\text{m}}i}}}}} \right)}^2}} \right]$Kang et al.[59] (1996)
$\frac{{{Y_{\text{a}}}}}{{{Y_{\text{m}}}}} = {a_0} + \mathop \sum \limits_{i = 1}^n {b_i}\left[ {1 - \left( {1 - \frac{{{\text{E}}{{\text{T}}_{\text{a}}}}}{{{\text{E}}{{\text{T}}_{\text{m}}}}}} \right)_i^2} \right]$Rajput et al.[52] (1986)
$\frac{{{Y_{\text{a}}}}}{{{Y_{\text{m}}}}} = 1 - \frac{A}{{{Y_{\text{m}}}}}\mathop \sum \limits_{i = 1}^n {b_i}\left( {1 - \frac{{{\text{E}}{{\text{T}}_{\text{a}}}}}{{{\text{E}}{{\text{T}}_{\text{m}}}}}} \right)_i^2$Howell et al.[60] (1975)
$\frac{{{Y_{\text{a}}}}}{{{Y_{\text{m}}}}} = 1 - \mathop \sum \limits_{i = 1}^n {K_i}{\left( {1 - \frac{{{\text{E}}{{\text{T}}_{\text{a}}}}}{{{\text{E}}{{\text{T}}_{\text{m}}}}}} \right)_i}$Rao et al.[50] (1988) (R-1)
${Y_{\text{a}}} = {Y_{\text{m}}} - \frac{{{Y_{\text{m}}}({\beta _{\text{v}}}{T_{{\text{d}}, {\text{v}}}} + {\beta _{\text{f}}}{T_{{\text{d}}, {\text{f}}}} + {\beta _{\text{m}}}{T_{{\text{d}}, {\text{m}}}})}}{{{T_{\text{c}}}}}$Paredes et al.[61] (2014)
生长阶段连乘模型
Multiplication models for growth stages
$\frac{{{Y_{\text{a}}}}}{{{Y_{\text{m}}}}} = \mathop \prod \limits_{i = 1}^n {\left( {\frac{{{\text{E}}{{\text{T}}_{\text{a}}}}}{{{\text{E}}{{\text{T}}_{\text{m}}}}}} \right)_i}^{\lambda i}$Jensen [62] (1968)
$\frac{Y}{{{Y_{\text{m}}}}} = \mathop \prod \limits_{k = 1}^n \left( {\frac{{{T_{\text{a}}}}}{{{T_{\text{m}}}}}} \right)_k^{{b_k}}$Hanks et al.[54] (1974) (H-2)
$\frac{{{Y_{\text{a}}}}}{{{Y_{\text{m}}}}} = \mathop \prod \limits_{i = 1}^n {\left[ {1 - \left( {1 - \frac{{{\text{E}}{{\text{T}}_{\text{a}}}}}{{{\text{E}}{{\text{T}}_{\text{m}}}}}} \right)_i^2} \right]^{\delta i}}$Kang et al.[59] (1996)
$\frac{{{Y_{\text{a}}}}}{{{Y_{\text{m}}}}} = \mathop \prod \limits_{i = 1}^n \left[ {1 - {K_i}{{\left( {1 - \frac{{{\text{E}}{{\text{T}}_{\text{a}}}}}{{{\text{E}}{{\text{T}}_{\text{m}}}}}} \right)}_i}} \right]$Rao et al.[50] (1988) (R-2)
${Y_{\text{c}}} = {\text{y}}{{\text{m}}_{\text{c}}}\prod\nolimits_{g = 1}^4 {\left\{ {1 - {\text{k}}{{\text{y}}_{{\text{c}}, g}}\left[ {1 - \left( {\frac{{\mathop \sum \nolimits_g {\text{ET}}{{\text{a}}_{{\text{c}}, g}}}}{{\mathop \sum \nolimits_g {\text{ET}}{{\text{m}}_{{\text{c}}, g}}}}} \right)} \right]} \right\}} $De Jager [63] (1994)


下载: 导出CSV
表2产量-蒸散发(Y-ET)数据集荟萃分析源文献(1979—2013年)
Table2.Literatures of yield-evapotranspiration (Y-ET) data set for meta-analysis (1979-2013)
国别
Country
地点
Location
年份
Year
数据源文献
Reference of date
小麦Wheat (Triticum aestivum L.)
美国USA Yellow Jacket 1993—1994 [74]
印度India Memari 1989—1991 [76]
阿根廷Argentina Parana 1998—1999 [78]
摩洛哥Morocco Meknes 1993—1995 [80]
中国China Dingxi 1997 [82]
中国China Xifeng 1988—1991 [77]
印度India Pantnagar 1983—1985 [85]
叙利亚Syria Tel Hadya 1992—1996 [87]
印度India Karnal 1986—1988 [89]
澳大利亚Australia Merredin 1987 [91]
中国China Gaochen etc. 1982—1985 [93]
中国China Quzhou 1988—1989 [95]
澳大利亚Australia Tasmania 1982—2011 [96]
罗马尼亚Romania Fundulea 2008—2009 [94]
中国China Luancheng 2006—2009 [99]
中国China Changwu 2006—2007 [101]
中国China Changwu 2005—2008 [102]
中国China Changwu 2010—2011 [103]
中国China Shiwang 2007—2013 [104]
印度India Hol Pune 2004—2006 [105]
中国China Luancheng etc. 2006—2009 [106]
中国China Changwu 1995—1998 [41]
棉花Cotton (Gossypium hirsutum L.)
美国USA California 1981—1983 [28]
美国USA Maricopa 1993—1994 [108]
澳大利亚Australia NewSouthWales 1996—1999 [110]
土耳其Turkey Sanl?urfa 1999 [112]
叙利亚Syria Damascus 2007—2008 [114]
玉米Maize (Zea mays L.)
中国China Xiaobakou 1997—1998 [75]
中国China Xifeng 1998—1991 [77]
印度India Pantnagar 1993—1995 [79]
土耳其Turkey Harran Plain 1998—1999 [81]
美国USA Coastal Plain 1993 [83]
美国USA Dakota 1989—1991 [84]
美国USA Texas 1994—1995 [86]
美国USA Texas 1992 [88]
土耳其Turkey Sanl?urfa 2000 [90]
中国China Changwu 2010—2011 [92]
罗马尼亚Romania Fundulea 2008—2009 [94]
中国China Changwu 1987 [56]
肯尼亚Kenya Kampi 2007—2010 [97]
美国USA Nebraska 2005—2006 [98]
美国USA Nebraska 2005—2006 [100]
水稻Rice (Oryza sativa L.)
澳大利亚Australia Echuca 1997—1998 [107]
印度India Pantnagar 1983—1984 [109]
美国USA BelleGlade 1979—1980 [111]
印度India Luhdiana 1996—1997 [113]
中国China Zhejiang 2004 [115]


下载: 导出CSV

参考文献(123)
[1]MALVE S H, RAO P, DHAKE A. Evaluation of water production function and optimization of water for winter wheat (Triticum Aestivum L.) under drip irrigation[J]. Ecology, Environment and Conservation, 2017, 23(1): 417-425 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=972f013039ff2d3a0d1b49e950ef95b2
[2]云文丽, 侯琼, 李建军, 等.基于作物系数与水分生产函数的向日葵产量预测[J].应用气象学报, 2015, 26(6): 705-713 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201506007
YUN W L, HOU Q, LI J J, et al. Yield prediction of sunflower based on crop coefficient and water production function[J]. Journal of Applied Meteorological Science, 2015, 26(6): 705-713 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201506007
[3]中国农业百科全书总编辑委员会.中国农业百科全书(农作物卷上)[M].北京:中国农业出版社, 1991: 462
China Agricultural Encyclopedia Compilation Committee. China Agricultural Encyclopedia, Crop Volume[M]. Beijing: China Agricultural Press, 1991: 462
[4]杜太生, 康绍忠, 王振昌, 等.隔沟交替灌溉对棉花生长、产量和水分利用效率的调控效应[J].作物学报, 2007, 33(12): 1982-1990 doi: 10.3321/j.issn:0496-3490.2007.12.011
DU T S, KANG S Z, WANG Z C, et al. Responses of cotton growth, yield, and water use efficiency to alternate furrow irrigation[J]. Acta Agronomica Sinica, 2007, 33(12): 1982-1990 doi: 10.3321/j.issn:0496-3490.2007.12.011
[5]SINGH A. Conjunctive use of water resources for sustainable irrigated agriculture[J]. Journal of Hydrology, 2014, 519: 1688-1697 doi: 10.1016/j.jhydrol.2014.09.049
[6]Statistics Division (ESS) of the Food and Agriculture Organization of United Nations. FAO Statistical Yearbook 2013: World Food and Agriculture[M]. Rome, Italy: FAO, 2013: 370
[7]SNYDER R L, PEDRAS C, MONTAZAR A, et al. Advances in ET-based landscape irrigation management[J]. Agricultural Water Management, 2015, 147: 187-197 doi: 10.1016/j.agwat.2014.07.024
[8]KIJNE J W, BARKER R, MOLDEN D. Improving water productivity in agriculture: Editors' overview[M]. Colombo, Sri Lanka: International Water Management Institute (IWMI), 2003: 1040-1042
[9]CHEMIN Y, PLATONOV A, UL-HASSAN M, et al. Using remote sensing data for water depletion assessment at administrative and irrigation-system levels: Case study of the Ferghana Province of Uzbekistan[J]. Agricultural Water Management, 2004, 64(3): 183-196 doi: 10.1016/S0378-3774(03)00209-9
[10]BASTIAANSSEN W G M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey[J]. Journal of Hydrology, 2000, 229(1/2): 87-100 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8eeaf053fc294f823acf842bd24bbecb
[11]TASUMI M, ALLEN R G. Satellite-based ET mapping to assess variation in ET with timing of crop development[J]. Agricultural Water Management, 2007, 88(1/3): 54-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ab8e5b4375caec77b4bde30c77343544
[12]AKINOLA O A, OLUFAYO A A, OGUNTUNDE P G. Dynamic crop water production model of plantain yield response to water[J]. American Journal of Experimental Agriculture, 2014, 4(12): 1544-1556 doi: 10.9734/AJEA
[13]ALLISON F E, ROLLER E M, RANEY W A. Relationship between evapotranspiration and yields of crops grown in lysimeters receiving natural rainfall[J]. Agronomy Journal, 1958, 50(9): 506-511 doi: 10.2134/agronj1958.00021962005000090004x
[14]DE WIT C T. Transpiration and Crop Yields[R]. Wageningen: Wageningen University, 1958
[15]孙海燕.紫花苜蓿水分生产函数及优化灌溉制度的研究[D].呼和浩特: 内蒙古农业大学, 2008: 56 http://cdmd.cnki.com.cn/Article/CDMD-10129-2008131683.htm
SUN H Y. Study on water production function and optimal irrigation schedule of Lucerne[D]. Hohhot: Inner Mongolia Agricultural University, 2008: 56 http://cdmd.cnki.com.cn/Article/CDMD-10129-2008131683.htm
[16]缴锡云, 雷志栋, 彭世彰.建立作物水分生产函数的稳健回归方法[J].灌溉排水学报, 2006, 25(3): 30-33 http://d.old.wanfangdata.com.cn/Periodical/ggps200603008
JIAO X Y, LEI Z D, PENG S Z. Robust regression to build crop-water production function[J]. Journal of Irrigation and Drainage, 2006, 25(3): 30-33 http://d.old.wanfangdata.com.cn/Periodical/ggps200603008
[17]王仰仁, 雷志栋, 杨诗秀.冬小麦水分敏感指数累积函数研究[J].水利学报, 1997, (5): 28-35 doi: 10.3321/j.issn:0559-9350.1997.05.005
WANG Y R, LEI Z D, YANG S X. Cumulative function of sensitive index for winter wheat[J]. Journal of Hydraulic Engineering, 1997, (5): 28-35 doi: 10.3321/j.issn:0559-9350.1997.05.005
[18]罗遵兰.华北地区冬小麦与夏玉米水分生产函数模型研究[D].北京: 中国农业大学, 2005: 53 http://cdmd.cnki.com.cn/article/cdmd-10019-2005083940.htm
LUO Z L. Crop water production function of winter wheat and summer corn in the north of China[D]. Beijing: China Agricultural University, 2005: 53 http://cdmd.cnki.com.cn/article/cdmd-10019-2005083940.htm
[19]崔远来, 茆智, 李远华.水稻水分生产函数时空变异规律研究[J].水科学进展, 2002, 13(4): 484-491 doi: 10.3321/j.issn:1001-6791.2002.04.016
CUI Y L, MAO Z, LI Y H. Study on temporal and spatial variation of rice water production function[J]. Advances in Water Science, 2002, 13(4): 484-491 doi: 10.3321/j.issn:1001-6791.2002.04.016
[20]WALKER S, OGINDO H O. The water budget of rainfed maize and bean intercrop[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(20/27): 919-926 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=15dcac9af4576096c159acc13b6f9c2a
[21]JARVIS P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society B, 1976, 273(927): 593-610 doi: 10.1098/rstb.1976.0035
[22]CHAVES M M, PEREIRA J S, MAROCO J, et al. How plants cope with water stress in the field? Photosynthesis and growth[J]. Annals of Botany, 2002, 89(7): 907-916 doi: 10.1093/aob/mcf105
[23]HALILOU O, HAMIDOU F, TAYA B K, et al. Water use, transpiration efficiency and yield in cowpea (Vigna unguiculata) and peanut (Arachis hypogaea) across water regimes[J]. Crop and Pasture Science, 2015, 66(7): 715-728 doi: 10.1071/CP14182
[24]TANNER C B, SINCLAIR T R. Efficient water use in crop production: Research or re-search?[M]//TAYLOR H M, JORDAN W R, SINCLAIR T R. Limitations to Efficient Water Use in Crop Production. Wisconsin: American Society of Agronomy, 1983: 1-27
[25]SINCLAIR T R. Is transpiration efficiency a viable plant trait in breeding for crop improvement?[J]. Functional Plant Biology, 2012, 39(5): 359-365 doi: 10.1071/FP11198
[26]李陆泗.作物的水分生产函数[J].灌溉排水, 1989, (3): 43-45 http://d.old.wanfangdata.com.cn/Periodical/nygcxb200603002
LI L S. Crop water production function models[J]. Journal of Irrigation and Drainage, 1989, (3): 43-45 http://d.old.wanfangdata.com.cn/Periodical/nygcxb200603002
[27]GRIMES D W, YAMADA H, DICKENS W L. Functions for cotton (Gossypium hirsutum L.) production from irrigation and nitrogen fertilization variables: Ⅰ. Yield and evapotranspiration[J]. Agronomy Journal, 1969, 61(5): 769-773 doi: 10.2134/agronj1969.00021962006100050035x
[28]HOWELL T A, MERON M, DAVIS K R, et al. Water management of trickle and furrow irrigated narrow row cotton in the San Joaquin Valley[J]. Applied Engineering in Agriculture, 1987, 3(2): 222-227 doi: 10.13031/2013.26678
[29]HUNSAKER D J, FRENCH A N, WALLER P M, et al. Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA[J]. Agricultural Water Management, 2015, 159: 209-224 doi: 10.1016/j.agwat.2015.06.016
[30]ZHENG J H, HUANG G H, JIA D D, et al. Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China[J]. Agricultural Water Management, 2013, 129: 181-193 doi: 10.1016/j.agwat.2013.08.001
[31]KU??U H, TURHAN A, DEMIR A O. The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment[J]. Agricultural Water Management, 2014, 133: 92-103 doi: 10.1016/j.agwat.2013.11.008
[32]PATANè C, COSENTINO S L. Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate[J]. Agricultural Water Management, 2010, 97(1): 131-138 doi: 10.1016/j.agwat.2009.08.021
[33]PATANè C, TRINGALI S, SORTINO O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions[J]. Scientia Horticulturae, 2011, 129(4): 590-596 doi: 10.1016/j.scienta.2011.04.030
[34]AFFHOLDER F. Effect of organic matter input on the water balance and yield of millet under tropical dryland condition[J]. Field Crops Research, 1995, 41(2): 109-121 doi: 10.1016/0378-4290(94)00115-S
[35]CABANGON R, LU G, TUONG T P, et al. Irrigation management effects on yield and water productivity of inbred and aerobic rice varieties in kaifeng[C]//Proceedings of the 1st International Yellow River Forum on River Basin Management, vol. 2. Zhengzhou: The Yellow River Conservancy Publishing House, 2005: 9-11
[36]BOUMAN B A M, TUONG T P. Field water management to save water and increase its productivity in irrigated lowland rice[J]. Agricultural Water Management, 2001, 49(1): 11-30 doi: 10.1016/S0378-3774(00)00128-1
[37]FANG Y, LIU L, XU B C, et al. The relationship between competitive ability and yield stability in an old and a modern winter wheat cultivar[J]. Plant and Soil, 2011, 347(1/2): 7-23 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88f33a22f621feeff04dc92eb02d14d7
[38]FEDDES R A, KOWALIK P J, ZARADNY H. Simulation of Field Water Use and Crop Yield[M]. New York: Wageningen: Centre for Agricultural Publishing and Documentation, 1978: 189
[39]KOCH H J, DIECKMANN J, BüCHSE A, et al. Yield decrease in sugar beet caused by reduced tillage and direct drilling[J]. European Journal of Agronomy, 2009, 30(2): 101-109 doi: 10.1016/j.eja.2008.08.001
[40]LáZARO L, ABBATE P E, COGLIATTI D H, et al. Relationship between yield, growth and spike weight in wheat under phosphorus deficiency and shading[J]. The Journal of Agricultural Science, 2010, 148(1): 83-93 doi: 10.1017/S0021859609990402
[41]KANG S Z, ZHANG L, LIANG Y L, et al. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China[J]. Agricultural Water Management, 2002, 55(3): 203-216 doi: 10.1016/S0378-3774(01)00180-9
[42]HASSANLI A M, EBRAHIMIZADEH M A, BEECHAM S. The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region[J]. Agricultural Water Management, 2009, 96(1): 93-99 doi: 10.1016/j.agwat.2008.07.004
[43]JABRO J D, STEVENS W B, IVERSEN W M, et al. Tillage depth effects on soil physical properties, sugarbeet yield, and sugarbeet quality[J]. Communications in Soil Science and Plant Analysis, 2010, 41(7): 908-916 doi: 10.1080/00103621003594677
[44]DA SILVA J R M, SILVA L L. Evaluation of the relationship between maize yield spatial and temporal variability and different topographic attributes[J]. Biosystems Engineering, 2008, 101(2): 183-190 doi: 10.1016/j.biosystemseng.2008.07.003
[45]HE J, DU Y L, WANG T, et al. Conserved water use improves the yield performance of soybean[Glycine max (L.) Merr.] under drought[J]. Agricultural Water Management, 2017, 179: 236-245 doi: 10.1016/j.agwat.2016.07.008
[46]ROCKSTR?M J, FALKENMARK M. Semiarid crop production from a hydrological perspective: Gap between potential and actual yields[J]. Critical Reviews in Plant Sciences, 2000, 19(4): 319-346 doi: 10.1080/07352680091139259
[47]CLEMPNER G, SOLOMON K H. Accuracy and geographic transferability of crop water production functions[C]// Proceedings of Congr Irrigation Systems for the 21st Century. Portland, OR: American Society of Civil Engineers, 1987
[48]STEWART J I, DANIDISON R E, HANKS R J, et al. Optimizing crop production through control of water and salinity levels in the soil[R]. Logan: Utah Water Lab, 1977: 67
[49]ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: Guidelines for computing crop water requirements[R]. Rome: FAO, 1998: 300
[50]RAO N H, SARMA P B S, CHANDER S. A simple dated water-production function for use in irrigated agriculture[J]. Agricultural Water Management, 1988, 13(1): 25-32 doi: 10.1016/0378-3774(88)90130-8
[51]DOORENBOS J, KASSAM A H, BENTVELSEN C, et al. Yield response to water[M]//COWARD E W JR. Irrigation and Agricultural Development. Baghdad, Iraq: Cornell University Press, 1980: 257-280
[52]RAJPUT G S, SINGH J. Water production functions for wheat under different environmental conditions[J]. Agricultural Water Management, 1986, 11(3/4): 319-332 http://www.sciencedirect.com/science/article/pii/037837748690048X
[53]NGIGI S N, ROCKSTR?M J, SAVENIJE H H G. Assessment of rainwater retention in agricultural land and crop yield increase due to conservation tillage in Ewaso Ng'iro river basin, Kenya[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2006, 31(15/16): 910-918 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84b28b57804b251fcf3fa81b0364a964
[54]HANKS R J. Model for predicting plant yield as influenced by water use[J]. Agronomy Journal, 1974, 66(5): 660-665 doi: 10.2134/agronj1974.00021962006600050017x
[55]VAN DER Velde M. Assessing crop-specific impacts of extremely wet (2007) and dry (2003) conditions in France on regional maize and wheat yields[C]//Proceedings of EGU General Assembly 2010. Vienna, Austria: EGU, 2010
[56]LIU W Z, HUNSAKER D J, LI Y S, et al. Interrelations of yield, evapotranspiration, and water use efficiency from marginal analysis of water production functions[J]. Agricultural Water Management, 2002, 56(2): 143-151 doi: 10.1016/S0378-3774(02)00011-2
[57]HILER E A, CLARK R N. Stress day index to characterize effects of water stress on crop yields[J]. Transactions of the ASAE, 1971, 14(4): 0757-0761 doi: 10.13031/2013.38384
[58]VICO G, PORPORATO A. From rainfed agriculture to stress-avoidance irrigation: Ⅱ. Sustainability, crop yield, and profitability[J]. Advances in Water Resources, 2011, 34(2): 272-281 doi: 10.1016/j.advwatres.2010.11.011
[59]康绍忠, 蔡焕杰.农业水管理学[M].北京:中国农业出版社, 1996: 277
KANG S Z, CAI H J. Agricultural Water Management Science[M]. Beijing: China Agricultural Press, 1996: 277
[60]HOWELL T A, HILER E A. Optimization of water use efficiency under high frequency irrigation - Ⅰ. Evapotranspiration and yield relationship[J]. Transactions of the ASAE, 1975, 18(5): 0873-0878 doi: 10.13031/2013.36700
[61]PAREDES P, RODRIGUES G C, ALVES I, et al. Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies[J]. Agricultural Water Management, 2014, 135: 27-39 doi: 10.1016/j.agwat.2013.12.010
[62]JENSEN M E. Water consumption by agricultural plants[M]//KOZLOWSKI T T. Plant Water Consumption and Response. New York: Academic Press, 1968
[63]DE JAGER J M. Accuracy of vegetation evaporation ratio formulae for estimating final wheat yield[J]. Water SA, 1994, 20(4): 307-314 doi: 10.1007/s10705-011-9440-6
[64]FARQUHAR G D, VON CAEMMERER S, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90 doi: 10.1007/BF00386231
[65]LEUNING R. Modelling stomatal behaviour and photosynthesis of Eucalyptus grandis[J]. Australian Journal of Plant Physiology, 1990, 17(2): 159-175 http://jxb.oxfordjournals.org/external-ref?access_num=10.1071/PP9900159&link_type=DOI
[66]DALY E, PORPORATO A, RODRIGUEZ-ITURBE Ⅰ. Coupled dynamics of photosynthesis, transpiration, and soil water balance. Part Ⅰ: Upscaling from hourly to daily level[J]. Journal of Hydrometeorology, 2004, 5(3): 546-558 doi: 10.1175/1525-7541(2004)005<0546:CDOPTA>2.0.CO;2
[67]JENSEN C R, SVENDSEN H, ANDERSEN M N, et al. Use of the root contact concept, an empirical leaf conductance model and pressure-volume curves in simulating crop water relations[J]. Plant and Soil, 1993, 149(1): 1-26 doi: 10.1007/BF00010759
[68]TUZET A, PERRIER A, LEUNING R. A coupled model of stomatal conductance, photosynthesis and transpiration[J]. Plant, Cell & Environment, 2003, 26(7): 1097-1116 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_af4262ff4df066c2ccda3508523d349f
[69]WEI Z, PAREDES P, LIU Y, et al. Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain[J]. Agricultural Water Management, 2015, 147: 43-53 doi: 10.1016/j.agwat.2014.05.004
[70]HSIAO T C, HENG L, STEDUTO P, et al. AquaCrop — The FAO crop model to simulate yield response to water: Ⅲ. Parameterization and testing for maize[J]. Agronomy Journal, 2009, 101(3): 448-459 doi: 10.2134/agronj2008.0218s
[71]WANG P J, SUN R, ZHANG J H, et al. Yield estimation of winter wheat in the North China Plain using the remote-sensing-photosynthesis-yield estimation for crops (RS-P-YEC) model[J]. International Journal of Remote Sensing, 2011, 32(21): 6335-6348 doi: 10.1080/01431161.2010.508800
[72]VAN ITTERSUM M K, LEFFELAAR P A, VAN KEULEN H, et al. On approaches and applications of the Wageningen crop models[J]. European Journal of Agronomy, 2003, 18(3/4): 201-234 doi: 10.1016-S1161-0301(02)00106-5/
[73]BOOGAARD H, WOLF J, SUPIT I, et al. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union[J]. Field Crops Research, 2013, 143: 130-142 doi: 10.1016/j.fcr.2012.11.005
[74]AL-KAISI M M, BERRADA A, STACK M. Evaluation of irrigation scheduling program and spring wheat yield response in southwestern Colorado[J]. Agricultural Water Management, 1997, 34(2): 137-148 doi: 10.1016/S0378-3774(97)00010-3
[75]KANG S Z, SHI W J, ZHANG J H. An improved water-use efficiency for maize grown under regulated deficit irrigation[J]. Field Crops Research, 2000, 67(3): 207-214 doi: 10.1016/S0378-4290(00)00095-2
[76]BANDYOPADHYAY P K, MALLICK S. Actual evapotranspiration and crop coefficients of wheat (Triticum aestivum) under varying moisture levels of humid tropical canal command area[J]. Agricultural Water Management, 2003, 59(1): 33-47 doi: 10.1016/S0378-3774(02)00112-9
[77]LI F R, ZHAO S L, GEBALLE G T. Water use patterns and agronomic performance for some cropping systems with and without fallow crops in a semi-arid environment of northwest China[J]. Agriculture, Ecosystems & Environment, 2000, 79(2/3): 129-142 doi: 10.1016-S0167-8809(99)00149-8/
[78]CAVIGLIA O P, SADRAS V O. Effect of nitrogen supply on crop conductance, water- and radiation-use efficiency of wheat[J]. Field Crops Research, 2001, 69(3): 259-266 doi: 10.1016/S0378-4290(00)00149-0
[79]MISHRA H, RATHORE T, SAVITA U. Water-use efficiency of irrigated winter maize under cool weather conditions of India[J]. Irrigation Science, 2001, 21(1): 27-33 doi: 10.1007/s002710100037
[80]CORBEELS M, HOFMAN G, VAN CLEEMPUT O. Analysis of water use by wheat grown on a cracking clay soil in a semi-arid Mediterranean environment: Weather and nitrogen effects[J]. Agricultural Water Management, 1998, 38(2): 147-167 doi: 10.1016/S0378-3774(98)00062-6
[81]OKTEM A, SIMSEK M, OKTEM A G. Deficit irrigation effects on sweet corn (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region: Ⅰ. Water-yield relationship[J]. Agricultural Water Management, 2003, 61(1): 63-74 doi: 10.1016/S0378-3774(02)00161-0
[82]LI F M, SONG Q H, LIU H S, et al. Effects of pre-sowing irrigation and phosphorus application on water use and yield of spring wheat under semi-arid conditions[J]. Agricultural Water Management, 2001, 49(3): 173-183 doi: 10.1016/S0378-3774(01)00087-7
[83]SADLER E J, BAUER P J, BUSSCHER W J, et al. Site-specific analysis of a droughted corn crop: Ⅱ. Water use and stress[J]. Agronomy Journal Abstract, 2000, 92(3): 403-410 doi: 10.2134/agronj2000.923403x
[84]STEELE D D, STEGMAN E C, GREGOR B L. Field comparison of irrigation scheduling methods for corn[J]. Transactions of the ASAE, 1994, 37(4): 1197-1203 doi: 10.13031/2013.28194
[85]MISHRA H S, RATHORE T R, TOMAR V S. Water use efficiency of irrigated wheat in the tarai region of india[J]. Irrigation Science, 1995, 16(2): 75-80 doi: 10.1007/BF00189163
[86]TOLK J A, HOWELL T A, EVETT S R. Effect of mulch, irrigation, and soil type on water use and yield of maize[J]. Soil and Tillage Research, 1999, 50(2): 137-147 doi: 10.1016/S0167-1987(99)00011-2
[87]OWEIS T, ZHANG H P, PALA M. Water use efficiency of rainfed and irrigated bread wheat in a Mediterranean environment[J]. Agronomy Journal, 2000, 92(2): 231-238 doi: 10.2134/agronj2000.922231x
[88]YAZAR A, HOWELL T A, DUSEK D A, et al. Evaluation of crop water stress index for LEPA irrigated corn[J]. Irrigation Science, 1999, 18(4): 171-180 doi: 10.1007/s002710050059
[89]SHARMA D K, KUMAR A, SINGH K N. Effect of irrigation scheduling on growth, yield and evapotranspiration of wheat in sodic soils[J]. Agricultural Water Management, 1990, 18(3): 267-276 doi: 10.1016/0378-3774(90)90048-4
[90]YAZAR A, SEZEN S M, GENCEL B. Drip irrigation of corn in the Southeast Anatolia Project (GAP) Area in Turkey[J]. Irrigation and Drainage, 2002, 51(4): 293-300 doi: 10.1002/(ISSN)1531-0361
[91]SIDDIQUE K H M, TENNANT D, PERRY M W, et al. Water use and water use efficiency of old and modern wheat cultivars in a mediterranean-type environment[J]. Australian Journal of Agricultural Research, 1990, 41(3): 431-447 doi: 10.1071/AR9900431
[92]BU L D, LIU J L, ZHU L, et al. The effects of mulching on maize growth, yield and water use in a semi-arid region[J]. Agricultural Water Management, 2013, 123: 71-78 doi: 10.1016/j.agwat.2013.03.015
[93]ZHANG H, WANG X, YOU M, et al. Water-yield relations and water-use efficiency of winter wheat in the North China Plain[J]. Irrigation Science, 1999, 19(1): 37-45 doi: 10.1007/s002710050069
[94]COCIU A I, ZAHARIA G V, CONSTANTIN N. Tillage system effects on water use and grain yield of winter wheat, maize and soybean in rotation[J]. Romanian Agricultural Research, 2010, 27: 69-80 http://www.cabdirect.org/abstracts/20103366610.html
[95]ZHU D J, LU J W. The water-use efficiency of winter wheat and maize on a salt-affected soil in the Huang Huai Hai River Plain of China[J]. Agricultural Water Management, 1993, 23(1): 67-82 doi: 10.1016/0378-3774(93)90021-2
[96]ACU?A T B, LISSON S, JOHNSON P, et al. Yield and water-use efficiency of wheat in a high-rainfall environment[J]. Crop and Pasture Science, 2015, 66(5): 419-429 doi: 10.1071/CP14308
[97]MIRITI J M, KIRONCHI G, ESILABA A O, et al. Yield and water use efficiencies of maize and cowpea as affected by tillage and cropping systems in semi-arid Eastern Kenya[J]. Agricultural Water Management, 2012, 115: 148-155 doi: 10.1016/j.agwat.2012.09.002
[98]PAYERO J O, TARKALSON D D, IRMAK S, et al. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate[J]. Agricultural Water Management, 2008, 95(8): 895-908 doi: 10.1016/j.agwat.2008.02.015
[99]DONG B D, SHI L, SHI C H, et al. Grain yield and water use efficiency of two types of winter wheat cultivars under different water regimes[J]. Agricultural Water Management, 2011, 99(1): 103-110 doi: 10.1016/j.agwat.2011.07.013
[100]PAYERO J O, TARKALSON D D, IRMAK S, et al. Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass[J]. Agricultural Water Management, 2009, 96(10): 1387-1397 doi: 10.1016/j.agwat.2009.03.022
[101]FANG Y, XU B C, TURNER N C, et al. Does root pruning increase yield and water-use efficiency of winter wheat?[J]. Crop and Pasture Science, 2010, 61(11): 899-910 doi: 10.1071/CP10125
[102]HE L, CLEVERLY J, CHEN C, et al. Diverse responses of winter wheat yield and water use to climate change and variability on the semiarid Loess Plateau in China[J]. Agronomy Journal, 2014, 106(4): 1169-1178 doi: 10.2134/agronj13.0321
[103]KANG L Y, YUE S C, LI S Q. Effects of phosphorus application in different soil layers on root growth, yield, and water-use efficiency of winter wheat grown under semi-arid conditions[J]. Journal of Integrative Agriculture, 2014, 13(9): 2028-2039 doi: 10.1016/S2095-3119(14)60751-6
[104]MA S Y, YU Z W, SHI Y, et al. Soil water use, grain yield and water use efficiency of winter wheat in a long-term study of tillage practices and supplemental irrigation on the North China Plain[J]. Agricultural Water Management, 2015, 150: 9-17 doi: 10.1016/j.agwat.2014.11.011
[105]MISRA S C, SHINDE S, GEERTS S, et al. Can carbon isotope discrimination and ash content predict grain yield and water use efficiency in wheat?[J]. Agricultural Water Management, 2010, 97(1): 57-65 doi: 10.1016/j.agwat.2009.08.014
[106]邵立威, 张喜英, 陈素英, 等.降水、灌溉和品种对玉米产量和水分利用效率的影响[J].灌溉排水学报, 2009, 28(1): 48-51 http://www.cqvip.com/QK/93783A/200901/29875455.html
SHAO L W, ZHANG X Y, CHEN S Y, et al. Yield and water use efficiency affected by rainfall, irrigation and maize varieties[J]. Journal of Irrigation and Drainage, 2009, 28(1): 48-51 http://www.cqvip.com/QK/93783A/200901/29875455.html
[107]BETHUNE M, AUSTIN N, MAHER S. Quantifying the water budget of irrigated rice in the Shepparton Irrigation Region, Australia[J]. Irrigation Science, 2001, 20(3): 99-105 doi: 10.1007/s002710100035
[108]HUNSAKER D J, CLEMMENS A J, FANGMEIER D D. Cotton response to high frequency surface irrigation[J]. Agricultural Water Management, 1998, 37(1): 55-74 doi: 10.1016/S0378-3774(98)00036-5
[109]MISHRA H S, RATHORE T R, PANT R C. Effect of intermittent irrigation on groundwater table contribution, irrigation requirement and yield of rice in mollisols of the tarai region[J]. Agricultural Water Management, 1990, 18(3): 231-241 doi: 10.1016/0378-3774(90)90045-Z
[110]TENNAKOON S B, MILROY S P. Crop water use and water use efficiency on irrigated cotton farms in Australia[J]. Agricultural Water Management, 2003, 61(3): 179-194 doi: 10.1016/S0378-3774(03)00023-4
[111]SHIH S F, RAHI G S, SNYDER G H, et al. Rice yield, biomass, and leaf area related to evapotranspiration[J]. Transactions of the ASAE, 1983, 26(5): 1458-1464 doi: 10.13031/2013.34150
[112]YAZAR A, SEZEN S M, SESVEREN S. LEPA and trickle irrigation of cotton in the Southeast Anatolia Project (GAP) area in Turkey[J]. Agricultural Water Management, 2002, 54(3): 189-203 doi: 10.1016/S0378-3774(01)00179-2
[113]SINGH K B, GAJRI P R, ARORA V K. Modelling the effects of soil and water management practices on the water balance and performance of rice[J]. Agricultural Water Management, 2001, 49(2): 77-95 doi: 10.1016/S0378-3774(00)00144-X
[114]HUSSEIN F, JANAT M, YAKOUB A. Assessment of yield and water use efficiency of drip-irrigated cotton (Gossypium hirsutum L.) as affected by deficit irrigation[J]. Turkish Journal of Agriculture & Forestry, 2011, 35(6): 611-621 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3fe545330b46d8326c330d9442a72a49
[115]ZHAO L M, WU L H, LI Y S, et al. Comparisons of yield, water use efficiency, and soil microbial biomass as affected by the system of rice intensification[J]. Communications in Soil Science and Plant Analysis, 2010, 41(1): 1-12 doi: 10.1080/00103620903360247
[116]CHANG J X, LI Y Y, WANG Y M, et al. Copula-based drought risk assessment combined with an integrated index in the Wei River Basin, China[J]. Journal of Hydrology, 2016, 540: 824-834 doi: 10.1016/j.jhydrol.2016.06.064
[117]RAO G G, RAO P S, RAJAGOPAL A, et al. Influence of soil, plant and meteorological factors on water relations and yield in Hevea brasiliensis[J]. International Journal of Biometeorology, 1990, 34(3): 175-180 doi: 10.1007/BF01048717
[118]MCKEE T B, DOESKEN N J, KLEIST J. The relationship of drought frequency and duration to time scales[C]//Proceedings of the 8th Conference on Applied Climatology. Anaheim, MA: American Meteorological Society, 1993
[119]VICENTE-SERRANO S M, BEGUERíA S, LóPEZ-MORENO J I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1696-1718 doi: 10.1175/2009JCLI2909.1
[120]LI B Q, LIANG Z M, ZHANG J Y, et al. A revised drought index based on precipitation and pan evaporation[J]. International Journal of Climatology, 2017, 37(2): 793-801 doi: 10.1002/joc.4740
[121]KELLER A. Evapotranspiration and crop water productivity: Making sense of the yield-ET relationship[C]//Proceedings of World Water and Environmental Resources Congress. Anchorage, Alaska: ASCE, 2005
[122]EHLERS W, GOSS M. Water Dynamics in Plant Production[M]. Wallingford: CABI, 2003: 273
[123]ERTEK A. The application for fertilizer-yield relationships of the ET-yield response factor equation[J]. Turkish Journal of Agriculture and Forestry, 2014, 38(5): 732-738 https://www.researchgate.net/publication/270121163_The_application_for_fertilizer-yield_relationships_of_the_ET-yield_response_factor_equation

相关话题/生产 作物 数据 棉花 北京