李清华,
林诚,
何春梅
福建省农业科学院土壤肥料研究所 福州 350013
基金项目: 省属公益类科研院所基本科研专项2016R1021-2
国家绿肥产业技术体系CARS-22-G-01
国家重点研发计划项目2018YFD0200303
福建省农业科学院科技创新团队项目STIT2017-1-9
详细信息
作者简介:王飞, 主要从事土壤资源评价与持续利用研究。E-mail:fjwangfei@163.com
中图分类号:S158;S159计量
文章访问数:627
HTML全文浏览量:11
PDF下载量:598
被引次数:0
出版历程
收稿日期:2018-02-28
录用日期:2018-07-07
刊出日期:2018-12-01
Characteristics of soil fertility quality and minimum dataset for yellow-mud paddy fields in Fujian Province
WANG Fei,,LI Qinghua,
LIN Cheng,
HE Chunmei
Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
Funds: the Special Fund for Basic-Scientific Research in the Provincial Public Interest of Research Institutes of China2016R1021-2
China Agriculture Research System of Green Manure IndustryCARS-22-G-01
the National Key R & D Program of China2018YFD0200303
the Innovation Team Program of Fujian Academy of Agricultural SciencesSTIT2017-1-9
More Information
Corresponding author:WANG Fei, E-mail:fjwangfei@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:黄泥田为福建省主要中低产田类型之一,约占水稻土面积的30%。为解析关键限制因子及开展黄泥田肥力质量评价,进而实施针对性的改良措施,采用配对采样方法,采集福建省20对典型黄泥田与邻近同一微地貌单元内高产灰泥田表层土壤,分析了两种土壤类型28项属性因子指标差异及其原因,并采用主成分分析等方法构建福建省黄泥田肥力质量评价因子最小数据集,通过加权指数法分别计算最小数据集土壤肥力质量指数与差异显著因子构成的重要数据集土壤肥力质量指数。结果表明,与灰泥田相比,黄泥田的有机质含量低19.1%,全氮、全磷、全钾含量分别低14.8%、29.9%和25.4%,碱解氮、有效磷和速效钾含量分别低17.8%、56.7%和39.3%,CEC、交换性钙、交换性镁含量分别低12.9%、50.6%和30.8%,有效铁、有效硼和有效锌含量分别低25.6%、33.3%和44.1%。黄泥田的物理性黏粒、 < 0.001 mm黏粒和容重分别较灰泥田高20.8%、25.6%和12.3%,而孔隙度低19.3%。黄泥田过氧化氢酶活性较灰泥田高20.4%,脲酶活性较灰泥田低40.4%。用主成分分析方法从上述19项有显著差异的因子构成的重要数据集中归纳出累计贡献率达76.22%并能反映黄泥田综合肥力特征的6个主成分,建立了由CEC、全钾、有效磷、有效硼和孔隙度5项因子组成的黄泥田肥力评价最小数据集,相应的黄泥田最小数据集土壤肥力质量指数仅相当于灰泥田的69.5%,通过与重要数据集的土壤肥力质量指数相关分析比较,最小数据集可代替重要数据集对福建省黄泥田土壤肥力质量进行正确评价。
Abstract:In modern agricultural production, the quality of soil fertility is crucial for the crop productivity.Yellow-mud paddy fields constitute one of the main types of medium-to-low yield fields in Fujian Province, which accounts for about 30% of paddy fields in the province.In order to determine key limiting factors, evaluate the quality of soil fertility and implement targeted improvement measures, 28 soil characteristics of 20 pairs of typical surface soil samples from yellow-mud paddy fields and high-yield grey-mud fields in the neighboring and the same landscape units in Fujian Province were compared.Differences in soil properties between the two soils and the causes were systematically analyzed and the minimum data set (MDS) for assessment of the quality of soil fertility in yellow-mud paddy fields established using principal component analysis and other methods.Using the weighted index method, the soil fertility quality index (SFQI) from MDS and the important data set (IDS) constituted on the basis of significantly different factors. The results showed that compared with grey-mud paddy fields, the content of organic matter in yellow-mud paddy fields was less by 19.1% and the contents of total nitrogen, total phosphorus and total potassium were less respectively by 14.8%, 29.9% and 25.4%. Also the contents of available nitrogen, available phosphorus and available potassium were less respectively by 17.8%, 56.7% and 39.3%.CEC and the contents of exchangeable calcium, exchangeable magnesium were less respectively by 12.9%, 50.6% and 30.8%. While the contents of available iron, available boron and available zinc were less respectively by 25.6%, 33.3% and 44.1%, the contents of clay < 0.001 mm and bulk density were higher by 20.8%, 25.6% and 12.3%, whereas the porosity was less by 19.3%. Compared with grey-mud paddy fields, the activity of catalase in yellow-mud paddy fields was higher by 20.4%, but the activity of urease was less by 40.4%.This indicated that compared with high-producing fields, yellow-mud paddy fields belonged to low-fertility and short-acting soils with insufficient soil organic matter, total nutrients and available nutrients, low contents of macro/micro elements, CEC, etc.The above 19 soil characteristics with significant differences between the two soils constituted the IDS.Six principal components, with cumulative contribution of 76.22%, were selected from IDS reflecting the synthetic fertility properties of yellow-mud paddy fields.The final established MDS composed of five factors, including CEC, total potassium, available phosphorus, available boron and porosity for fertility quality assessment according to the expert experience and correlation analysis.The calculated SFQI from MDS of yellow-mud paddy fields was equivalent to 69.5% of that of grey-mud paddy fields. Correlation analysis on SFQI for IDS and MDS indicated that MDS could replace IDS and correctly used to evaluate soil fertility quality of yellow-mud paddy fields.Moreover, MDS could also be used in studies on how to improve soil fertility.
HTML全文
图1基于重要数据集与最小数据集的黄泥田与灰泥田土壤肥力质量指数
不同大写字母表示两种土壤间差异极显著(P < 0.01)。Different capital letters indicate significant differences between two soils at 0.01 level.
Figure1.Soil fertility quality indexes of yellow-mud paddy field and grey-mud paddy field based on important data set and minimum data set
下载: 全尺寸图片幻灯片
图2基于重要数据集与最小数据集的土壤肥力质量指数相关性
“**”表示极显著相关(P < 0.01)。“**” indicate significant correlation at 0.01 level.
Figure2.Correlation of soil fertility quality index between minimum data set and important data set
下载: 全尺寸图片幻灯片
表1福建省水稻田土壤样品取样点
Table1.Soil sample points of paddy field in Fujian Province
编号 Number | 地点 Location | 经纬度 Longitude and latitude | 海拔 Height (m) | 地形 Landform | 土壤母质 Soil parent material | 土地利用方式 Land utilization type | |||||||
黄泥田 Yellow-mud paddy field | 灰泥田 Grey-mud paddy field | 黄泥田 Yellow-mud paddy field | 灰泥田 Grey-mud paddy field | 黄泥田 Yellow-mud paddy field | 灰泥田 Grey-mud paddy field | 黄泥田 Yellow-mud paddy field | 灰泥田 Grey-mud paddy field | ||||||
1 | 尤溪县 西滨镇 Xibin Township, Youxi County | 26°24′N 118°18′E | 210 | 230 | 丘陵下部 Lower part of hill | 平原中阶 Mid terrace of plain | 残积物 Elurium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 烟-稻 Tobacco- rice rotation | |||
2 | 闽清县 东桥镇 Dongqiao Township, Minqing County | 26°22′N 118°52′E | 160 | 150 | 丘陵上部 Upper part of hill | 平原中阶 Mid terrace of plain | 残积物 Elurium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 单季稻 Single cropping rice | |||
建瓯市 东峰镇 Dongfeng Township, Jian’ou County | 27°9′N 118°32′E | 140 | 130 | 丘陵下部 Lower part of hill | 平原中阶 Mid terrace of plain | 残积物 Elurium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 单季稻 Single cropping rice | ||||
4 | 浦城县 仙阳镇 Xianyang Township, Pucheng County | 28°04′N 118°29′E | 340 | 327 | 丘陵下部 Lower part of hill | 平原低阶 Low terrace of plain | 坡积物 Deluvium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 单季稻 Single cropping rice | |||
5 | 建阳区 童游街道 Tongyou Street, Jianyang District | 27°22′N 118°9′E | 180 | 150 | 丘陵下部 Lower part of hill | 平原中阶 Mid terrace of plain | 坡积物 Deluvium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 单季稻 Single cropping rice | |||
6 | 延平区 大横镇 Daheng Township, Yanping District | 26°43′N 118°14′E | 100 | 70 | 丘陵下部 Lower part of hill | 平原高阶 High terrace of plain | 坡积物 Deluvium | 坡积物 Deluvium | 单季稻 Single cropping rice | 单季稻 Single cropping rice | |||
7 | 闽侯县 白沙镇 Baisha Township, Minhou County | 26°13′N 119°04′E | 16 | 11 | 丘陵下部 Lower part of hill | 平原低阶 Low terrace of plain | 坡积物 Deluvium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 稻-菜 Rice- vegetable rotation | |||
8 | 顺昌县 郑坊镇 Zhengfang Township, Shunchang County | 26°42′N 117°43′E | 272 | 270 | 丘陵下部 Lower part of hill | 宽谷盆地 Broad valley basin | 坡积物 Deluvium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 烟-稻 Tobacco-rice rotation | |||
9 | 永安市 洪田镇 Hongtian Township, Yong’an County | 25°50′N 117°16′E | 341 | 230 | 丘陵下部 Lower part of hill | 平原中阶 Mid terrace of plain | 坡积物 Deluvium | 冲积物 Alluvial material | 中稻-西瓜 Semilate rice- watermelon rotation | 单季稻 Single cropping rice | |||
10 | 古田县 城东街道 Chengdong Street, Gutian County | 26°37′N 118°44′E | 361 | 355 | 丘陵中部 Mid part of hill | 平原高阶 High terrace of plain | 坡积物 Deluvium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 单季稻 Single cropping rice | |||
11 | 大田县 武陵乡 Wuling Township, Datian County | 25°37′N 117°46′E | 443 | 435 | 丘陵中部 Mid part of hill | 平原高阶 High terrace of plain | 残积物 Elurium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 单季稻 Single cropping rice | |||
12 | 宁化县 泉上镇 Quanshang Township, Ninghua County | 26°24′N 116°58′E | 464 | 453 | 丘陵中部 Mid part of hill | 平原高阶 High terrace of plain | 坡积物 Deluvium | 坡积物 Deluvium | 单季稻 Single cropping rice | 烟-晚稻 Tobacco-rice rotation | |||
13 | 周宁县 礼门乡 Limen Township, Zhouning County | 26°59′N 119°12′E | 830 | 816 | 山地坡下 Mountain bottom | 山间盆地 Intermountain basin | 坡积物 Deluvium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 单季稻 Single cropping rice | |||
14 | 屏南县 甘棠镇 Gantang Township, Pingnan County | 26°25′N 119°37′E | 752 | 741 | 山地坡下 Mountain bottom | 平原高阶 High terrace of plain | 坡积物 Deluvium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 单季稻 Single cropping rice | |||
15 | 福安市 溪潭镇 Xitan Township, Fu’an City | 27°03′N 118°18′E | 62 | 12 | 丘陵中部 Mid part of hill | 平原低阶 Low terrace of plain | 坡积物 Deluvium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 中稻-蔬菜 Semilate rice- vegetables rotation | |||
16 | 霞浦县 松港街道 Songgang Street, Xiapu County | 26°57′N 120°00′E | 151 | 148 | 丘陵下部 Lower part of hill | 平原高阶 High terrace of plain | 坡积物 Deluvium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 单季稻 Single cropping rice | |||
17 | 连城县 罗坊镇 Luofang Township, Liancheng County | 25°44′N 116°39′E | 432 | 396 | 丘陵中部 Mid part of hill | 平原低阶 Low terrace of plain | 坡积物 Deluvium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 烟-晚稻 Tobacco-late rice rotation | |||
18 | 上杭县 太拔镇 Taiba Township, Shanghang County | 24°56′N 118°39′E | 475 | 280 | 丘陵中部 Mid part of hill | 平原高阶 High terrace of plain | 坡积物 Deluvium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 油菜-中稻 Rape-semilaterice rotation | |||
19 | 沙县 夏茂镇 Xiamao Township, Shaxian County | 26°34′N 117°38′E | 208 | 185 | 丘陵下部 Lower part of hill | 平原中阶 Mid terrace of plain | 坡积物 Deluvium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 单季稻 Single cropping rice | |||
20 | 将乐县 漠源乡 Moyuan Township, Jiangle County | 26°39′N 117°34′E | 440 | 438 | 丘陵中部 Mid part of hill | 宽谷盆地 Broad valley basin | 坡积物 Deluvium | 冲积物 Alluvial material | 单季稻 Single cropping rice | 单季稻 Single cropping rice |
下载: 导出CSV
表2黄泥田与邻近灰泥田表层土壤化学性状比较
Table2.Comparative analysis of soil chemical properties between yellow-mud paddy field and neighboring grey-mud paddy field
土壤化学指标 Soil chemical index | 黄泥田 Yellow-mud paddy field | 灰泥田 Grey-mud paddy field | t检验 t test |
pH | 5.10±0.26 | 5.14±0.27 | 0.48 |
有机质Organic matter (g·kg-1) | 25.29±7.99 | 31.26±8.96 | 3.84** |
全氮Total N (g·kg-1) | 1.61±0.39 | 1.89±0.37 | 3.24** |
全磷Total P (g·kg-1) | 0.68±0.25 | 0.97±0.44 | 2.86** |
全钾Total K (g·kg-1) | 14.28±5.96 | 19.15±4.69 | 3.58** |
碱解氮Available N (mg·kg-1) | 126.4±24.8 | 153.8±31.2 | 3.34** |
有效磷Available P (mg·kg-1) | 22.10±14.80 | 51.06±31.78 | 4.81** |
速效钾Available K (mg·kg-1) | 50.16±17.39 | 82.70±47.26 | 2.85** |
CEC (cmol·kg-1) | 9.69±2.20 | 11.13±2.10 | 2.88** |
可溶性有机碳Dissolved organic carbon (mg·kg-1) | 324.5±99.0 | 365.0±145.1 | 1.43 |
交换性钙Exchangeable Ca (cmol·kg-1) | 1.96±0.85 | 3.97±1.14 | 7.21** |
交换性镁Exchangeable Mg (cmol·kg-1) | 0.54±0.32 | 0.78±0.35 | 2.67* |
有效硫Available S (mg·kg-1) | 15.01±6.67 | 17.27±10.08 | 0.82 |
有效铁Available Fe (mg·kg-1) | 128.64±62.06 | 172.88±94.61 | 2.20* |
有效锰Available Mn (mg·kg-1) | 44.02±46.99 | 44.47±34.45 | 0.04 |
有效硼Available B (mg·kg-1) | 0.44±0.20 | 0.66±0.17 | 5.93** |
有效锌Available Zn (mg·kg-1) | 1.42±0.63 | 2.54±1.09 | 4.17** |
有效铜Available Cu (mg·kg-1) | 6.71±4.54 | 8.05±5.05 | 1.05 |
??数据表示平均值±标准差; t0.05=2.023, t0.01=2.708, n=20; “*”与“**”分别表示差异达5%和1%水平。The data in the table are means ± standard deviation. “*” and “**” indicate significant at 5% and 1% levels, respectively. |
下载: 导出CSV
表3黄泥田与邻近灰泥田表层土壤物理性状比较
Table3.Comparative analysis of soil physical properties between yellow-mud paddy field and neighboring grey-mud paddy field
土壤物理指标 Soil physical index | 黄泥田 Yellow-mud paddy field | 灰泥田 Grey-mud paddy field | t检验 t test |
物理性黏粒 Physical clay (< 0.01 mm, %) | 33.32±5.39 | 27.58±5.35 | 5.45** |
黏粒 Clay (< 0.001 mm, %) | 9.08±2.51 | 7.23±2.16 | 3.97** |
>0.25 mm团聚体 >0.25 mm aggregate (%) | 73.20±16.70 | 79.80±9.60 | 1.92 |
容重Bulk density (g·cm-3) | 1.28±0.16 | 1.14±0.15 | 3.82** |
孔隙度Porosity (%) | 49.54±7.71 | 61.42±5.58 | 7.50** |
??数据表示平均值±标准差; t0.05=2.023, t0.01=2.708, n=20; “*”与“**”分别表示差异达5%和1%水平。The data in the table are means ± standard deviation. “*” and “**” indicate significant at 5% and 1% levels, respectively. |
下载: 导出CSV
表4黄泥田与邻近灰泥田表层土壤生化性状比较
Table4.Comparative analysis of soil biochemical properties between yellow-mud paddy field and neighboring grey-mud paddy field
土壤生化指标 Soil biochemical index | 黄泥田 Yellow-mud paddy field | 灰泥田 Grey-mud paddy field | t检验 t test |
过氧化氢酶Catalase [mL(0.1 mol·L-1 KMnO4)·g-1] | 0.124±0.044 | 0.103±0.038 | 2.36* |
磷酸酶Phosphatase [mg(P2O5)·100 g-1] | 526.4±276.7 | 548.6±347.7 | 0.39 |
脲酶Urease [mg(NH3-N)·kg-1] | 6.68±4.73 | 11.20±6.54 | 2.85** |
转化酶Invertase [mL(0.1 mol·L-1 Na2S2O4)·g-1] | 1.16±0.49 | 0.92±0.36 | 1.72 |
微生物量生物量碳 Microbial biomass carbon (mg·kg-1) | 231.8±133.5 | 284.6±224.0 | 1.19 |
??数据表示平均值±标准差; t0.05=2.023, t0.01=2.708, n=20; “*”与“**”分别表示差异达5%和1%水平。The data in the table are means ± standard deviation. “*” and “**” indicate significant at 5% and 1% levels, respectively. |
下载: 导出CSV
表5黄泥田土壤属性主成分因子载荷矩阵、特征值与方差贡献率
Table5.Factor loading matrix, eigenvalue and variance explained of principal component analysis on soil properties of yellow-mud paddy field
土壤属性指标质量参数 Soil property index | 主成分1 PC 1 | 主成分2 PC 2 | 主成分3 PC 3 | 主成分4 PC 4 | 主成分5 PC 5 | 主成分6 PC 6 |
有机质Organic matter | 0.633 | -0.609 | 0.068 | 0.109 | 0.095 | 0.005 |
全氮Total N | 0.658 | -0.510 | 0.025 | 0.027 | 0.405 | 0.042 |
全磷Total P | 0.482 | 0.628 | 0.117 | -0.015 | 0.414 | 0.212 |
全钾Total K | 0.315 | 0.279 | -0.124 | 0.369 | -0.535 | -0.029 |
碱解氮Available N | 0.625 | -0.515 | -0.126 | 0.083 | 0.136 | 0.014 |
有效磷Available P | 0.444 | 0.706 | 0.033 | 0.197 | 0.317 | 0.062 |
速效钾Available K | 0.400 | 0.222 | 0.233 | -0.581 | 0.079 | -0.325 |
交换性钙Exchangeable Ca | 0.674 | 0.358 | 0.093 | -0.210 | -0.335 | 0.079 |
交换性镁Exchangeable Mg | 0.357 | 0.231 | 0.414 | -0.684 | -0.190 | -0.106 |
CEC | 0.611 | -0.214 | 0.164 | -0.229 | 0.056 | 0.502 |
有效铁Available Fe | 0.074 | 0.313 | 0.706 | 0.368 | -0.040 | -0.055 |
有效锌Available Zn | 0.693 | 0.110 | -0.153 | 0.021 | -0.380 | 0.183 |
有效硼Available B | 0.397 | 0.194 | 0.606 | 0.366 | -0.058 | 0.030 |
孔隙度Porosity | 0.832 | -0.281 | 0.135 | 0.127 | -0.113 | -0.195 |
容重Bulk density | -0.679 | 0.507 | -0.083 | -0.215 | 0.080 | 0.208 |
< 0.001 mm黏粒 < 0.001 mm clay | -0.428 | -0.244 | 0.589 | -0.145 | 0.016 | 0.392 |
物理性黏粒Physical clay | -0.615 | -0.258 | 0.504 | 0.201 | -0.131 | 0.249 |
过氧化氢酶Catalase | -0.302 | -0.128 | 0.552 | 0.072 | 0.144 | -0.495 |
脲酶Urease | 0.241 | 0.655 | -0.177 | 0.283 | 0.214 | -0.050 |
特征值Eigenvalue | 5.376 | 3.199 | 2.163 | 1.576 | 1.159 | 1.008 |
方差贡献率 Variance explained (%) | 28.30 | 16.84 | 11.39 | 8.30 | 6.10 | 5.31 |
累积方差贡献率 Cumulative variance explained (%) | 28.30 | 45.13 | 56.52 | 64.81 | 70.91 | 76.22 |
下载: 导出CSV
表6基于主成分分析的黄泥田土壤肥力质量候选评价因子相关分析
Table6.Correlation analysis of candidate variables of fertility quality of yellow-mud paddy field based on principle component analysis
(n = 40) | |||||
孔隙度 Porosity | 有效磷 Available P | 有效硼 Available B | 全钾 Total K | CEC | |
有效磷 Available P | 0.174 | 1.000 | |||
有效硼 Available B | 0.379* | 0.347* | 1.000 | ||
全钾 Total K | 0.150 | 0.242 | 0.207 | 1.000 | |
CEC | 0.392* | 0.085 | 0.226 | 0.116 | 1.000 |
交换性镁 Exchangeable Mg | 0.216 | 0.102 | 0.224 | -0.027 | 0.314* |
??“*”表示5%水平显著。“*” indicates significant correlation at 5% level. |
下载: 导出CSV
参考文献
[1] | 骆东奇, 白洁, 谢德体.论土壤肥力评价指标和方法[J].土壤与环境, 2002, 11(2):202-205 doi: 10.3969/j.issn.1674-5906.2002.02.020 LUO D Q, BAI J, XIE D T. Research on evaluation norm and method of soil fertility[J]. Soil and Environmental Sciences, 2002, 11(2):202-205 doi: 10.3969/j.issn.1674-5906.2002.02.020 |
[2] | 福建省土壤普查办公室.福建土壤[M].福州:福建科学技术出版社, 1991 Soil Surveying Office in Fujian. Fujian Soil[M]. Fuzhou:Fujian Science and Technology Press, 1991 |
[3] | DORAN J W, PARKIN T B. Defining and assessing soil quality[M]//DORAN J W, COLEMAN D C, BEZDICEK D F, et al. Defining Soil Quality for a Sustainable Environment. Madison, Wisconsin: Soil Science Society of America Inc., 1994 |
[4] | KARLEN D L, MAUSBACH M J, DORAN J W, et al. Soil quality:A concept, definition, and framework for evaluation (A Guest Editorial)[J]. Soil Science Society of America Journal, 1997, 61(1):4-10 doi: 10.2136/sssaj1997.03615995006100010001x |
[5] | 王飞, 李清华, 林诚, 等.福建冷浸田土壤质量评价因子的最小数据集[J].应用生态学报, 2015, 26(5):1461-1468 http://d.old.wanfangdata.com.cn/Periodical/yystxb201505024 WANG F, LI Q H, LIN C, et al. Establishing a minimum data set of soil quality assessment for cold-waterlogged paddy field in Fujian Province, China[J]. Chinese Journal of Applied Ecology, 2015, 26(5):1461-1468 http://d.old.wanfangdata.com.cn/Periodical/yystxb201505024 |
[6] | 徐建明, 张甘霖, 谢正苗, 等.土壤质量指标与评价[M].北京:科学出版社, 2010 XU J M, ZHANG G L, XIE Z M, et al. Indices and Assessment of Soil Quality[M]. Beijing:Science Press, 2010 |
[7] | 曹志洪, 周建民.中国土壤质量[M].北京:科学出版社, 2008 CAO Z H, ZHOU J M. Soil Quality of China[M]. Beijing:Science Press, 2008 |
[8] | 贡璐, 张雪妮, 冉启洋.基于最小数据集的塔里木河上游绿洲土壤质量评价[J].土壤学报, 2015, 52(3):682-689 http://www.cqvip.com/QK/90156X/201503/664931460.html GONG L, ZHANG X N, RAN Q Y. Quality assessment of Oasis soil in the upper reaches of TARIM river based on minimum data set[J]. Acta Pedologica Sinica, 2015, 52(3):682-689 http://www.cqvip.com/QK/90156X/201503/664931460.html |
[9] | 杨梅花, 赵小敏, 王芳东, 等.基于主成分分析的最小数据集的肥力指数构建[J].江西农业大学学报, 2016, 38(6):1188-1195 http://d.old.wanfangdata.com.cn/Periodical/jxnydxxb201606026 YANG M H, ZHAO X M, WANG F D, et al. Soil fertility index based on minimum data sets using PCA method[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(6):1188-1195 http://d.old.wanfangdata.com.cn/Periodical/jxnydxxb201606026 |
[10] | YAO R J, YANG J S, GAO P, et al. Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area[J]. Soil and Tillage Research, 2013, 128:137-148 doi: 10.1016/j.still.2012.11.007 |
[11] | 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000 LU R K. The Analytical Methods for Soil and Agrochemistry[M]. Beijing:China Agricultural Science and Technology Press, 2000 |
[12] | 张国, 曹志平, 胡婵娟.土壤有机碳分组方法及其在农田生态系统研究中的应用[J].应用生态学报, 2011, 22(7):1921-1930 http://d.old.wanfangdata.com.cn/Periodical/yystxb201107037 ZHANG G, CAO Z P, HU C J. Soil organic carbon fractionation methods and their applications in farmland ecosystem research:A review[J]. Chinese Journal of Applied Ecology, 2011, 22(7):1921-1930 http://d.old.wanfangdata.com.cn/Periodical/yystxb201107037 |
[13] | 毛艳玲, 杨玉盛, 邢世和, 等.土地利用变化对土壤水稳性团聚体轻组有机碳的影响[J].福建农林大学学报:自然科学版, 2008, 37(5):532-538 http://d.old.wanfangdata.com.cn/Periodical/fjnydxxb200805020 MAO Y L, YANG Y S, XING S H, et al. Effects of land use change on light fractions of organic carbon in soil water-stable aggregates[J]. Journal of Fujian Agriculture and Forestry University:Natural Science Edition, 2008, 37(5):532-538 http://d.old.wanfangdata.com.cn/Periodical/fjnydxxb200805020 |
[14] | LIEBIG M A, VARVEL G, DORAN J. A simple performancebased index for assessing multiple agroecosystem functions[J]. Agronomy Journal, 2000, 93(2):313-318 |
[15] | 周卫.低产水稻土改良与管理:理论·方法·技术[M].北京:科学出版社, 2015 ZHOU W. Theories and Approaches of Amelioration and Management of Low Yield Paddy Soils[M]. Beijing:Science Press, 2015 |
[16] | 丁洪, 王跃思, 项虹艳, 等.福建省几种主要红壤性水稻土的硝化与反硝化活性[J].农业环境科学学报, 2003, 22(6):715-719 doi: 10.3321/j.issn:1672-2043.2003.06.019 DING H, WANG Y S, XIANG H Y, et al. Nitrification and denitrification potential in different types of paddy soils in Fujian Province[J]. Journal of Agro-Environment Science, 2003, 22(6):715-719 doi: 10.3321/j.issn:1672-2043.2003.06.019 |
[17] | 胡诚, 刘东海, 乔艳, 等.不同施肥措施对黄泥田土壤养分及水稻产量的影响[J].贵州农业科学, 2017, 45(4):12-15 doi: 10.3969/j.issn.1001-3601.2017.04.004 HU C, LIU D H, QIAO Y, et al. Effects of different fertilization patterns on soil fertility and rice yield of yellow clayey paddy soil[J]. Guizhou Agricultural Sciences, 2017, 45(4):12-15 doi: 10.3969/j.issn.1001-3601.2017.04.004 |
[18] | 宓文海, 吴良欢, 马庆旭, 等.有机物料与化肥配施提高黄泥田水稻产量和土壤肥力[J].农业工程学报, 2016, 32(13):103-108 doi: 10.11975/j.issn.1002-6819.2016.13.015 MI W H, WU L H, MA Q X, et al. Combined application of organic materials and inorganic fertilizers improving rice yield and soil fertility of yellow clayey paddy soil[J]. Transactions of the CSAE, 2016, 32(13):103-108 doi: 10.11975/j.issn.1002-6819.2016.13.015 |
[19] | 王飞, 李清华, 林诚, 等.不同施肥模式对南方黄泥田耕层有机碳固存及生产力的影响[J].植物营养与肥料学报, 2015, 21(6):1447-1454 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201506010 WANG F, LI Q H, LIN C, et al. Effect of different fertilization modes on topsoil organic carbon sequestration and productivity in yellow paddy field of southern China[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6):1447-1454 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201506010 |
[20] | 黄晶, 张杨珠, 高菊生, 等.长期施肥下红壤性水稻土有机碳储量变化特[J].应用生态学报, 2015, 26(11):3373-3380 http://d.old.wanfangdata.com.cn/Periodical/yystxb201511017 HUANG J, ZHANG Y Z, GAO J S, et al. Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil[J]. Chinese Journal of Applied Ecology, 2015, 26(11):3373-3380 http://d.old.wanfangdata.com.cn/Periodical/yystxb201511017 |
[21] | 荣勤雷, 梁国庆, 周卫, 等.不同有机肥对黄泥田土壤培肥效果及土壤酶活性的影响[J].植物营养与肥料学报, 2014, 20(5):1168-1177 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201405013 RONG Q L, LIANG G Q, ZHOU W, et al. Effects of different organic fertilization on fertility and enzyme activities of yellow clayey soil[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5):1168-1177 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201405013 |
[22] | 邢世和.福建耕地资源[M].厦门:厦门大学出版社, 2003 XING S H. Cropland Resources in Fujian[M]. Xiamen:Xiamen University Press, 2003 |
[23] | 李桂林, 陈杰, 檀满枝, 等.基于土地利用变化建立土壤质量评价最小数据集[J].土壤学报, 2008, 45(1):16-25 doi: 10.3321/j.issn:0564-3929.2008.01.003 LI G L, CHEN J, TAN M Z, et al. Establishment of a minimum dataset for soil quality assessment based on land use change[J]. Acta Pedologica Sinica, 2008, 45(1):16-25 doi: 10.3321/j.issn:0564-3929.2008.01.003 |
[24] | 张光亮, 白军红, 郗敏, 等.黄河三角洲湿地土壤质量综合评价[J].湿地科学, 2015, 13(6):744-751 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KXSD201506014&dbname=CJFD&dbcode=CJFQ ZHANG G L, BAI J H, XI M, et al. Comprehensive assessment of soil quality of wetlands in the yellow river delta[J]. Wetland Science, 2015, 13(6):744-751 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KXSD201506014&dbname=CJFD&dbcode=CJFQ |
[25] | 黄婷, 岳西杰, 葛玺祖, 等.基于主成分分析的黄土沟壑区土壤肥力质量评价——以长武县耕地土壤为例[J].干旱地区农业研究, 2010, 28(3):141-147 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201003026 HUANG T, YUE X J, GE X Z, et al. Evaluation of soil quality on gully region of loess plateau based on principal component analysis[J]. Agricultural Research in the Arid Areas, 2010, 28(3):141-147 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201003026 |
[26] | 沈汉, 邹国元.菜地土壤评价中参评因素的选定与分级指标的划分[J].土壤通报, 2004, 35(5):553-557 doi: 10.3321/j.issn:0564-3945.2004.05.007 SHEN H, ZOU G Y. Parameters selection for evaluation of vegetable soil quality and its gradation[J]. Chinese Journal of Soil Science, 2004, 35(5):553-557 doi: 10.3321/j.issn:0564-3945.2004.05.007 |
[27] | 王建国, 杨林章, 单艳红.模糊数学在土壤质量评价中的应用研究[J].土壤学报, 2001, 38(2):176-183 doi: 10.3321/j.issn:0564-3929.2001.02.005 WANG J G, YANG L Z, SHAN Y H. Application of fuzzy mathematics to soil quality evaluation[J]. Acta Pedologica Sinica, 2001, 38(2):176-183 doi: 10.3321/j.issn:0564-3929.2001.02.005 |