删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

作物水分利用效率研究方法及尺度传递研究进展

本站小编 Free考研考试/2022-01-01

姜寒冰1, 2,,
张玉翠1,
任晓东1, 3,
要家威1, 2,
沈彦俊1,,
1.中国科学院农业水资源重点实验室/河北省节水农业重点实验室/中国科学院遗传与发育生物学研究所农业资源研究中心 石家庄 050022
2.中国科学院大学 北京 100049
3.青海师范大学生命与地理科学学院 西宁 810000
基金项目: 国家重点研发计划课题2016YFC0401403
国家自然科学基金面上项目31870422
河北省自然科学基金项目D2016503001
中国科学院青年创新促进会项目2017138

详细信息
作者简介:姜寒冰, 主要从事作物水分利用效率和农田水平衡过程研究。E-mail:jianghanbing16@163.com
通讯作者:沈彦俊, 主要从事生态水文过程的研究。E-mail:yjshen@sjziam.ac.cn
中图分类号:S181

计量

文章访问数:752
HTML全文浏览量:8
PDF下载量:871
被引次数:0
出版历程

收稿日期:2018-05-25
录用日期:2018-09-02
刊出日期:2019-01-01

A review of progress in research and scaling-up methods of crop water use efficiency

JIANG Hanbing1, 2,,
ZHANG Yucui1,
REN Xiaodong1, 3,
YAO Jiawei1, 2,
SHEN Yanjun1,,
1. Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Laboratory of Water-Saving Agriculture/Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shi-jiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. College of Biological and Geo-graphical Sciences, Qinghai Normal University, Xining 810000, China
Funds: the National Key Research and Development Plan of China2016YFC0401403
the National Natural Science Foundation of China31870422
the Natural Science Foundation of Hebei ProvinceD2016503001
the Youth Innovation Promotion Association of Chinese Academy of Sciences2017138

More Information
Corresponding author:SHEN Yanjun, E-mail:yjshen@sjziam.ac.cn


摘要
HTML全文
(0)(2)
参考文献(60)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:提高作物水分利用效率(WUE)是缓解农业生产水资源匮乏压力的有效途径,而水分利用效率尺度传递是各尺度WUE相互表征、验证并应用于实际生产的基础。本文概述了作物叶片、植株、群体尺度WUE的主要观测技术,包括叶片气体交换测定、碳同位素判别、桶栽称重、涡度相关观测等,其中碳同位素判别法为研究作物水分利用的长期累积效应提供了新的思路,且适用于多个尺度;总结了各尺度WUE的影响因子及作物耗水的生理机制,阐明各尺度WUE均受气孔导度调控。讨论了叶片到植株、叶片/植株到群体的尺度传递的可行性,集中分析了尺度传递的主要限制因素,指出叶片到植株的传递研究难点集中于叶片分布和光分布的不确定性、植物夜间呼吸和蒸腾以及植物适应环境的生理调节机制等过程;而叶片/植株到群体的传递研究主要受冠层形态学差异、冠层阻力、土壤蒸发及植物同化物分配机制等限制。最后总结了尺度传递方法的现有研究成果。目前作物WUE尺度传递主要依靠模型的完善和观测手段的提高,叶片到单株的尺度传递需关注日间与夜间耗水的分离及作物各部分的光合特性;叶片/单株到群体的传递可先明确蒸散结构,了解耗水特征,再以气孔导度和冠层导度的关系为切入点,利用模型探究传递机制。
关键词:水分利用效率/
尺度传递/
碳同位素/
气孔导度
Abstract:Increasing crop water use efficiency (WUE) is an effective way of alleviating agricultural water scarcity. The scaling up of water use efficiency is the basis for mutual representation, verification and application of achievements at various scales. This paper summarized the main observation technologies of leaf-scale, plant-scale and plantation-scale WUE. At present, the widely used methods include leaf gas exchange measurement, carbon isotopic discrimination, pot weighing method, eddy covariance system, etc. Carbon isotope discrimination provides a new idea for the study of long-term cumulative effects of crop water use conditions which is also available at every scale. We reviewed the impacting factors and the related physiological mechanisms of crop water use at multi-scale WUE. Crop WUE at each scale was regulated by stomatal conductance and crops usually regulated stomatal aperture to response to temperature, humidity, CO2 and other interactive environmental factors. Stomatal optimization theory essentially sought optimal state of stomata under complex environmental conditions to coordinate the process of photosynthesis and transpiration of crops. Instantaneous WUE at leaf scale cannot directly represent water use status at larger spatial and temporal scales. Thus we also discussed the feasibility of scaling up WUE from leaf to plant to plantation scales and analyzed the main limiting factors at each scale transfer. We pointed out the difficulties in transfer from leaf to plant in terms of WUE. It mainly focused on three points-uncertainty in leaf and light distributions, plant nighttime respiration and transpiration, and plant physiological adjustment mechanisms. Research on leaf to plant to plantation scale transfer was mainly influenced by canopy internal resistance, boundary layer resistance, soil evaporation, night transpiration of crops, crop water use and assimilates partitioning mechanism. Finally, existing research achievements on scale transfer were summarized. At present, WUE scale transfer depended mainly on improvement of models and observation methods. The transfer from leaf to plant focused on separation of water use during day and night and photosynthetic characteristics of each part of the crop. For transfer from leaf to plant to plantation scale, studies explored efficient ways. First, studies understood the structure of evapotranspiration and confirmed the characteristics of water use. Second, studies used the relationship between stomatal and canopy conductance as breakthrough point via models to explore transfer mechanisms. Actually, several models had already been established and applied in this respect.
Key words:Water use efficiency/
Scaling up/
Carbon isotopic discrimination/
Stomatal conductance

HTML全文

表1不同尺度水分利用效率(WUE)的定义与观测手段
Table1.Definition and measurement methods of water use efficiency (WUE) under different scales
尺度
Scale
WUE 计算公式
Formula
观测手段
Measurement method
应用意义
Application
叶片
Single leaf
WUET A/T 气体交换法, 稳定碳同位素技术[6]
Gas exchange measurement, stable carbon isotope technology[6]
作物生理状态表征[7-8]
Plant ecophysiology characterization[7-8]
WUEi A/gs
植株
Single plant
WUEp TB/T 称重法、稳定碳同位素技术[9]
Pot weighting method, stable carbon isotope technology[9]
作物育种优良单株选择[10]
Superior plant selection in crop breeding[10]
群体
Population
WUEc GPP/ET; NPP/ET; NEE/ET 涡度相关技术、遥感监测、农田水平衡[11-13]
Eddy Covariance Technology, remote sensing monitor, field water balance[11-13]
生态系统综合评价[14]
Ecology system assessment[14]
WUEf TB/ET; Yield/ET
WUET:瞬时水分利用效率; WUEi:内部水分利用效率; WUEp:植株尺度水分利用效率; WUEc:冠层水平水分利用效率; WUEf:农田尺度水分利用效率; A:净CO2吸收速率; T:蒸腾速率; gs:气孔导度; TB:干物质量; GPP:初级生产力; NPP:净初级生产力; NEE:净生态系统碳交换量; ET:蒸散耗水量。Yield:产量。WUET: instantaneous WUE; WUEi: internal WUE; WUEp: WUE at plant scale; WUEc: WUE at canopy level; WUEf: WUE at field scale. A: net CO2 absorption rate; T: transpiration rate; gs: stomatal conductance; TB: dry biomass weight; GPP: gross primary productivity; NPP: net primary productivity; NEE: net ecosystem carbon exchange; ET: evapotranspiration.


下载: 导出CSV
表2不同尺度作物水分利用效率及尺度传递研究成果
Table2.Achievements of water use efficiency (WUE) of crops and scale-up methods under different scales
研究尺度
Scale
关键因素
Vital factors
主要成果
Primary achievement
文献和年份
Reference and year
叶片(已应用于多个尺度)
Single leaf (applied to multiple scales)
多环境因子
Multiple environmental factors
水碳耦合模型(已发展出BWB模型, BBL模型等)
Water-carbon coupling model (BWB model, BBL model, et al)
[40] 1988
叶片
Single leaf
边界层导度
Boundary layer conductance
光合-蒸腾-气孔导度耦合模型
Integrated photosynthesis-transpiration-stomatal conductance model
[41] 1998
叶片
Single leaf
叶肉细胞导度、气孔行为
Mesophyll conductance; stomatal behavior
SMPT-SB模型
SMPT-SB model
[42] 2003
叶片-冠层
From single leaf to canopy
光合有效辐射、饱和水汽压差
Photosynthetically active radiation (PAR), water vapor deficit (VPD)
构建气孔导度到冠层导度的尺度拓展估算模型
A model scaling up from leaf stomatal conductance to canopy conductance
[43] 2011
叶片、单株
Single leaf, single plant
水分条件
Water condition
适度水分亏缺下, 叶片气孔导度可作为单株WUE的指示因子
Stomatal conductance of leaves can be used as an indicator of the whole-plant WUE under moderate water deficit
[25] 2012
叶片、单株
Single leaf, single plant
暗处理
Dark treatment
暗处理下的叶片气孔导度比枯萎叶片的最小导度更能指示单株
WUE Dark-adapted leaf stomatal conductance, but not minimum leaf conductance of wilted leaves, predicts whole-plant WUE
[44] 2013
叶片-冠层
From single leaf to canopy
光合有效辐射(阴生叶、阳生叶)
PAR (sun-leaf; shading-leaf)
双源双叶模型
Dual-source dual-leaf model
[45] 2014
叶片、单株
Single leaf, single plant
饱和水汽压差、叶片位置
VPD; leaf position
叶片向单株拓展的主要限制因素
Main limitations of scaling up from single leaf to plant
[4] 2015
叶片、单株、冠层
Single leaf, single, plant canopy
多环境因子
Multiple environmental factors
各尺度观测结果的不确定性
Uncertainty of measurements at multi-scales
[46] 2017
叶片、单株
Single leaf, single plant
叶片水势
Leaf water potential
利用植物结构功能模型模拟优化不同冠层形状的
WUE WUE simulation of different canopy type with Functional-Structural Plant Models
[47] 2016


下载: 导出CSV

参考文献(60)
[1]ZHONG H L, SUN L X, FISCHER G, et al. Mission impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain[J]. Agricultural Water Management, 2017, 193:1-12 doi: 10.1016/j.agwat.2017.07.014
[2]JONES M M, OSMOND C B, TURNER N C. Accumulation of solutes in leaves of sorghum and sunflower in response to water deficits[J]. Australian Journal of Plant Physiology, 1980, 7(2):193-205 http://www.cabdirect.org/abstracts/19800708237.html
[3]曹生奎, 冯起, 司建华, 等.植物叶片水分利用效率研究综述[J].生态学报, 2009, 29(7):3882-3892 doi: 10.3321/j.issn:1000-0933.2009.07.051
CAO S K, FENG Q, SI J H, et al. Summary on the plant water use efficiency at leaf level[J]. Acta Ecologica Sinica, 2009, 29(7):3882-3892 doi: 10.3321/j.issn:1000-0933.2009.07.051
[4]MEDRANO H, TOMáS M, MARTORELL S, et al. From leaf to whole-plant water use efficiency (WUE) in complex canopies:Limitations of leaf WUE as a selection target[J]. The Crop Journal, 2015, 3(3):220-228 doi: 10.1016/j.cj.2015.04.002
[5]MEDRANO H, FLEXAS J, RIBAS-CARBó M, et al. Measuring water use efficiency in grapevines[M]//DELROT S, MEDRANO H, OR E, et al. Methodologies and Results in Grapevine Research. Dordrecht: Springer, 2010: 97-107
[6]沈芳芳, 樊后保, 吴建平, 等.植物叶片水平δ13C与水分利用效率的研究进展[J].北京林业大学学报, 2017, 39(11):114-124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201711014
SHEN F F, FAN H B, WU J P, et al. Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level[J]. Journal of Beijing Forestry University, 2017, 39(11):114-124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201711014
[7]MINER G L, BAUERLE W L, BALDOCCHI D D. Estimating the sensitivity of stomatal conductance to photosynthesis:A review[J]. Plant, Cell & Environment, 2017, 40(7):1214-1238 http://www.ncbi.nlm.nih.gov/pubmed/27925232/
[8]SUN Q, WANG Y S, CHEN G, et al. Water use efficiency was improved at leaf and yield levels of tomato plants by continuous irrigation using semipermeable membrane[J]. Agricultural Water Management, 2018, 203:430-437 doi: 10.1016/j.agwat.2018.02.007
[9]ELLSWORTH P, FELDMAN M, BAXTER I, et al. A genetic link between whole-plant water use efficiency and leaf carbon isotope composition in the C4 grass Setaria[J]. bioRxiv, 2018:285676 http://www.biorxiv.org/content/early/2018/03/20/285676
[10]WANG Y Z, ZHANG X Y, LIU X W, et al. The effects of nitrogen supply and water regime on instantaneous WUE, time-integrated WUE and carbon isotope discrimination in winter wheat[J]. Field Crops Research, 2013, 144:236-244 doi: 10.1016/j.fcr.2013.01.021
[11]MEI X R, ZHONG X L, LIU X Y. Improving water use efficiency of crops by exploring variety differences[J]. Acta Agronomica Sinica, 2013, 39(5):761-766 doi: 10.3724/SP.J.1006.2013.00761
[12]TANG X G, MA M G, DING Z, et al. Remotely monitoring ecosystem water use efficiency of grassland and cropland in China's arid and semi-arid regions with MODIS data[J]. Remote Sensing, 2017, 9(6):616 doi: 10.3390/rs9060616
[13]孙志刚, 王勤学, 欧阳竹, 等. MODIS水汽通量估算方法在华北平原农田的适应性验证[J].地理学报, 2004, 59(1):49-55 http://d.old.wanfangdata.com.cn/Periodical/dlxb200401006
SUN Z G, WANG Q X, OUYANG Z, et al. Validation of the feasibility of MOD16 algorithm for estimating crop field vapor flux in North China Plain[J]. Acta Geographica Sinica, 2004, 59(1):49-55 http://d.old.wanfangdata.com.cn/Periodical/dlxb200401006
[14]RAHMAN T, LIU X, HUSSAIN S, et al. Water use efficiency and evapotranspiration in maize-soybean relay strip intercrop systems as affected by planting geometries[J]. PLoS One, 2017, 12(6):e0178332 doi: 10.1371/journal.pone.0178332
[15]李东晓, 王红光, 张迪, 等.水分亏缺对不同小麦品种矿质元素吸收分布及水分利用的影响[J].中国生态农业学报, 2017, 25(10):1475-1484 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171008&flag=1
LI D X, WANG H G, ZHANG D, et al. Effect of water deficit on mineral element absorption, distribution and water utilization by different wheat varieties[J]. Chinese Journal of Eco-Agriculture, 2017, 25(10):1475-1484 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171008&flag=1
[16]王建林, 温学发, 赵风华, 等. CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响[J].植物生态学报, 2012, 36(5):438-446 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201205009
WANG J L, WEN X F, ZHAO F H, et al. Effects of doubled CO2 concentration on leaf photosynthesis, transpiration and water use efficiency of eight crop species[J]. Chinese Journal of Plant Ecology, 2012, 36(5):438-446 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201205009
[17]孟凡超, 张佳华, 郝翠, 等. CO2浓度升高和不同灌溉量对东北玉米光合特性及产量的影响[J].生态学报, 2015, 35(7):2126-2135 http://d.old.wanfangdata.com.cn/Periodical/stxb201507011
MENG F C, ZHANG J H, HAO C, et al. Effects of elevated CO2 and different irrigation on photosynthetic parameters and yield of maize in Northeast China[J]. Acta Ecologica Sinica, 2015, 35(7):2126-2135 http://d.old.wanfangdata.com.cn/Periodical/stxb201507011
[18]KNAUER J, ZAEHLE S, REICHSTEIN M, et al. The response of ecosystem water-use efficiency to rising atmospheric CO2 concentrations:Sensitivity and large-scale biogeochemical implications[J]. New Phytologist, 2017, 213(4):1654-1666 doi: 10.1111/nph.14288
[19]ROGERS H H, RUNION G B, KRUPA S V. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere[J]. Environmental Pollution, 1994, 83(1/2):155-189 http://europepmc.org/abstract/MED/15091762
[20]李伏生, 康绍忠, 张富仓. CO2浓度、氮和水分对春小麦光合、蒸散及水分利用效率的影响[J].应用生态学报, 2003, 14(3):387-393 doi: 10.3321/j.issn:1001-9332.2003.03.015
LI F S, KANG S Z, ZHANG F C. Effects of CO2 enrichment, nitrogen and water on photosynthesis, evapotranspiration and water use efficiency of spring wheat[J]. Chinese Journal of Applied Ecology, 2003, 14(3):387-393 doi: 10.3321/j.issn:1001-9332.2003.03.015
[21]LOADER N J, SWITSUR V R, FIELD E M. High-resolution stable isotope analysis of tree rings:Implications of 'microdendroclimatology' for palaeoenvironmental research[J]. The Holocene, 1995, 5(4):457-460 doi: 10.1177/095968369500500408
[22]NICOTRA A B, COSGROVE M J, COWLING A, et al. Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species[J]. Oecologia, 2008, 154(4):625-635 doi: 10.1007/s00442-007-0865-1
[23]韩凡香, 常磊, 柴守玺, 等.半干旱雨养区秸秆带状覆盖种植对土壤水分及马铃薯产量的影响[J].中国生态农业学报, 2016, 24(7):874-882 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016704&flag=1
HAN F X, CHANG L, CHAI S X, et al. Effect of straw strip covering on ridges on soil water content and potato yield under rain-fed semiarid conditions[J]. Chinese Journal of Eco-Agriculture, 2016, 24(7):874-882 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016704&flag=1
[24]靳新红, 王百田, 郭红艳, 等.黄土半干旱区枣、榆水分利用效率的比较研究[J].中国生态农业学报, 2009, 17(1):90-93 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009117&flag=1
JIN X H, WANG B T, GUO H Y, et al. Comparison of water use efficiency of Zizyphus jujube and Ulmus pumila in semi-arid zones of the Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1):90-93 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009117&flag=1
[25]GULíAS J, SEDDAIU G, CIFRE J, et al. Leaf and plant water use efficiency in cocksfoot and tall fescue accessions under differing soil water availability[J]. Crop Science, 2012, 52(5):2321-2331 doi: 10.2135/cropsci2011.10.0579
[26]PONTON S, FLANAGAN L B, ALSTAD K P, et al. Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques[J]. Global Change Biology, 2006, 12(2):294-310 doi: 10.1111/gcb.2006.12.issue-2
[27]GREAVES G E, WANG Y M. Yield response, water productivity, and seasonal water production functions for maize under deficit irrigation water management in southern Taiwan[J]. Plant Production Science, 2017, 20(4):353-365 doi: 10.1080/1343943X.2017.1365613
[28]胡中民, 于贵瑞, 王秋凤, 等.生态系统水分利用效率研究进展[J].生态学报, 2009, 29(3):1498-1507 doi: 10.3321/j.issn:1000-0933.2009.03.048
HU Z M, YU G R, WANG Q F, et al. Ecosystem level water use efficiency:A review[J]. Acta Ecologica Sinica, 2009, 29(3):1498-1507 doi: 10.3321/j.issn:1000-0933.2009.03.048
[29]刘莹, 李鹏, 沈冰, 等.采用稳定碳同位素法分析白羊草在不同干旱胁迫下的水分利用效率[J].生态学报, 2017, 37(9):3055-3064 http://d.old.wanfangdata.com.cn/Periodical/stxb201709020
LIU Y, LI P, SHEN B, et al. Effects of drought stress on Bothriochloa ischaemum water-use efficiency based on stable carbon isotope[J]. Acta Ecologica Sinica, 2017, 37(9):3055-3064 http://d.old.wanfangdata.com.cn/Periodical/stxb201709020
[30]TANG B, YIN C Y, YANG H, et al. The coupling effects of water deficit and nitrogen supply on photosynthesis, WUE, and stable isotope composition in Picea asperata[J]. Acta Physiologiae Plantarum, 2017, 39:148 doi: 10.1007/s11738-017-2451-4
[31]FARQUHAR G D, BUCKLEY T N, MILLER J M. Optimal stomatal control in relation to leaf area and nitrogen content[J]. Silva Fennica, 2002, 36(3):625-637 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001710456
[32]HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951):901-908 doi: 10.1038/nature01843
[33]张喜英.提高农田水分利用效率的调控机制[J].中国生态农业学报, 2013, 21(1):80-87 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013110&flag=1
ZHANG X Y. Regulating mechanisms for improving farmland water use efficiency[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1):80-87 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013110&flag=1
[34]LIANG Y P, GAO Y, WANG G S, et al. Luxury transpiration of winter wheat and its responses to deficit irrigation in North China Plain[J]. Plant Soil and Environment, 2018, 64(8):361-366 doi: 10.17221/PSE
[35]LAVOIE-LAMOUREUX A, SACCO D, RISSE P A, et al. Factors influencing stomatal conductance in response to water availability in grapevine:A meta-analysis[J]. Physiologia Plantarum, 2017, 159(4):468-482 doi: 10.1111/ppl.2017.159.issue-4
[36]RAKOCEVIC M, MATSUNAGA F T, MüLLER M, et al. Stress-induced DREB1A gene changes heliotropism and reduces drought stress in soybean plants under greenhouse conditions[C]//Proceedings of 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications. Qingdao, China: IEEE, 2016: 183-188
[37]MEI X R, ZHONG X L, VINCENT V, et al. Improving water use efficiency of wheat crop varieties in the North China Plain:Review and analysis[J]. Journal of Integrative Agriculture, 2013, 12(7):1243-1250 doi: 10.1016/S2095-3119(13)60437-2
[38]DEVI M J, SINCLAIR T R, VADEZ V. Genotypic variation in peanut for transpiration response to vapor pressure deficit[J]. Crop Science, 2010, 50(1):191-196 doi: 10.2135/cropsci2009.04.0220
[39]KHAZAEI H, MONNEVEUX P, SHAO H B, et al. Variation for stomatal characteristics and water use efficiency among diploid, tetraploid and hexaploid Iranian wheat landraces[J]. Genetic Resources and Crop Evolution, 2010, 57(2):307-314 doi: 10.1007/s10722-009-9471-x
[40]BALL J T. An analysis of stomatal conductance[D]. California: Stanford University, 1988: 35-59
[41]YU Q, WANG T D. Simulation of the physiological responses of C3 plant leaves to environmental factors by a model which combines stomatal conductance, photosynthesis and transpiration[J]. Acta Botanica Sinica, 1998, 40(8):740-754 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199801296125
[42]YU G R, ZHUANG J, YU Z L. An attempt to establish a synthetic model of photosynthesis-transpiration based on stomatal behavior for maize and soybean plants grown in field[J]. Journal of Plant Physiology, 2001, 158(7):861-874 doi: 10.1078/0176-1617-00177
[43]ZHANG B Z, LIU Y, XU D, et al. Evapotranspiraton estimation based on scaling up from leaf stomatal conductance to canopy conductance[J]. Agricultural and Forest Meteorology, 2011, 151(8):1086-1095 doi: 10.1016/j.agrformet.2011.03.012
[44]WALDEN-COLEMAN A E, RAJCAN I, EARL H J. Dark-adapted leaf conductance, but not minimum leaf conductance, predicts water use efficiency of soybean (Glycine max L. Merr.)[J]. Canadian Journal of Plant Science, 2013, 93(1):13-22 doi: 10.4141/cjps2012-178
[45]DING R S, KANG S Z, DU T S, et al. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration[J]. PLoS One, 2014, 9(4):e95584 doi: 10.1371/journal.pone.0095584
[46]MEDLYN B E, DE KAUWE M G, LIN Y S, et al. How do leaf and ecosystem measures of water-use efficiency compare?[J]. New Phytologist, 2017, 216(4):758-770 http://www.ncbi.nlm.nih.gov/pubmed/28574148
[47]ALBASHA R, OURNIER C, PRADAL C, et al. HydroShoot: a new FSPM model for simulating hydraulic structure and gas-exchange dynamics of complex plants canopies under water deficit[C]//IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA). Qingdao, 2016.
[48]SENBAYRAM M, TR?NKNER M, DITTERT K, et al. Daytime leaf water use efficiency does not explain the relationship between plant N status and biomass water-use efficiency of tobacco under non-limiting water supply[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(4):682-692 doi: 10.1002/jpln.v178.4
[49]ASSOULINE S, OR D. Plant water use efficiency over geological time-evolution of leaf stomata configurations affecting plant gas exchange[J]. PLoS One, 2015, 10(4):e0127015 doi: 10.1371/journal.pone.0127015
[50]MEDRANO H, TOMáS M, MARTORELL S, et al. Improving water use efficiency of vineyards in semi-arid regions. A review[J]. Agronomy for Sustainable Development, 2015, 35(2):499-517 doi: 10.1007/s13593-014-0280-z
[51]LINDERSON M L, MIKKELSEN T N, IBROM A, et al. Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in-canopy light distribution[J]. Agricultural and Forest Meteorology, 2012, 152:201-211 doi: 10.1016/j.agrformet.2011.09.019
[52]黄桂荣, 梅旭荣, 严昌荣, 等.干旱条件下冬小麦不同尺度水分利用效率及其之间的关系[J].麦类作物学报, 2017, 37(4):528-534 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201704014
HUANG G R, MEI X R, YAN C R, et al. Water use efficiency of winter wheat near isogenic lines at leaf plant and population levels and their relationship under drought condition[J]. Journal of Triticeae Crops, 2017, 37(4):528-534 http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201704014
[53]CONDON A G, RICHARDS R A, REBETZKE G J, et al. Breeding for high water-use efficiency[J]. Journal of Experimental Botany, 2004, 55(407):2447-2460 doi: 10.1093/jxb/erh277
[54]FARQUHAR G.水分利用效率与用水有效性: 基于气孔视角的稳定同位素应用研究[J].张玉翠, 译.中国生态农业学报, 2014, 22(8): 886-889 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014803&flag=1
FARQUHAR G. Water-use efficiency and water use effectiveness: A stomatal perspective using stable isotopes[J]. ZHANG Y C, trans. Chinese Journal of Eco-Agriculture, 2014, 22(8): 886-889 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014803&flag=1
[55]EHDAIE B, HALL A E, FARQUHAR G D, et al. Water-use efficiency and carbon isotope discrimination in wheat[J]. Crop Science, 1991, 31(5):1282-1288 doi: 10.2135/cropsci1991.0011183X003100050040x
[56]谭巍, 陈洪松, 王克林, 等.桂西北喀斯特坡地不同演替阶段典型植物碳同位素组成差异[J].中国生态农业学报, 2010, 18(6):1223-1227 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=201061223&flag=1
TAN W, CHEN H S, WANG K L, et al. Leaf δ13C of plants in different vegetation succession stages on karst hillslope of Northwest Guangxi, China[J]. Chinese Journal of Eco-Agriculture, 2010, 18(6):1223-1227 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=201061223&flag=1
[57]LLOYD J, FARQUHAR G D. 13C discrimination during CO2 assimilation by the terrestrial biosphere[J]. Oecologia, 1994, 99(3/4):201-215 http://www.jstor.org/stable/4220751
[58]YU Q, LIU J D, LUO Y. Applicability of some stomatal models to natural conditions[J]. Acta Botanica Sinica, 2000, 42(2):203-206 http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZWXB200002015.htm
[59]任传友, 于贵瑞, 王秋凤, 等.冠层尺度的生态系统光合-蒸腾耦合模型研究[J].中国科学D辑:地球科学, 2004, 34(S2):141-151 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200401785370
REN C Y, YU G R, WANG Q F, et al. Photosynthesis-transpiration coupling model at canopy scale in terrestrial ecosystem[J]. Science in China Series D:Earth Sciences, 2004, 34(S2):141-151 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200401785370
[60]张宝忠, 刘钰, 许迪, 等.夏玉米叶片和冠层尺度的水碳耦合模拟[J].科学通报, 2013, 58(12):1121-1130 http://d.old.wanfangdata.com.cn/Conference/9056858
ZHANG B Z, LIU Y, XU D, et al. Water-carbon coupling modeling of summer maize at the leaf and canopy scales[J]. Chinese Science Bulletin, 2013, 58(12):1121-1130 http://d.old.wanfangdata.com.cn/Conference/9056858

相关话题/作物 植物 生态 观测 农田