刘廷玺1, 2,,,
李东方1, 2,
段利民1, 2,
王冠丽1, 2
1.内蒙古农业大学水利与土木建筑工程学院 呼和浩特 010018
2.内蒙古自治区水资源保护与利用重点实验室呼和浩特 010018
3.南京市水利规划设计院股份有限公司 南京 210000
基金项目: 国家自然科学基金项目51620105003
国家自然科学基金项目51139002
国家自然科学基金项目51769020
内蒙古自然科学基金重点项目2018ZD05
教育部科技创新团队滚动发展计划IRT_17R60
科技部重点领域创新团队2015RA4013
内蒙古自治区草原英才创业创新人才团队、内蒙古农业大学寒旱区水资源利用创新团队NDTD2010-6
内蒙古自治区高等学校“青年科技英才支持计划”项目NJYT-18-B11
详细信息
作者简介:程功, 研究方向为温室气体通量。E-mail:18645979803@163.com
通讯作者:刘廷玺, 主要研究方向为生态水文。E-mail:txliu1966@163.com
中图分类号:S154.1计量
文章访问数:786
HTML全文浏览量:11
PDF下载量:985
被引次数:0
出版历程
收稿日期:2019-01-03
录用日期:2019-03-14
刊出日期:2019-07-01
Effects of biochar and straw on greenhouse gas fluxes of corn fields in arid regions
CHENG Gong1, 3,,LIU Tingxi1, 2,,,
LI Dongfang1, 2,
DUAN Limin1, 2,
WANG Guanli1, 2
1. Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
2. Key Laboratory of Water Resource Protection and Utilization of Inner Mongolia Autonomous Region, Hohhot 010018, China
3. Nanjing Water Conservancy Planning Design Institute Corp. Ltd, Nanjing 210000, China
Funds: the National Natural Science Foundation of China51620105003
the National Natural Science Foundation of China51139002
the National Natural Science Foundation of China51769020
the Natural Science Foundation of Inner Mongolia2018ZD05
the Innovative Research Team of Ministry of Education of ChinaIRT_17R60
the Innovative Research Team in Priority Areas of Ministry of Science and Technology of China2015RA4013
the Innovative Research Team of Inner Mongolia Agricultural UniversityNDTD2010-6
the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous RegionNJYT-18-B11
More Information
Corresponding author:LIU Tingxi, E-mail: txliu1966@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为了研究生物炭及秸秆还田对干旱区玉米农田温室气体通量的影响,以内蒙古科尔沁地区玉米农田为试验对象,采用静态箱-气相色谱法对分别施入生物炭0 t·hm-2(CK)、15 t·hm-2(C15)、30 t·hm-2(C30)、45 t·hm-2(C45)及秸秆还田(SNPK)的土壤进行温室气体(CO2、CH4和N2O)通量的原位观测,并估算生长季CH4和N2O的综合增温潜势(GWP)与排放强度(GHGI)。结果表明:添加生物炭能够显著减少土壤CO2和N2O的排放量,并促进土壤对CH4的吸收作用。其中处理C15对CO2的减排效果最好,与对照相比CO2排放量降低21.16%。随着施入生物炭量的增加,生物炭对N2O排放的抑制作用不断增强,处理C45对减排效果最好,与对照相比N2O排放量降低86.25%。处理C15对土壤吸收CH4的促进效果最好,CH4吸收量增加56.62%;处理C45对CH4的排放有促进作用,使生长季土壤吸收CH4减少81.36%。SNPK对温室气体的减排作用接近处理C15。添加生物炭和秸秆还田对提高玉米产量和降低农田GWP与GHGI均有显著效果,施用生物炭及秸秆还田均有效提高了科尔沁地区的玉米产量,且玉米产量随着施入生物炭含量的增大而提升。从GWP上来看,施用15 t·hm-2生物炭对温室气体减排的整体效果最好。从GHGI上来看,施用生物炭及秸秆还田均具有一定的经济效益和减排意义,其中施用15 t·hm-2生物炭的综合效益最高。因此综合经济效益与环境因素,建议科尔沁地区农田在种植玉米时添加15 t·hm-2生物炭,如不具备购买生物炭条件,可以考虑秸秆还田来实现玉米增产与温室气体减排。
关键词:生物炭/
玉米/
农田/
温室气体/
秸秆还田/
干旱区
Abstract:Biochar refers to a kind of stable and carbon-rich solid matter, generally composed of biomass and fertilizers, such as litter and crop straw, which have been pyrolyzed and carbonized under high temperatures in either a completely anaerobic or partially anoxic state. To explore the effects of biochar and straw returning on the greenhouse gas fluxes of corn fields in arid areas, an experiment was conducted on a corn field in the Horqin District, Inner Mongolia. A static chamber-gas chromatography (GC) technique was used to conduct in situ observations on greenhouse gas (CO2, CH4, and N2O) fluxes under different experimental treatments. These treatments included different application rates of biochar:0 (CK), 15 (C15), 30 (C30), and 45 t·hm-2 (C45); and straw returning (SNPK). For the experiments, the global warming potential (GWP) and greenhouse gas intensity (GHGI) during the growing season were estimated. The results showed that the addition of biochar could significantly reduce the soil CO2 and N2O emissions. During the growing season, the CO2 fluxes in the C15, C30, C45, and SNPK treatments decreased by 21.16%, 14.34%, 17.02%, and 19.93%, respectively. Among these treatments, C15 exhibited the best emission reduction effect. Compared with CK, the N2O fluxes of C15, C30, C45, and SNPK reduced by 24.42%, 56.83%, 86.25%, and 28.28%, respectively. With the increase in biochar rates, the inhibition effect on N2O emissions increased. Among the treatments, C45 provided the greatest reduction in emissions. Appropriate addition of biochar could promote the soil to absorb CH4. Compared with CK, the soil CH4 absorption of C15, C30, and SNPK increased by 56.62%, 32.05%, and 40.35%, respectively. The CH4 absorption of C45 decreased by 81.36% compared with CK. Excessive biochar could cause less CH4 absorption in the soil. There was a positive correlation between soil CO2 flux, temperature, and moisture during the growing season. The CH4 and N2O fluxes of CK, C15, and SNPK were significantly correlated with the soil temperature and moisture during the growing season. However, the CH4 and N2O fluxes of C30 and C45 did not exhibit a significant correlation with the soil temperature or moisture during the growing season. The addition of biochar and straw returning to the field had a significant effect on increasing the corn yield and reducing the GWP and GHGI in the farmlands. Biochar and straw returning both effectively increased the corn yield in the Horqin District. The corn yield increased as the amount of biochar increased. From the perspective of the GWP, a biochar rate of 15 t·hm-2 had the best overall effect on reducing greenhouse gas emissions, similar to the SNPK treatment. From the perspective of the GHGI, biochar and straw returning had certain economic benefits and significant reducing-effects of greenhouse gas emissions. Among the different treatments investigated, 15 t·hm-2 of biochar had the highest comprehensive benefits, and the C45 and SNPK treatments were slightly inferior to C15, but higher than C30. Therefore, from the perspectives of comprehensive economic benefits and environmental factors, it was suggested that 15 t·hm-2 of biochar should be added to the farmlands in Horqin when growing corn. If biochar was not available, straw returning can also be considered to achieve an increase in corn yields and decrease in greenhouse gas emissions.
Key words:Biochar/
Corn/
Farmland/
Greenhouse gas/
Straw returning/
Arid region
HTML全文
图1研究区地理位置与试验点布设示意图
Figure1.Geographic position and distribution sketch map of soil-respiration sampling sites in the research area
下载: 全尺寸图片幻灯片
图22018年玉米农田生长季气温、降雨量(a)和土壤温、湿度(b)的变化
图b中Ms为土壤含水率, Ts为土壤温度。In figure b, Ms means soil moisture, Ts means soil temperature.
Figure2.Changes in air temperature and rainfall (a), and soil temperature and moisture (b) of corn field during the growing season in 2018
下载: 全尺寸图片幻灯片
图3不同生物炭处理土壤CO2通量季节动态变化
CK为空白对照; C15、C30和C45为施用生物炭处理, 施用量分别为15 t∙hm-2、30 t∙hm-2和45 t∙hm-2; SNPK为秸秆还田处理。CK is the control; C15, C30 and C45 are biochar application treatments with biochar rate of 15 t∙hm-2, 30 t∙hm-2and 45 t∙hm-2, respectively; SNPK is treatment of corn straw incorporation.
Figure3.Seasonal variation of soil CO2 fluxes under different treatments of biochar application
下载: 全尺寸图片幻灯片
图4不同生物炭处理土壤CH4通量季节动态变化
CK为空白对照; C15、C30和C45为施用生物炭处理, 施用量分别为15 t∙hm-2、30 t∙hm-2和45 t∙hm-2; SNPK为秸秆还田处理。CK is the control; C15, C30 and C45 are biochar application treatments with biochar rate of 15 t∙hm-2, 30 t∙hm-2and 45 t∙hm-2, respectively; SNPK is treatment of corn straw incorporation.
Figure4.Seasonal variation of soil CH4 fluxes under different treatments of biochar application
下载: 全尺寸图片幻灯片
图5不同生物炭处理土壤N2O通量季节动态变化
CK为空白对照; C15、C30和C45为施用生物炭处理, 施用量分别为15 t∙hm-2、30 t∙hm-2和45 t∙hm-2; SNPK为秸秆还田处理。CK is the control; C15, C30 and C45 are biochar application treatments with biochar rate of 15 t∙hm-2, 30 t∙hm-2and 45 t∙hm-2, respectively; SNPK is treatment of corn straw incorporation.
Figure5.Seasonal variation of soil N2O fluxes under different treatments of biochar application
下载: 全尺寸图片幻灯片
表1供试土壤及生物炭基础性质
Table1.Chemical properties of the soil and biochar used in the experiments
参数 Parameter | 土壤 Soil | 生物炭 Biochar |
pH | 8.2 | 8.7 |
电导率Conductivity (μS?cm-1) | 304.1 | |
有机质质量比Mass ratio of organic matter (g?kg-1) | 9.824 | 917.83 |
碱解氮质量比Mass ratio of alkali-hydrolyzed nitrogen (m?kg-1) | 58.47 | 161.27 |
速效磷质量比Mass ratio of available phosphorus (g?kg-1) | 4.9 | 396.58 |
速效钾质量比Mass ratio of available potassium (g?kg-1) | 176 | 780.25 |
C含量C content (g?kg-1) | 492.9 | |
N含量N content (g?kg-1) | 6.9 | |
P含量P content (g?kg-1) | 16.0 | |
K含量K content (g?kg-1) | 0. 8 | |
碳氮比C/N (%) | 714.3 |
下载: 导出CSV
表2不同生物炭处理玉米生长季土壤CO2、CH4和N2O通量与10 cm处土壤温湿度相关性
Table2.Relationship between soil CO2, CH4 and N2O fluxes and soil temperature and moisture in the growing season of corn under different treatments of biochar application
温室气体 Greenhouse gas | CK | C15 | C30 | C45 | SNPK | |||||||||
土壤温度 Soil temperature | 土壤含水率 Soil moisture | 土壤温度 Soil temperature | 土壤含水率 Soil moisture | 土壤温度 Soil temperature | 土壤含水率 Soil moisture | 土壤温度 Soil temperature | 土壤含水率 Soil moisture | 土壤温度 Soil temperature | 土壤含水率 Soil moisture | |||||
CO2 | 0.841** | 0.784** | 0.792** | 0.761** | 0.793** | 0.763** | 0.819** | 0.800** | 0.749** | 0.824** | ||||
CH4 | -0.836** | -0.686** | -0.886** | -0.501* | -0.733** | -0.294 | -0.638** | -0.071 | -0.853** | -0.462* | ||||
N2O | 0.842** | 0.471* | 0.761** | 0.461* | 0.478* | 0.376 | -0.281 | -0.140 | 0.770** | 0.535** | ||||
*: P < 0.05; **: P < 0.01. CK为空白对照; C15、C30和C45为施用生物炭处理, 施用量分别为15 t?hm-2、30 t?hm-2和45 t?hm-2; SNPK为秸秆还田处理。CK is the control; C15, C30 and C45 are biochar application treatments with biochar rate of 15 t?hm-2, 30 t?hm-2and 45 t?hm-2, respectively; SNPK is treatment of corn straw incorporation. |
下载: 导出CSV
表3不同生物炭处理下温室气体通量累积排放量、玉米产量、综合增温潜势(GWP)及温室的气体排放强度(GHGI)
Table3.Cumulative emissions of greenhouse gases, corn yield, comprehensive warming potential (GWP) and greenhouse gas intensity (GHGI) under different treatments of biochar application
处理 Treatment | 玉米产量 Corn yield (t?hm-2) | 温室气体累积排放量 Cumulative greenhouse gas emission (kg?hm-2) | GWP (CO2+CH4+N2O) (kg?hm-2) | GHGI (kg?t-1) | ||
CO2 | CH4 | N2O | ||||
CK | 12.809a | 17 479.61a | -1.905a | 0.397a | 17 543.57a | 1 369.628 |
C15 | 13.374b | 13 777.62b | -2.999b | 0.296b | 13 781.17b | 1 030.445 |
C30 | 13.458c | 15 056.21c | -2.529c | 0.169c | 15 035.49c | 1 117.215 |
C45 | 13.988d | 14 575.99d | -0.323d | 0.054d | 14 582.94d | 1 042.532 |
SNPK | 13.357b | 14 024.67b | -2.688b | 0.281b | 14 032.44e | 1 050.568 |
CK为空白对照; C15、C30和C45为施用生物炭处理, 施用量分别为15 t?hm-2、30 t?hm-2和45 t?hm-2; SNPK为秸秆还田处理。同列不同小写字母表示不同处理间在0.05水平差异显著。CK is the control; C15, C30 and C45 are biochar application treatments with biochar rate of 15 t?hm-2, 30 t?hm-2 and 45 t?hm-2, respectively; SNPK is treatment of corn straw incorporation. Different lowercase letters indicate significant differences among treatments at 0.05 level. |
下载: 导出CSV
参考文献
[1] | IPCC. Climate Change 2013: The Physical Science Basis[M]. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013 |
[2] | IPCC. Climate Change 2007: The Physical Science Basis[M]. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007 |
[3] | 吕贝贝, 张贵云, 张丽萍, 等.生物炭在农业上的应用进展[J].山西农业科学, 2018, 46(12):2118-2121 doi: 10.3969/j.issn.1002-2481.2018.12.39 LYU B B, ZHANG G Y, ZHANG L P, et al. Application progress of biochar in agriculture[J]. Journal of Shanxi Agricultural Sciences, 2018, 46(12):2118-2121 doi: 10.3969/j.issn.1002-2481.2018.12.39 |
[4] | MARRIS E. Putting the carbon back:Black is the new green[J]. Nature, 2006, 442(7103):624-626 doi: 10.1038/442624a |
[5] | BRENNAN L, OWENDE P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2):557-577 doi: 10.1016/j.rser.2009.10.009 |
[6] | VAN ZWIETEN L, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1/2):235-246 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd45581500636317aeabc54232a95e0e |
[7] | ASAI H, SAMSON B K, STEPHAN H M, et al. Biochar amendment techniques for upland rice production in Northern Laos:1. Soil physical properties, leaf SPAD and grain yield[J]. Field Crops Research, 2009, 111(1/2):81-84 https://core.ac.uk/display/79080092 |
[8] | DING Y, LIU Y X, WU W X, et al. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns[J]. Water, Air, & Soil Pollution, 2010, 213(1/4):47-55 doi: 10.1007-s11270-010-0366-4/ |
[9] | 罗煜, 赵小蓉, 李贵桐, 等.生物质炭对不同pH值土壤矿质氮含量的影响[J].农业工程学报, 2014, 30(19):166-173 doi: 10.3969/j.issn.1002-6819.2014.19.20 LUO Y, ZHAO X R, LI G T, et al. Effect of biochar on mineral nitrogen content in soils with different pH values[J]. Transactions of the CSAE, 2014, 30(19):166-173 doi: 10.3969/j.issn.1002-6819.2014.19.20 |
[10] | 张斌, 刘晓雨, 潘根兴, 等.施用生物质炭后稻田土壤性质、水稻产量和痕量温室气体排放的变化[J].中国农业科学, 2012, 45(23):4844-4853 doi: 10.3864/j.issn.0578-1752.2012.23.011 ZHANG B, LIU X Y, PAN G X, et al. Changes in soil properties, yield and trace gas emission from a paddy after biochar amendment in two consecutive rice growing cycles[J]. Scientia Agricultura Sinica, 2012, 45(23):4844-4853 doi: 10.3864/j.issn.0578-1752.2012.23.011 |
[11] | SHENBAGAVALLI S, MAHIMAIRAJA S. Characterization and effect of biochar on nitrogen and carbon dynamics in soil[J]. International Journal of Advanced Biological Research, 2012, 2(2):249-255 http://connection.ebscohost.com/c/articles/78124074/characterization-effect-biochar-nitrogen-carbon-dynamics-soil |
[12] | KARHU K, MATTILA T, BERGSTR?M I, et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study[J]. Agriculture, Ecosystems & Environment, 2011, 140(1/2):309-313 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=99f352efd88c025875028d78e642814f |
[13] | 成功, 张阿凤, 王旭东, 等.运用"碳足迹"的方法评估小麦秸秆及其生物质炭添加对农田生态系统净碳汇的影响[J].农业环境科学学报, 2016, 35(3):604-612 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201603027 CHENG G, ZHANG A F, WANG X D, et al. Assessment of wheat straw and its biochar effects on carbon sink in agricultural ecosystems using "carbon footprint" method[J]. Journal of Agro-Environment Science, 2016, 35(3):604-612 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201603027 |
[14] | NASER H M, NAGATA O, TAMURA S, et al. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan[J]. Soil Science and Plant Nutrition, 2007, 53(1):95-101 doi: 10.1111/j.1747-0765.2007.00105.x |
[15] | MA J, LI X L, XU H, et al. Effects of nitrogen fertiliser and wheat straw application on CH4 and N2O emissions from a paddy rice field[J]. Australian Journal of Soil Research, 2007, 45(5):359-367 doi: 10.1071/SR07039 |
[16] | 秦越, 李彬彬, 武兰芳.不同耕作措施下秸秆还田土壤CO2排放与溶解性有机碳的动态变化及其关系[J].农业环境科学学报, 2014, 33(7):1442-1449 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201407028 QIN Y, LI B B, WU L F. Dynamics and interrelationship of CO2 emissions and dissolved organic carbon in soils with crop residue retention under different tillage practices[J]. Journal of Agro-Environment Science, 2014, 33(7):1442-1449 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201407028 |
[17] | 吴震, 董玉兵, 熊正琴.生物炭施用3年后对稻麦轮作系统CH4和N2O综合温室效应的影响[J].应用生态学报, 2018, 29(1):141-148 http://d.old.wanfangdata.com.cn/Periodical/yystxb201801017 WU Z, DONG Y B, XIONG Z Q. Effects of biochar application three-years ago on global warming potentials of CH4 and N2O in a rice-wheat rotation system[J]. Chinese Journal of Applied Ecology, 2018, 29(1):141-148 http://d.old.wanfangdata.com.cn/Periodical/yystxb201801017 |
[18] | SAARNIO S, HEIMONEN K, KETTUNEN R. Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake[J]. Soil Biology and Biochemistry, 2013, 58:99-106 doi: 10.1016/j.soilbio.2012.10.035 |
[19] | EL-MAHROUKY M, EL-NAGGAR A H, USMAN A R, et al. Dynamics of CO2 emission and biochemical properties of a sandy calcareous soil amended with Conocarpus waste and biochar[J]. Pedosphere, 2015, 25(1):46-56 doi: 10.1016/S1002-0160(14)60075-8 |
[20] | LIU Y X, YANG M, WU Y M, et al. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar[J]. Journal of Soils and Sediments, 2011, 11(6):930-939 doi: 10.1007/s11368-011-0376-x |
[21] | 高德才, 张蕾, 刘强, 等.生物黑炭对旱地土壤CO2、CH4、N2O排放及其环境效益的影响[J].生态学报, 2015, 35(11):3615-3624 http://d.old.wanfangdata.com.cn/Periodical/stxb201511014 GAO D C, ZHANG L, LIU Q, et al. Effects of biochar on CO2, CH4, N2O emission and its environmental benefits in dryland soil[J]. Acta Ecologica Sinica, 2015, 35(11):3615-3624 http://d.old.wanfangdata.com.cn/Periodical/stxb201511014 |
[22] | 刘杏认, 张星, 张晴雯, 等.施用生物炭和秸秆还田对华北农田CO2、N2O排放的影响[J].生态学报, 2017, 37(20):6700-6711 http://d.old.wanfangdata.com.cn/Periodical/stxb201720006 LIU X R, ZHANG X, ZHANG Q W, et al. Effects of biochar and straw return on CO2 and N2O emissions from farmland in the North China Plain[J]. Acta Ecologica Sinica, 2017, 37(20):6700-6711 http://d.old.wanfangdata.com.cn/Periodical/stxb201720006 |
[23] | 屈忠义, 高利华, 李昌见, 等.秸秆生物炭对玉米农田温室气体排放的影响[J].农业机械学报, 2016, 47(12):111-118 doi: 10.6041/j.issn.1000-1298.2016.12.015 QU Z Y, GAO L H, LI C J, et al. Impacts of straw biochar on emission of greenhouse gas in maize field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12):111-118 doi: 10.6041/j.issn.1000-1298.2016.12.015 |
[24] | 寇太记, 朱建国, 谢祖彬, 等.大气CO2体积分数升高环境温度与土壤水分对农田土壤呼吸的影响[J].生态环境, 2008, 17(3):950-956 doi: 10.3969/j.issn.1674-5906.2008.03.014 KOU T J, ZHU J G, XIE Z B, et al. The effects of temperature and soil moisture on soil respiration in the cropland under elevated pCO2[J]. Ecology and Environment, 2008, 17(3):950-956 doi: 10.3969/j.issn.1674-5906.2008.03.014 |
[25] | 陈浩天, 张地方, 张宝莉, 等.园林废弃物不同处理方式的环境影响及其产物还田效应[J].农业工程学报, 2018, 34(21):239-244 doi: 10.11975/j.issn.1002-6819.2018.21.030 CHEN H T, ZHANG D F, ZHANG B L, et al. Environmental impacts and returning effects of garden wastes under different disposal methods[J]. Transactions of the CSAE, 2018, 34(21):239-244 doi: 10.11975/j.issn.1002-6819.2018.21.030 |
[26] | JONES D L, MURPHY D V, KHALID M, et al. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated[J]. Soil Biology and Biochemistry, 2011, 43(8):1723-1731 doi: 10.1016/j.soilbio.2011.04.018 |
[27] | LIU G T, XIE M P, ZHANG S Y. Effect of organic fraction of municipal solid waste (OFMSW)-based biochar on organic carbon mineralization in a dry land soil[J]. Journal of Material Cycles and Waste Management, 2017, 19(1):473-482 doi: 10.1007/s10163-015-0447-y |
[28] | CROSS A, SOHI S P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status[J]. Soil Biology and Biochemistry, 2011, 43(10):2127-2134 doi: 10.1016/j.soilbio.2011.06.016 |
[29] | 郭碧林, 陈效民, 景峰, 等.生物质炭添加对重金属污染稻田土壤理化性状及微生物量的影响[J].水土保持学报, 2018, 32(4):279-284 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201804044 GUO B L, CHEN X M, JING F, et al. Effects of biochar addition on physicochemical properties and microbial biomass of the red paddy soil polluted by heavy metals[J]. Journal of Soil and Water Conservation, 2018, 32(4):279-284 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201804044 |
[30] | SMITH J L, COLLINS H P, BAILEY V L. The effect of young biochar on soil respiration[J]. Soil Biology and Biochemistry, 2010, 42(12):2345-2347 doi: 10.1016/j.soilbio.2010.09.013 |
[31] | 李新华, 朱振林, 董红云, 等.秸秆不同还田模式对玉米田温室气体排放和碳固定的影响[J].农业环境科学学报, 2015, 34(11):2228-2235 doi: 10.11654/jaes.2015.11.027 LI X H, ZHU Z L, DONG H Y, et al. Effects of different return modes of wheat straws on greenhouse gas emissions and carbon sequestration of maize fields[J]. Journal of Agro-Environment Science, 2015, 34(11):2228-2235 doi: 10.11654/jaes.2015.11.027 |
[32] | 祁乐, 高明, 郭晓敏, 等.生物炭施用量对紫色水稻土温室气体排放的影响[J].环境科学, 2018, 39(5):2351-2359 http://d.old.wanfangdata.com.cn/Periodical/hjkx201805044 QI L, GAO M, GUO X M, et al. Effects of biochar application rates on greenhouse gas emissions in the purple paddy soil[J]. Environmental Science, 2018, 39(5):2351-2359 http://d.old.wanfangdata.com.cn/Periodical/hjkx201805044 |
[33] | 王月玲, 耿增超, 王强, 等.生物炭对(土娄)土土壤温室气体及土壤理化性质的影响[J].环境科学, 2016, 37(9):3634-3641 http://connection.ebscohost.com/c/articles/78124074/characterization-effect-biochar-nitrogen-carbon-dynamics-soil WANG Y L, GENG Z C, WANG Q, et al. Influence of biochar on greenhouse gases emissions and physico-chemical properties of loess soil[J]. Environmental Science, 2016, 37(9):3634-3641 http://connection.ebscohost.com/c/articles/78124074/characterization-effect-biochar-nitrogen-carbon-dynamics-soil |
[34] | FENG Y Z, XU Y P, YU Y C, et al. Mechanisms of biochar decreasing methane emission from Chinese paddy soils[J]. Soil Biology and Biochemistry, 2012, 46:80-88 doi: 10.1016/j.soilbio.2011.11.016 |
[35] | LIANG B, LEHMANN J, SOLOMON D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5):1719-1730 doi: 10.2136/sssaj2005.0383 |
[36] | ZHANG A F, LIU Y M, PAN G X, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil, 2012, 351(1/2):263-275 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=883f9e8e5d3dc6fdd0d47bb68da7977a |
[37] | 周凤, 许晨阳, 王月玲, 等.生物炭对(土娄)土CH4、N2O排放的影响[J].环境科学, 2017, 38(9):3831-3839 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201709035 ZHOU F, XU C Y, WANG Y L, et al. Effect of biochar on CH4 and N2O emissions from Lou soil[J]. Environmental Science, 2017, 38(9):3831-3839 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201709035 |
[38] | 勾芒芒, 屈忠义, 王凡, 等.生物炭施用对农业生产与环境效应影响研究进展分析[J].农业机械学报, 2018, 49(7):1-12 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201807001 GOU M M, QU Z Y, WANG F, et al. Progress in research on biochar affecting soil-water environment and carbon sequestration-mitigating emissions in agricultural fields[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7):1-12 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201807001 |
[39] | AMELOOT N, DE NEVE S, JEGAJEEVAGAN K, et al. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils[J]. Soil Biology and Biochemistry, 2013, 57:401-410 doi: 10.1016/j.soilbio.2012.10.025 |
[40] | CORNELISSEN G W, RUTHERFORD D H, ARP H P H, et al. Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions[J]. Environmental Science & Technology, 2013, 47(14):7704-7712 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=53deb2cf2e1fb9e1cd8f8420631d959f |
[41] | LIU X Y, QU J J, LI L Q, et al. Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?-A cross site field experiment from South China[J]. Ecological Engineering, 2012, 42:168-173 doi: 10.1016/j.ecoleng.2012.01.016 |
[42] | 李露, 周自强, 潘晓健, 等.氮肥与生物炭施用对稻麦轮作系统甲烷和氧化亚氮排放的影响[J].植物营养与肥料学报, 2015, 21(5):1095-1103 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201505001 LI L, ZHOU Z Q, PAN X J, et al. Combined effects of nitrogen fertilization and biochar incorporation on methane and nitrous oxide emissions from paddy fields in rice-wheat annual rotation system[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(5):1095-1103 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201505001 |
[43] | CASE S D C, MCNAMARA N P, REAY D S, et al. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil-The role of soil aeration[J]. Soil Biology and Biochemistry, 2012, 51:125-134 doi: 10.1016/j.soilbio.2012.03.017 |
[44] | 李秀云, 张洪培, 沈玉芳, 等.生物炭与氮肥对旱作春玉米农田CO2和CH4排放特征的影响[J].西北植物学报, 2016, 36(6):1216-1224 http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201606018 LI X Y, ZHANG H P, SHEN Y F, et al. Effect of biochar and fertilizer on CO2 and CH4 emission from spring maize dryland[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(6):1216-1224 http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201606018 |