董宝娣1,
乔匀周1,
杨红1, 2,
靳乐乐1, 2,
刘金悦3,
刘孟雨1,,
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
3.青岛农业大学 青岛 266109
基金项目: 国家重点研发计划项目2018YFD0300503
详细信息
作者简介:王亚凯, 主要研究方向为作物水分生理生态。E-mail:wangyakai.01@163.com
通讯作者:刘孟雨, 主要研究方向为作物高效用水生理生态研究。E-mail:mengyuliu@sjziam.ac.cn
中图分类号:Q945.79计量
文章访问数:957
HTML全文浏览量:1
PDF下载量:932
被引次数:0
出版历程
收稿日期:2019-02-01
录用日期:2019-04-25
刊出日期:2019-07-01
Experimental study on soil water threshold of luxury transpiration in winter wheat leaves during flowering and filling stage
WANG Yakai1, 2,,DONG Baodi1,
QIAO Yunzhou1,
YANG Hong1, 2,
JIN Lele1, 2,
LIU Jinyue3,
LIU Mengyu1,,
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Water-Saving Agriculture, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Qingdao Agricultural University, Qingdao 266109, China
Funds: the National Key Research and Development Program of China2018YFD0300503
More Information
Corresponding author:LIU Mengyu, E-mail:mengyuliu@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:奢侈蒸腾耗水对作物光合及产量形成贡献较低,而开花灌浆期是冬小麦产量形成的关键期,精准调控作物蒸腾耗水、明确影响奢侈蒸腾的土壤水分阈值,对提高冬小麦的水分利用效率至关重要。本研究以冬小麦品种‘石新828’为材料,在人工气候生长箱进行盆栽试验,定量研究土壤水分对作物气孔导度、光合速率和蒸腾速率的影响,明确开花灌浆期奢侈蒸腾产生的土壤水分阈值。结果表明:气孔导度与土壤水吸力关系密切,在土壤水吸力较低时,气孔导度随土壤水吸力增加而迅速降低,而土壤水吸力较高时,气孔导度降低速度变缓。光合速率随土壤水吸力增加以抛物线的形式递减,当土壤水吸力低于1.2 MPa时,光合速率接近最大值,随后土壤水吸力继续增加,光合速率逐渐降低。蒸腾速率随着土壤水吸力增加呈线性递减,降低速率为2.3 mmol·m-2·s-1·MPa-1。光合速率与蒸腾速率的关系符合米氏方程,蒸腾速率低于2.179 mmol·m-2·s-1时,光合速率随蒸腾速率线性增加,当蒸腾速率高于此值时,单位光合速率的增加变缓,奢侈蒸腾开始产生,此值所对应的土壤水吸力为1.76 MPa,此时叶片光合速率处于较高(16 μmol·m-2·s-1左右)水平,叶片水平水分利用效率(WUEL)达到最高7.3 μmol(CO2)·mmol-1(H2O)。综上所述,小麦叶片奢侈蒸腾的发生始于水分利用效率从最高转向降低、光合速率处于较高水平而非最大。通过光合随蒸腾变化的米氏方程关系及蒸腾与土壤水吸力的线性关系,可以确定土壤水吸力1.76 MPa为小麦开花灌浆期叶片奢侈蒸腾发生的土壤水分阈值。
关键词:奢侈蒸腾/
水分利用效率/
水分阈值/
气孔导度/
冬小麦
Abstract:Luxury transpiration water consumption has a lower contribution to the formation of photosynthetic products and crop yield, and the flowering and filling stage is the key period for the yield of winter wheat. In order to efficiently and accurately regulate the transpiration of crops, to determine the soil moisture threshold affecting luxury transpiration is important. In this study, the winter wheat variety 'Shixin 828' was used as study material. Pot experiments were carried out in an artificial climate growth box. The effects of soil moisture on stomatal conductance, photosynthetic rate and transpiration rate of crops were quantitatively studied in order to define soil moisture threshold for luxury transpiration at flowering and filling stage. The results showed that the stomatal conductance was closely related to soil water suction. When soil water suction was low, stomatal conductance decreased rapidly with the increase in soil water suction. When soil water suction was high, stomatal conductance decreased slowly. When water suction was less than 1.2 MPa, the photosynthetic rate was close to the maximum value. Then as water suction increased, the photosynthetic rate decreased gradually in the form of a parabola. The transpiration rate decreased linearly with a reduction rate of 2.3 mmol·m-2·s-1·MPa-1 as soil water suction increased. The coupling relationship between photosynthesis and transpiration was described by the Michaelis-Menten equation. When the transpiration rate was lower than KTr=2.179 mmol·m-2·s-1, the photosynthetic rate increased linearly with the transpiration rate; but when the transpiration rate was higher than KTr, the increase in net photosynthetic rate became slower, and luxury transpiration occurred. When soil water suction corresponded to the luxury transpiration threshold of KTr (1.76 MPa), the leaf photosynthetic rate was at a high level (about 16 μmol·m-2·s-1), and the leaf water use efficiency (WUEL) was at the highest level[7.3 μmol (CO2)·mmol-1(H2O)]. In summary, the luxury transpiration of wheat leaf started with a shift from the highest WUEL to lower while photosynthetic rate maintaining a rather higher level. Based on the Michaelis-Menten equation, the relationship between photosynthesis and transpiration, and the linear relationship between transpiration and soil water suction, soil water suction of 1.76 MPa was found to be the soil water threshold for the start point of luxury transpiration of wheat leaves during the flowering and filling stage.
Key words:Luxury transpiration/
Water use efficiency/
Water threshold/
Stomatal conductance/
Winter wheat
HTML全文
图1试验所用基质水分特征曲线
Figure1.Moisture characteristic curve of the substrate used in the experiment
下载: 全尺寸图片幻灯片
图2土壤水吸力随试验天数的变化情况
Figure2.Change of soil moisture suction with days after the experiment starting
下载: 全尺寸图片幻灯片
图3冬小麦气孔导度(a)和净光合速率、蒸腾速率(b)与基质水吸力关系
Figure3.Relationship between substrate water suction and stomatal conductance (a), and net photosynthesis rate and transpiration rate (b) of winter wheat
下载: 全尺寸图片幻灯片
图4冬小麦胞间CO2浓度与气孔导度(a)和净光合速率(b)的关系
Figure4.Relationship between intercellular CO2 concentration (Ci) and stomatal conductance (a) and net photosynthetic rate (b) of winter wheat
下载: 全尺寸图片幻灯片
图5冬小麦光合、蒸腾与气孔导度的关系
Figure5.Relationship among photosynthesis, transpiration and stomatal conductance of winter wheat
下载: 全尺寸图片幻灯片
图6冬小麦光合速率与叶片水分利用效率(WUEL)随蒸腾速率变化
Figure6.Changes of photosynthetic rate and leaf water use efficiency (WUEL) of winter wheat with transpiration rate varying
下载: 全尺寸图片幻灯片
参考文献
[1] | 王会肖, 刘昌明.作物光合、蒸腾与水分高效利用的试验研究[J].应用生态学报, 2003, 14(10):1632-1636 doi: 10.3321/j.issn:1001-9332.2003.10.009 WANG H X, LIU C M. Experimental study on crop photosynthesis, transpiration and high efficient water use[J]. Chinese Journal of Applied Ecology, 2003, 14(10):1632-1636 doi: 10.3321/j.issn:1001-9332.2003.10.009 |
[2] | 李茂松.作物奢侈蒸腾及其调控基础研究[D].北京: 中国农业科学院, 2010 LI M S. Research on luxury transpiration and its modification[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010 |
[3] | 陆红娜, 康绍忠, 杜太生, 等.农业绿色高效节水研究现状与未来发展趋势[J].农学学报, 2018, 8(1):163-170 http://d.old.wanfangdata.com.cn/Periodical/bkltdzzz201821176 LU H N, KANG S Z, DU T S, et al. Current status and future research trend on water-saving high-efficiency and eco-friendly agriculture[J]. Journal of Agriculture, 2018, 8(1):163-170 http://d.old.wanfangdata.com.cn/Periodical/bkltdzzz201821176 |
[4] | 康绍忠, 霍再林, 李万红.旱区农业高效用水及生态环境效应研究现状与展望[J].中国科学基金, 2016, 30(3):208-212 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxjj201603005 KANG S Z, HUO Z L, LI W H. High-efficient water use and eco-environmental impacts in agriculture in arid regions:Advance and future strategies[J]. Bulletin of National Natural Science Foundation of China, 2016, 30(3):208-212 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxjj201603005 |
[5] | 董宝娣, 刘会灵, 王亚凯, 等.作物高效用水生理生态调控机制研究[J].中国生态农业学报, 2018, 26(10):1465-1475 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201810005 DONG B D, LIU H L, WANG Y K, et al. Physio-ecological regulating mechanisms for highly efficient water use of crops[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10):1465-1475 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201810005 |
[6] | 孟兆江, 段爱旺, 王景雷, 等.调亏灌溉对冬小麦不同生育阶段水分蒸散的影响[J].水土保持学报, 2014, 48(1):198-202 doi: 10.3969/j.issn.1009-2242.2014.01.038 MENG Z J, DUAN A W, WANG J L, et al. Effect of regulated deficit irrigation on evapotranspiration at different growth stages in winter wheat[J]. Journal of Soil and Water Conservation, 2014, 48(1):198-202 doi: 10.3969/j.issn.1009-2242.2014.01.038 |
[7] | 张薇, 司徒淞, 王和洲.节水农业的土壤水分调控与标准研究[J].农业工程学报, 1996, 12(2):27-31 http://d.old.wanfangdata.com.cn/Periodical/nzkj201348105 ZHANG W, Situ S, WANG H Z. Study on soil moisture regulating and criterion for water-saving agriculture[J]. Transactions of CSAE, 1996, 12(2):27-31 http://d.old.wanfangdata.com.cn/Periodical/nzkj201348105 |
[8] | 孙景生, 刘祖贵, 肖俊夫, 等.冬小麦节水灌溉的适宜土壤水分上、下限指标研究[J].中国农村水利水电, 1998, (9):10-12 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800990115 SUN J S, LIU Z G, XIAO J F, et al. Study on suitable soil moisture and lower and upper limit indexes of winter wheat water saving irrigation[J]. China Rural Water and Hydropower, 1998, (9):10-12 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800990115 |
[9] | 吴海卿, 段爱旺, 杨传福.冬小麦对不同土壤水分的生理和形态响应[J].华北农学报, 2000, 15(1):92-96 doi: 10.3321/j.issn:1000-7091.2000.01.019 WU H Q, DUAN A W, YANG C F. Physiological and morphological responses of winter wheat to soil moisture[J]. Acta Agriculturae Boreali-Sinica, 2000, 15(1):92-96 doi: 10.3321/j.issn:1000-7091.2000.01.019 |
[10] | 卢振民, 牛文元, 张翼.土壤水分含量对冬小麦气孔开启程度的影响[J].植物学报, 1986, 28(4):419-426 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB198604013.htm LU Z M, NIU W Y, ZHANG Y. Field studies of the wheat stomata resistance influenced by soil water content[J]. Acta Botanica Sinica, 1986, 28(4):419-426 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB198604013.htm |
[11] | GALLé á, CSISZáR J, BENYó D, et al. Isohydric and anisohydric strategies of wheat genotypes under osmotic stress:Biosynthesis and function of ABA in stress responses[J]. Journal of Plant Physiology, 2013, 170(16):1389-1399 doi: 10.1016/j.jplph.2013.04.010 |
[12] | COWAN I R, FARQUHAR G D. Stomatal function in relation to leaf metabolism and environment[J]. Symposia of the Society for Experimental Biology, 1977, 31:471-505 https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/stomatal-conductance |
[13] | 张喜英, 裴冬, 由懋正.几种作物的生理指标对土壤水分变动的阈值反应[J].植物生态学报, 2000, 24(3):280-283 doi: 10.3321/j.issn:1005-264X.2000.03.005 ZHANG X Y, PEI D, YOU M Z. Response of leaf water potential, photosynthesis and stomatal conductance to varying soil moisture in four crops:Winter wheat, corn, sorghum and millet[J]. Acta Phytoecologica Sinica, 2000, 24(3):280-283 doi: 10.3321/j.issn:1005-264X.2000.03.005 |
[14] | 方文松, 刘荣花, 邓天宏.冬小麦生长发育的适宜土壤含水量[J].中国农业气象, 2010, 31(S1):73-76 http://cdmd.cnki.com.cn/Article/CDMD-11920-2010139138.htm FANG W S, LIU R H, DENG T H. Study on reasonable soil moisture indexes of growth and development for winter wheat[J]. Chinese Journal of Agrometeorology, 2010, 31(S1):73-76 http://cdmd.cnki.com.cn/Article/CDMD-11920-2010139138.htm |
[15] | 赵叶萌, 李玉中, 刘晓英, 等.冬小麦节水高产的土壤水分阈值及其动态[J].中国农业气象, 2015, 36(5):536-543 doi: 10.3969/j.issn.1000-6362.2015.05.002 ZHAO Y M, LI Y Z, LIU X Y, et al. Soil water threshold and its dynamics of winter wheat aiming water-saving and high yield[J]. Chinese Journal of Agrometeorology, 2015, 36(5):536-543 doi: 10.3969/j.issn.1000-6362.2015.05.002 |
[16] | 许贵民, 刘育慧, 栾雨时, 等.塑料大棚黄瓜节水灌溉的研究[J].农业工程学报, 1990, 6(2):56-63 doi: 10.3321/j.issn:1002-6819.1990.02.011 XU G M, LIU Y H, LUAN Y S, et al. Study on irrigation with saving water for growing cucumber in plastic house[J]. Transactions of CASE, 1990, 6(2):56-63 doi: 10.3321/j.issn:1002-6819.1990.02.011 |
[17] | 黄明斌, 邵明安.不同有效土壤水势下植物叶水势与蒸腾速率的关系[J].水利学报, 1996, (3):1-6 doi: 10.3321/j.issn:0559-9350.1996.03.001 HUANG M B, SHAO M A. The relationship between transpiration rates and leaf water potentials in plants under various effective soil water potential[J]. Journal of Hydraulic Engineering, 1996, (3):1-6 doi: 10.3321/j.issn:0559-9350.1996.03.001 |
[18] | 马强, 宇万太, 沈善敏, 等.旱地农田水肥效应研究进展[J].应用生态学报, 2007, 18(3):665-673 doi: 10.3321/j.issn:1001-9332.2007.03.035 MA Q, YU W T, SHEN S M, et al. Research advances in water-fertilizer effect on dry land farmland[J]. Chinese Journal of Applied Ecology, 2007, 18(3):665-673 doi: 10.3321/j.issn:1001-9332.2007.03.035 |
[19] | 孙宏勇, 刘昌明, 张永强, 等.微型蒸发器测定土面蒸发的试验研究[J].水利学报, 2004, (8):114-118 doi: 10.3321/j.issn:0559-9350.2004.08.021 SUN H Y, LIU C M, ZHANG Y Q, et al. Study on soil evaporation by using micro-lysimeter[J]. Journal of Hydraulic Engineering, 2004, (8):114-118 doi: 10.3321/j.issn:0559-9350.2004.08.021 |
[20] | 杨文文, 张学培, 王洪英.晋西黄土区刺槐蒸腾、光合与水分利用的试验研究[J].水土保持研究, 2006, 13(1):72-75 doi: 10.3969/j.issn.1005-3409.2006.01.025 YANG W W, ZHANG X P, WANG H Y. Study on Robinia pseudoscacia L. transpiration, photosynthesis and water use efficiency[J]. Research of Soil and Water Conservation, 2006, 13(1):72-75 doi: 10.3969/j.issn.1005-3409.2006.01.025 |
[21] | 纪莎莎.基于作物叶片尺度水分高效利用的气孔最优调控机理研究与应用[D].北京: 中国农业大学, 2017 JI S S. Research and application of the optimal stomatal regulation mechanism based on the crop efficient water use at leaf scale[D]. Beijing: China Agricultural University, 2017 |
[22] | 赵风华, 王秋凤, 王建林, 等.小麦和玉米叶片光合-蒸腾日变化耦合机理[J].生态学报, 2011, 31(24):7526-7532 http://d.old.wanfangdata.com.cn/Periodical/stxb201124023 ZHAO F H, WANG Q F, WANG J L, et al. Photosynthesis-transpiration coupling mechanism of wheat and maize during daily variation[J]. Acta Ecologica Sinica, 2011, 31(24):7526-7532 http://d.old.wanfangdata.com.cn/Periodical/stxb201124023 |
[23] | 康绍忠, 潘英华, 石培泽, 等.控制性作物根系分区交替灌溉的理论与试验[J].水利学报, 2001, (11):80-86 doi: 10.3321/j.issn:0559-9350.2001.11.014 KANG S Z, PAN Y H, SHI P Z, et al. Controlled root-divided alternative irrigation-theory and experiments[J]. Journal of Hydraulic Engineering, 2001, (11):80-86 doi: 10.3321/j.issn:0559-9350.2001.11.014 |
[24] | 罗丹丹, 王传宽, 金鹰.植物水分调节对策:等水与非等水行为[J].植物生态学报, 2017, 41(9):1020-1032 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201709009 LUO D D, WANG C K, JIN Y. Plant water-regulation strategies:Isohydric versus anisohydric behavior[J]. Chinese Journal of Plant Ecology, 2017, 41(9):1020-1032 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201709009 |
[25] | TARDIEU F, SIMONNEAU T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand:Modelling isohydric and anisohydric behaviours[J]. Journal of Experimental Botany, 1998, 49(2):419-432 http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Variability-among-species-of-stomatal-control-under-Fluctuating-soil-water-status-and-eveporative-demand--modelling-isohydric-behaviours.pdf |
[26] | 施积炎, 袁小凤, 丁贵杰.作物水分亏缺补偿与超补偿效应的研究现状[J].山地农业生物学报, 2000, 19(3):226-233 doi: 10.3969/j.issn.1008-0457.2000.03.016 SHI J Y, YUAN X F, DING G J. The reviews of study on water deficit compensation and over-compensation effect for crops[J]. Journal of Mountain Agriculture and Biology, 2000, 19(3):226-233 doi: 10.3969/j.issn.1008-0457.2000.03.016 |
[27] | 董宝娣, 张正斌, 刘孟雨, 等.水分亏缺下作物的补偿效应研究进展[J].西北农业学报, 2004, 13(3):31-34 doi: 10.3969/j.issn.1004-1389.2004.03.008 DONG B D, ZHANG Z B, LIU M Y, et al. Research progress on compensation effect of crops under water deficit[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2004, 13(3):31-34 doi: 10.3969/j.issn.1004-1389.2004.03.008 |
[28] | 于强, 谢贤群, 孙菽芬, 等.植物光合生产力与冠层蒸散模拟研究进展[J].生态学报, 1999, 19(5):744-753 doi: 10.3321/j.issn:1000-0933.1999.05.027 YU Q, XIE X Q, SUN S F, et al. Andances in simulation of plant photosynthetic productivity and canopy evapotranspiration[J]. Acta Ecologica Sinica, 1999, 19(5):744-753 doi: 10.3321/j.issn:1000-0933.1999.05.027 |