任丹丹1, 2,
杨艳敏1,
胡玉昆1,,,
杨永辉1,,
1.中国科学院农业水资源重点实验室/河北省节水农业重点实验室/中国科学院遗传与发育生物学研究所农业资源研究中心 石家庄 050022
2.中国科学院大学 北京 100049
基金项目: 国家水专项课题2018ZX07110001
国家自然科学基金41671021
国家重点研发计划项目2017YFD0300908-2
详细信息
作者简介:白志杰, 研究方向为生态水文。E-mail:zjbai@sjziam.ac.cn
通讯作者:胡玉昆, 主要从事农业用水与地下水模拟研究, E-mail:huyk@sjziam.ac.cn
杨永辉, 主要从事水循环及其农业水资源等相关研究, E-mail:yonghui.yang@sjziam.ac.cn
中图分类号:P339计量
文章访问数:606
HTML全文浏览量:3
PDF下载量:521
被引次数:0
出版历程
收稿日期:2019-03-24
录用日期:2019-04-26
刊出日期:2019-07-01
Trend of agricultural plantation and irrigation requirements in the upper reaches of Xiong'an New Area
BAI Zhijie1, 2,,REN Dandan1, 2,
YANG Yanmin1,
HU Yukun1,,,
YANG Yonghui1,,
1. Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Laboratory of Water-Saving Agriculture/Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shi-jiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Water Special Project of China2018ZX07110001
the National Natural Science Foundation of China41671021
the National Key Research and Development Project of China2017YFD0300908-2
More Information
Corresponding author:HU Yukun, E-mail: huyk@sjziam.ac.cn;YANG Yonghui, E-mail: yonghui.yang@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:本文利用作物模型模拟小麦、玉米灌溉需水量,结合蒸发皿法估算蔬菜、果树等其他作物需水量,回溯雄安新区上游1986-2015年农业种植结构及农业需水的时空演变趋势,摸清不同作物的需水量比例及时间变化,并推算了消除降水年际波动的1970-2015年农作物灌溉需水量,探讨单纯人类活动下的农业需水量变化趋势。结果表明,1986-2015年,研究区作物播种总面积总体呈上升趋势,耕地面积多年平均84.9万hm2,有效灌溉面积平均71.3万hm2,占总耕地面积的84%。其中小麦播种面积稍有下降,玉米、蔬菜播种面积显著增加,果树种植比例在山区增加、平原区减少。研究区多年平均灌溉需水量22.52×108 m3,小麦、玉米、蔬菜、果树和其他作物分别占灌溉需水总量的58.6%、12.6%、5.8%、16.3%和6.7%,受播种面积增加影响,1970-2015年,蔬菜和果树需水显著上升。从空间上来看,灌溉需水总量在上游山区上升显著,而在平原区表现为下降;排除降水的年际波动后,研究区作物需水自1970年以来一直呈上升趋势,进入20世纪80年代中期,虽然整体上升减缓,但随农业播种总面积增加和蔬菜、水果需水增加影响,需水量整体呈缓慢上升趋势。因此,控制上游农业用水,种植低耗水作物、减少耗水作物的种植面积,是恢复雄安新区清水产流的关键。
关键词:雄安新区/
农业种植结构/
灌溉需水量/
作物模型/
蒸发皿法
Abstract:The agriculture is a major consumer of water. Since Xiong'an New Area is facing serious water shortage and groundwater declining, it is necessary to optimize the scale of upstream agriculture water use. By using crop models for simulating the irrigation requirements of wheat and maize, and taking the Pan-evaporation coefficient (Kp) approach to estimate the irrigation requirement of other crops, such as vegetables and fruit trees, our study reconstructed the spatial and temporal trend of agriculture plantation and irrigation requirement in the upper reaches of Xiong'an New Area from 1970. The proportion of irrigation requirements and time-dependent changes of different crops formed a clear trend. The results showed that the total planting area generally increased. There was no significant change in the area of cultivated land and the effective irrigated area. The average cultivated area for many years was 849 000 hm2, while the effective irrigated area averaged 713 000 hm2, accounting for 84% of the total cultivated land area. The planting area of wheat decreased slightly, the planting areas of maize and vegetables increased significantly, and the planting proportion of fruit trees increased in the mountain area and decreased in the plain area. The annual average irrigation requirement was 22.52×108 m3, of which wheat, maize, vegetables, fruit trees, and other crops accounted for 58.6%, 12.6%, 5.8%, 16.3%, and 6.7% of the total irrigation requirement, respectively. The irrigation requirement of vegetables and fruit trees increased significantly, and was affected by the increase in planting area. Spatially, the total irrigation requirement increased significantly in the mountain area but decreased in the plain area. After elimination of the influence of annual precipitation fluctuation, the irrigation requirement showed a sharply increasing trend from 1970 to 2015, but slowed down in the mid-1980s. Owing to the increase of planting area and irrigation requirements of vegetables and fruit trees, the irrigation requirement showed a slow increasing tendency overall. Therefore, controlling the agricultural water use in the upper mountainous reaches of Xiong'an New Area, planting of low-water-consuming crops and reducing the planting area of water-consuming crops are keys to restoring water production for Xiong'an New Area. Finally, the sustainable utilization of regional water resources should be based on local natural conditions and the layout of agricultural production should be arranged in accordance with the spatial and temporal distribution of water resources to seek a coordinated development for the water-ecology-social economy of Xiong'an New Area.
Key words:Xiong'an New Area/
Agricultural plantation/
Crop irrigation requirement/
Crop model/
Pan-evaporation coefficient approach
HTML全文
图1研究区域边界、气象站、河流水系分布图
Figure1.Sketch map of boundary, meteorological stations and river systems in the study area
下载: 全尺寸图片幻灯片
图21986—2015年研究区耕地面积、有效灌溉面积(a)和各作物播种面积(b)的变化
Figure2.Changes of cultivated area, effective irrigation area (a) and sown area of various crops (b) in the study area from 1986 to 2015
下载: 全尺寸图片幻灯片
图31986—2015年研究区各县作物种植面积和播种总面积变化趋势及显著性水平
Figure3.Spatial changes of the sown areas of crops in counties of the study area from 1986 to 2015
下载: 全尺寸图片幻灯片
图41986—2015年研究区农作物灌溉需水量变化
Figure4.Time-series of annual average irrigation water requirements of crops in the study area from 1986 to 2015
下载: 全尺寸图片幻灯片
图51986—2015年研究区农作物灌溉需水量变化趋势
Figure5.Trends of irrigation water requirements of crops in the study area from 1986 to 2015
下载: 全尺寸图片幻灯片
图61986—2015年研究区各县农作物灌溉需水量空间变化趋势以及显著性水平
Figure6.Spatial changes of the irrigation water requirements of crops in counties of the study area from 1986 to 2015
下载: 全尺寸图片幻灯片
图71970—2015年研究区农作物消除降水年际波动的灌溉需水模拟值变化
Figure7.Changes of simulated irrigation water requirements of crops without fluctuation of annual precipitation in the study area from 1970 to 2015
下载: 全尺寸图片幻灯片
表1研究区蔬菜和果树的蒸发皿系数(Kp)
Table1.Pan-evaporation coefficient (Kp) for cultivated vegetables and fruit trees in the study area
设施蔬菜Greenhouse vegetable | |||||
草莓Fragaria × ananassa | 0.51 | 菜花Brassica oleracea var. botrytis | 0.84 | 豆角Vigna unguiculata | 0.73 |
韭菜Allium tuberosum | 0.63 | 黄瓜Cucumis sativus | 0.95 | 茄子Solanum melongena | 1.00 |
甘蓝Brassica oleracea | 0.73 | 番茄Lycopersicon esculentum | 0.84 | 西葫芦Cucurbita pepo | 0.58 |
甜椒Capsicum annuum var. grossum | 0.88 | ||||
露地蔬菜Outdoor vegetable | |||||
春架豆Vigna unguiculata in spring | 0.73 | 春黄瓜Cucumis sativus in spring | 0.95 | 早茄子 Early Solanum melongena | 1.00 |
秋架豆Vigna unguiculata in autumn | 1.18 | 秋黄瓜Cucumis sativus in autumn | 1.41 | 晚茄子 Later Solanum melongena | 1.00 |
春芹菜Apium graveolens in spring | 1.13 | 春菜花 Brassica oleracea var. botrytis in srping | 0.84 | 大葱Allium fistulosum | 1.03 |
秋芹菜Apium graveolens in autumn | 1.23 | 秋菜花 Brassica oleracea var. botrytis in autumn | 1.09 | 大蒜Allium saticum | 0.86 |
大白菜Brassica pekinensis | 1.34 | 番茄Lycopersicon esculentum | 0.84 | 马铃薯Solanum tuberosm | 0.83 |
春甘蓝Brassica oleracea in spring | 0.73 | 白萝卜Raphanus sativus | 1.22 | 洋葱Allium cepa | 0.66 |
秋甘蓝Brassica oleracea in autumn | 1.18 | 胡萝卜Daucus carota | 1.14 | 甜椒 Capsicum annuum var. grossum | 0.88 |
韭菜Allium tuberosum | 0.63 | 西瓜Citrullus vulgaris | 0.89 | 甜瓜Cucumis melo | 0.83 |
西葫芦Cucurbita pepo | 0.58 | ||||
果树Fruit tree | |||||
梨树Pyrus spp. | 0.97 | 苹果Malus domestica | 0.61 | 桃树Amygdalus persica | 0.47 |
枣树Ziziphus jujuba | 0.46 | 葡萄Vitis vinifera | 0.92 |
下载: 导出CSV
参考文献
[1] | WALLACE J S. Increasing agricultural water use efficiency to meet future food production[J]. Agriculture, Ecosystems & Environment, 2000, 82(1/3):105-119 |
[2] | 李保国, 黄峰. 1998~2007年中国农业用水分析[J].水科学进展, 2010, 21(4):575-583 http://d.old.wanfangdata.com.cn/Periodical/skxjz201004018 LI B G, HUANG F. Trends in China's agricultural water use during recent decade using the green and blue water approach[J]. Advances in Water Science, 2010, 21(4):575-583 http://d.old.wanfangdata.com.cn/Periodical/skxjz201004018 |
[3] | DING Y M, WANG W G, SONG R M, et al. Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China[J]. Agricultural Water Management, 2017, 193:89-101 doi: 10.1016/j.agwat.2017.08.008 |
[4] | YANG Y H, TIAN F. Abrupt change of runoff and its major driving factors in Haihe River catchment, China[J]. Journal of Hydrology, 2009, 374(3/4):373-383 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d754e8b03bed8681a92b36245c28317 |
[5] | FAN J, TIAN F, YANG Y H, et al. Quantifying the magnitude of the impact of climate change and human activity on runoff decline in Mian River Basin, China[J]. Water Science & Technology, 2010, 62(4):783-791 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4974af9bf37a9e6d11c982cdec4e97a |
[6] | 张光辉, 费宇红, 刘春华, 等.华北平原灌溉用水强度与地下水承载力适应性状况[J].农业工程学报, 2013, 29(1):1-10 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201301001 ZHANG G H, FEI Y H, LIU C H, et al. Adaptation between irrigation intensity and groundwater carrying capacity in North China Plain[J]. Transactions of the CSAE, 2013, 29(1):1-10 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201301001 |
[7] | GROGAN D S, ZHANG F, PRUSEVICH A, et al. Quantifying the link between crop production and mined groundwater irrigation in China[J]. Science of the Total Environment, 2015, 511:161-175 doi: 10.1016/j.scitotenv.2014.11.076 |
[8] | XU Y Q, MO X G, CAI Y L, et al. Analysis on groundwater table drawdown by land use and the quest for sustainable water use in the Hebei Plain in China[J]. Agricultural Water Management, 2005, 75(1):38-53 doi: 10.1016/j.agwat.2004.12.002 |
[9] | 周玮, 吕爱锋, 贾绍凤.白洋淀流域1959年至2008年山区径流量变化规律及其动因分析[J].资源科学, 2011, 33(7):1249-1255 http://d.old.wanfangdata.com.cn/Periodical/zykx201107005 ZHOU W, LYU A F, JIA S F. Trends and causes of runoff changes in mountainous areas of the Baiyangdian Lake Basin during the period 1959-2008[J]. Resources Science, 2011, 33(7):1249-1255 http://d.old.wanfangdata.com.cn/Periodical/zykx201107005 |
[10] | 刘茂峰, 高彦春, 甘国靖.白洋淀流域年径流变化趋势及气象影响因子分析[J].资源科学, 2011, 33(8):1438-1445 http://d.old.wanfangdata.com.cn/Periodical/zykx201108004 LIU M F, GAO Y C, GAN G J. Long-term trends in annual runoff and the impact of meteorological factors in the Baiyangdian Watershed[J]. Resources Science, 2011, 33(8):1438-1445 http://d.old.wanfangdata.com.cn/Periodical/zykx201108004 |
[11] | MOIWO J P, YANG Y H, LI H L, et al. Impact of water resource exploitation on the hydrology and water storage in Baiyangdian Lake[J]. Hydrological Processes, 2010, 24(21):3026-3039 doi: 10.1002/hyp.v24:21 |
[12] | 张兆吉, 费宇红.华北平原地下水可持续利用图集[M].北京:中国地图出版社, 2009:103-109 ZHANG Z J, FEI Y H. Atlas of Groundwater Sustainable Utilization in North China Plain[M]. Beijing:China Cartographic Publishing House, 2009:103-109 |
[13] | ALLEN R G, SMITH M, PEREIRA L S, et al. An update for the calculation of reference evapotranspiration[J]. ICID Bulletin, 1994, 43(2):35-92 |
[14] | ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements[R]. Rome: FAO, 1998: 89-102 |
[15] | YANG Y H, WATANABE M, ZHANG X Y, et al. Estimation of groundwater use by crop production simulated by DSSAT-wheat and DSSAT-maize models in the piedmont region of the North China Plain[J]. Hydrological Processes, 2006, 20(13):2787-2802 doi: 10.1002/(ISSN)1099-1085 |
[16] | LIU H L, YANG J Y, DRURY C F, et al. Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production[J]. Nutrient Cycling in Agroecosystems, 2011, 89(3):313-328 doi: 10.1007/s10705-010-9396-y |
[17] | LI Z H, JIN X L, ZHAO C J, et al. Estimating wheat yield and quality by coupling the DSSAT-CERES model and proximal remote sensing[J]. European Journal of Agronomy, 2015, 71:53-62 doi: 10.1016/j.eja.2015.08.006 |
[18] | YANG Y M, YANG Y H, MOIWO J P, et al. Estimation of irrigation requirement for sustainable water resources reallocation in North China[J]. Agricultural Water Management, 2010, 97(11):1711-1721 doi: 10.1016/j.agwat.2010.06.002 |
[19] | 马林, 杨艳敏, 杨永辉, 等.华北平原灌溉需水量时空分布及驱动因素[J].遥感学报, 2011, 15(2):324-339 http://d.old.wanfangdata.com.cn/Periodical/ygxb201102009 MA L, YANG Y M, YANG Y H, et al. The distribution and driving factors of irrigation water requirements in the North China Plain[J]. Journal of Remote Sensing, 2011, 15(2):324-339 http://d.old.wanfangdata.com.cn/Periodical/ygxb201102009 |
[20] | 陈玉民, 郭国双, 王广兴, 等.中国主要作物需水量与灌溉[M].北京:中国水利电力出版社, 1995 CHEN Y M, GUO G S, WANG G X, et al. Main Crop Water Requirement and Irrigation of China[M]. Beijing:China Water Power Press, 1995 |
[21] | 樊军, 王全九, 郝明德.利用小蒸发皿观测资料确定参考作物蒸散量方法研究[J].农业工程学报, 2006, 22(7):14-17 doi: 10.3321/j.issn:1002-6819.2006.07.003 FAN J, WANG Q J, HAO M D. Estimation of reference crop evapotranspiration by Chinese pan[J]. Transactions of the CSAE, 2006, 22(7):14-17 doi: 10.3321/j.issn:1002-6819.2006.07.003 |
[22] | 黄兴法, 李光永, 王伟, 等.充分微喷灌溉条件下苹果树耗水量的研究[J].中国农业大学学报, 2001, 6(4):42-46 doi: 10.3321/j.issn:1007-4333.2001.04.010 HUANG X F, LI G Y, WANG W, et al. Water use of micro-sprinkler irrigated apple trees under condition of full irrigation[J]. Journal of China Agricultural University, 2001, 6(4):42-46 doi: 10.3321/j.issn:1007-4333.2001.04.010 |
[23] | 黄兴法, 李光永, 王小伟, 等.充分灌与调亏灌溉条件下苹果树微喷灌的耗水量研究[J].农业工程学报, 2001, 17(5):43-47 doi: 10.3321/j.issn:1002-6819.2001.05.011 HUANG X F, LI G Y, WANG X W, et al. Water use of micro-sprinkler irrigated apple trees under full irrigation and regulated deficit irrigation[J]. Transactions of the CSAE, 2001, 17(5):43-47 doi: 10.3321/j.issn:1002-6819.2001.05.011 |
[24] | 李光永, 王小伟, 黄兴法, 等.充分灌与调亏灌溉条件下桃树滴灌的耗水量研究[J].水利学报, 2001, 32(9):55-58 doi: 10.3321/j.issn:0559-9350.2001.09.010 LI G Y, WANG X W, HUANG X F, et al. Study on water use of drip irrigated peach tree under the conditions of fully irrigated and regulated deficit irrigation[J]. Journal of Hydraulic Engineering, 2001, 32(9):55-58 doi: 10.3321/j.issn:0559-9350.2001.09.010 |
[25] | 李建明, 邹志荣, 付建峰.温室番茄节水灌溉指标的研究[J].沈阳农业大学学报, 2000, 31(1):110-112 doi: 10.3969/j.issn.1000-1700.2000.01.031 LI J M, ZOU Z R, FU J F. Study on water-saving irrigation index for greenhouse tomato[J]. Journal of Shenyang Agricultural University, 2000, 31(1):110-112 doi: 10.3969/j.issn.1000-1700.2000.01.031 |
[26] | JONES J W, HOOGENBOOM G, PORTER C H, et al. The DSSAT cropping system model[J]. European Journal of Agronomy, 2003, 18(3/4):235-265 doi: 10.1016-S1161-0301(02)00107-7/ |
[27] | NAKAYAMA T, YANG Y H, WATANABE M, et al. Simulation of groundwater dynamics in the North China Plain by coupled hydrology and agricultural models[J]. Hydrological Processes, 2006, 20(16):3441-3466 doi: 10.1002/(ISSN)1099-1085 |
[28] | SUN J, MOONEY H, WU W B, et al. Importing food damages domestic environment:Evidence from global soybean trade[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(21):5415-5419 doi: 10.1073/pnas.1718153115 |
[29] | SEN P K. Estimates of the regression coefficient based on Kendall's Tau[J]. Journal of the American Statistical Association, 1968, 63(324):1379-1389 doi: 10.1080/01621459.1968.10480934 |
[30] | LIBISELLER C, GRIMVALL A. Performance of partial Mann-Kendall tests for trend detection in the presence of covariates[J]. Environmetrics, 2002, 13(1):71-84 doi: 10.1002/(ISSN)1099-095X |
[31] | ZHOU X Y, BAI Z J, YANG Y H. Linking trends in urban extreme rainfall to urban flooding in China[J]. International Journal of Climatology, 2017, 37(13):4586-4593 doi: 10.1002/joc.2017.37.issue-13 |
[32] | 吕晨旭, 贾绍凤, 季志恒.近30年来白洋淀流域平原区地下水位动态变化及原因分析[J].南水北调与水利科技, 2010, 8(1):65-68 http://d.old.wanfangdata.com.cn/Periodical/nsbdyslkj201001017 LYU C X, JIA S F, JI Z H. Dynamics and causes of groundwater table change in plain area of Baiyangdian Basin in last 30 years[J]. South-to-North Water Transfers and Water Science & Technology, 2010, 8(1):65-68 http://d.old.wanfangdata.com.cn/Periodical/nsbdyslkj201001017 |
[33] | TIAN F, YANG Y H, HAN S M. Using runoff slope-break to determine dominate factors of runoff decline in Hutuo River Basin, North China[J]. Water Science and Technology, 2009, 60(8):2135-2144 doi: 10.2166/wst.2009.578 |
[34] | ZHANG Y Q, WANG G W, WANG S Q, et al. Hydrochemical characteristics and geochemistry evolution of groundwater in the plain area of the Lake Baiyangdian watershed, North China Plain[J]. Journal of Groundwater Science and Engineering, 2018, 6(3):220-233 http://cn.bing.com/academic/profile?id=ad0e630a9daff2ac5f21f9a4483c11be&encoded=0&v=paper_preview&mkt=zh-cn |