删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

耕层土层交换对土壤氮素关键转化过程和玉米氮素利用的影响

本站小编 Free考研考试/2022-01-01

杨硕1,,
金文俊1,
黄海蒙1,
王军1,
周得宝2,
赵阳阳1,
董召荣1,
宋贺1,,
1.安徽农业大学农学院 合肥 230036
2.宿州市农业科学院 宿州 234000
基金项目: 国家重点研发计划项目2017YFD0301307-05
国家重点研发计划项目2016YFD0300205-03
公益性行业(农业)科研专项经费项目201503121-02

详细信息
作者简介:杨硕, 主要研究方向为低碳农业生产。E-mail:1750372904@qq.com
通讯作者:宋贺, 主要研究方向为低碳农业生产。E-mail:songhesonghe@foxmail.com
中图分类号:S158.3

计量

文章访问数:560
HTML全文浏览量:14
PDF下载量:745
被引次数:0
出版历程

收稿日期:2019-04-08
录用日期:2019-05-20
刊出日期:2019-10-01

Effects of soil layers exchange on key nitrogen transformation processes in soil and nitrogen utilization by maize

YANG Shuo1,,
JIN Wenjun1,
HUANG Haimeng1,
WANG Jun1,
ZHOU Debao2,
ZHAO Yangyang1,
DONG Zhaorong1,
SONG He1,,
1. College of Agronomy, Anhui Agricultural University, Hefei 230036, China
2. Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
Funds: the National Key Research and Development Project of China2017YFD0301307-05
the National Key Research and Development Project of China2016YFD0300205-03
the Special Fund for Agro-scientific Research in the Public Interest of China201503121-02

More Information
Corresponding author:SONG He, E-mail: songhesonghe@foxmail.com


摘要
HTML全文
(9)(5)
参考文献(47)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:翻耕会使耕层土壤发生显著位置交换。耕层土壤位置交换会通过影响土壤物理、化学和生物性状,改变氮素转化过程。本文研究了土层交换对黄淮海平原南端砂姜黑土硝化、反硝化过程和玉米生长及氮素利用的影响,为该区域选择合理的耕作方式、减少氮素损失及提高氮素利用效率提供理论依据。试验在人工气候室条件下,以土壤(0~35 cm)田间原位分层作为常规土层处理(CK),以原位0~10 cm和10~20 cm土层交换后作为土层交换处理(SE),并用20 μm的尼龙网区分非根际和根际土壤。于玉米小喇叭口期利用荧光定量PCR技术测定土壤氨氧化微生物和反硝化菌群丰度,并结合非根际和根际土壤的硝化潜势、土壤呼吸、反硝化能力、反硝化潜势、土壤理化性质和玉米总氮含量及根系形态的测定,探讨土层交换对土壤氮素转化和玉米生长及氮素利用的影响。结果显示,SE处理的玉米植株氮吸收量比CK处理显著降低8.9%(P < 0.05)。土层交换显著影响根际而不是非根际土壤的硝化潜势,使其显著降低13.5%(P < 0.05);并使非根际和根际土壤的反硝化能力分别提高36.6%(P < 0.05)和8.4%(P < 0.05)。土层交换使非根际和根际土壤的可溶性有机碳含量分别提高11.7%(P < 0.05)和5.2%。相关分析显示硝化潜势与氨氧化细菌(AOB)丰度呈显著正相关(r=0.91**),与氨氧化古菌(AOA)丰度无显著相关关系;反硝化能力与土壤可溶性有机碳和呼吸速率呈显著正相关(r=0.89**和0.93**),与nirKnirS拷贝数无显著相关性;玉米植株氮吸收量与根际土壤的硝化潜势、根表面积×AOB拷贝数都呈显著正相关(r=0.83*和0.86*),而与反硝化能力呈显著负相关(r=-0.88**)。以上结果表明砂姜黑土土壤硝化速率的降低和反硝化速率的增强,是土层交换后玉米氮素利用效率低的重要原因。AOB是硝化速率的主要驱动微生物。土层交换后土壤可溶性有机碳是反硝化能力的关键主导因子。在翻耕条件下,有效调节土壤可溶性有机碳含量是提高作物氮肥利用效率的关键。
关键词:土层交换/
玉米/
根际/
硝化/
反硝化/
氮素利用
Abstract:Soil layers are exchanged during tillage practices, which may change the nitrogen (N) transformation process by affecting the physicochemical and biochemical properties of the soil. In this study, the effects of soil layers exchange on the nitrification and denitrification of lime concretion black soil, maize growth, and N utilization were studied to provide a theoretical basis for selecting reasonable tillage methods, reducing N loss, and improving N use efficiency in the southern region of the Huang-Huai-Hai Plain. In an artificial climate chamber, a normal soil layer distribution (0-35 cm of soil placed in a root box according to in situ soil layers) was used as the control treatment (CK). In-situ 0-10 cm and 10-20 cm soil layers were exchanged and placed in another group of root boxes, which were used as the soil layers exchange (SE) treatment group. A 20 μm nylon mesh was used to separate the rhizosphere and the bulk soil. To investigate the effects of soil layer exchange on soil N transformation, nitrification potential, respiration, denitrifying capacity, denitrification potential, physicochemical properties of the rhizosphere and bulk soil, as well as maize growth, and N use, total N content, and root morphology were investigated at the maize small trumpet stage. The results showed that maize N uptake in SE treatment was 8.9% lower than that of CK (P < 0.05). Soil layer exchange significantly affected the rhizosphere rather than the bulk soil, which reduced its nitrification potential by 13.5% (P < 0.05) and increased the denitrification capacity of the rhizosphere and the bulk soil by 36.6% (P < 0.05) and 8.4% (P < 0.05), respectively. Soil layers exchange increased the soluble organic carbon content of the rhizosphere and bulk soil by 11.7% (P < 0.05) and 5.2%, respectively. Correlation analysis showed that nitrification potential was significantly positively correlated with the abundance of ammonia-oxidizing bacteria (AOB, r=0.91**), but was not significantly correlated with the abundance of ammonia-oxidizing archaea (AOA). Denitrification capacity was significantly positively correlated with soluble organic carbon and soil respiration (r=0.89** and 0.93**), but showed no correlation with nirK or nirS gene copy number. N uptake by maize plants was positively correlated with the nitrification potential of the rhizosphere and the total root surface area×AOB gene copy number (r=0.83* and 0.86*), but was significantly negatively correlated with denitrification capacity (r=-0.88**). These results indicated that a decrease in the nitrification rate and an increase in the denitrification rate in lime concretion black soil could result in low N use efficiency by maize after soil layers exchange. The nitrification rate was driven more by AOB abundance. After soil layers exchange, soil soluble organic carbon was the key driving factor for denitrification capacity. Effective regulation of soil soluble organic carbon content is the key to improving crop nitrogen use efficiency under tillage conditions.
Key words:Soil layer exchange/
Maize/
Rhizosphere/
Nitrification/
Denitrification/
Nitrogen utilization

HTML全文


图1不同处理(常规土层、土层交换)玉米-根箱装置
Figure1.Maize-root box device for treatments of normal soil layers distribution and soil layers exchange


下载: 全尺寸图片幻灯片


图2土层交换对非根际(A)和根际(B)土壤呼吸速率的影响
CK:常规土层处理; SE:土层交换处理。不同小写字母表示土层交换与对照处理间差异显著(P < 0.05)。
Figure2.Effect of soil layers exchange on soil respiration rate in bulk soil (A) and rhizospheric soil (B)
CK: normal soil layers distribution; SE: soil layers exchange. Different lowercase letters represent significant difference between CK and SE treatments (P < 0.05).


下载: 全尺寸图片幻灯片


图3土层交换对非根际(A)和根际(B)土壤硝化潜势的影响
CK:常规土层处理; SE:土层交换处理。不同小写字母表示土层交换与对照处理间差异显著(P < 0.05)。
Figure3.Effect of soil layers exchange on soil nitrification potential in bulk soil (A) and rhizospheric soil (B)
CK: normal soil layersdistribution; SE: soil layers exchange. Different lowercase letters represent significant difference between CK and SE treatments (P < 0.05).


下载: 全尺寸图片幻灯片


图4土层交换对非根际(A)和根际氨氧化细菌丰度的影响
CK:常规土层处理; SE:土层交换处理。不同小写字母表示土层交换与对照处理间差异显著(P < 0.05)。
Figure4.Effect of soil layers exchange on abundance of ammonia-oxidizing bacteria (AOB) in bulk soil (A) and rhizospheric soil (B)
CK: normal soil layers distribution; SE: soil layers exchange. Different lowercase letters represent significant difference between CK and SE treatments (P < 0.05).


下载: 全尺寸图片幻灯片


图5土层交换对非根际(A)和根际(B)氨氧化古菌丰度的影响
CK:常规土层处理; SE:土层交换处理。不同小写字母表示土层交换与对照处理间差异显著(P < 0.05)。
Figure5.Effect of soil layers exchange on abundances of mmonia-oxidizing archaea (AOA) in bulk soil (A) and rhizospheric soil (B)
CK: normal soil layers distribution; SE: soil layers exchange. Different lowercase letters represent significant difference between CK and SE treatments (P < 0.05).


下载: 全尺寸图片幻灯片


图6土层交换对非根际(A)和根际(B)土壤反硝化能力的影响
CK:常规土层处理; SE:土层交换处理。不同小写字母表示土层交换与对照处理间差异显著(P < 0.05)。
Figure6.Effect of soil layers exchange on denitrification capacity in bulk soil (A) and rhizospheric soil (B)
CK: normal soil layers distribution; SE: soil layers exchange. Different lowercase letters represent significant difference between CK and SE treatments (P < 0.05).


下载: 全尺寸图片幻灯片


图7土层交换对非根际(A)和根际(B)土壤反硝化潜势的影响
CK:常规土层处理; SE:土层交换处理。不同小写字母表示土层交换与对照处理间差异显著(P < 0.05)。
Figure7.Effect of soil layers exchange on denitrification potential in bulk soil (A) and rhizospheric soil (B)
CK: normal soil layers distribution; SE: soil layers exchange. Different lowercase letters represent significant difference between CK and SE treatments (P < 0.05).


下载: 全尺寸图片幻灯片


图8土层交换对非根际(A)和根际(B)土壤nirK拷贝数的影响
CK:常规土层处理; SE:土层交换处理。不同小写字母表示土层交换与对照处理间差异显著(P < 0.05)。
Figure8.Effect of soil layers exchange on nirK copies in bulk soil (A) and rhizospheric soil (B)
CK: normal soil layers distribution; SE: soil layers exchange. Different lowercase letters represent significant difference between CK and SE treatments (P < 0.05).


下载: 全尺寸图片幻灯片


图9土层交换对非根际(A)和根际(B)土壤nirS拷贝数的影响
CK:常规土层处理; SE:土层交换处理。不同小写字母表示土层交换与对照处理间差异显著(P < 0.05)。
Figure9.Effect of soil layers exchange on nirS copies in bulk soil (A) and rhizospheric soil (B)
CK: normal soil layers distribution; SE: soil layers exchange. Different lowercase letters represent significant difference between CK and SE treatments (P < 0.05).


下载: 全尺寸图片幻灯片

表1土层交换对0~20 cm土层土壤化学性质的影响
Table1.Effects of soil layers exchange on soil chemical properties in the 0-20 cm depth
处理
Treatment
pH 硝态氮
NO3--N (mg?kg-1)
铵态氮
NH4+-N (mg?kg-1)
可溶性有机碳
Dissolved organic carbon (mg?kg-1)
可溶性有机氮
Dissolved organic nitrogen (mg?kg-1)
非根际
Bulk soil
CK 8.47±0.02a 50.2±0.9a 0.62±0.07 b 140.6±2.6b 32.8±0.6a
SE 8.50±0.01a 46.5±0.2b 1.42±0.09a 157.0±1.9a 33.6±0.3a
根际
Rhizospheric soil
CK 8.52±0.01a 21.1±0.3a 1.26±0.15a 140.3±1.1a 19.0±0.5a
SE 8.54±0.01a 20.7±0.9a 0.94±0.06a 147.6±2.6a 21.7±0.8a
CK:常规土层处理; SE:土层交换处理。不同小写字母表示非根际或根际土土层交换与对照处理间具有显著性差异(P < 0.05)。CK: normal soil layers distribution; SE: soil layers exchange. Different lowercase letters represent significant difference between CK and SE treatments of bulk soil or rhizopsheric soil (P < 0.05).


下载: 导出CSV
表2土层交换对玉米根系形态生理指标的影响
Table2.Effects of soil layers exchange on root morphological and physiological indexes of maize
处理
Treatment
根长
Root length (m)
根表面积
Root surface area (dm2)
根平均直径
Root average diameter (mm)
根体积
Root volume (cm3)
根尖数
Root tips (x104)
根干重
Root dry weight (g)
根系全氮
Root total N content (mg)
CK 130.1±1.0a 13.9±0.3a 0.31±0.01b 11.8±0.5a 4.99±0.05b 1.95±0.04a 22.6±0.6a
SE 126.6±2.0a 14.2±0.2a 0.36±0.00a 12.8±0.1a 6.01±0.27a 1.89±0.02a 21.8±0.6a
CK:常规土层处理; SE:土层交换处理。不同小写字母表示非根际或根际土土层交换与对照处理间具有显著性差异(P < 0.05)。CK: normal soil layers distribution; SE: soil layers exchange. Different lowercase letters represent significant difference between CK and SE treatments (P < 0.05).


下载: 导出CSV
表3土层交换对玉米植株形态生理指标的影响
Table3.Effects of soil layers exchange on plant morphological and physiological indexes
处理
Treatment
叶片SPAD值
Leaf SPAD
光合速率
Net photosynthetic rate
(μmol?m-2?s-1)
株高
Plant height
(cm)
叶干重
Leaf dry weight
(g)
茎干重
Stem dry weight
(g)
植株干重
Plant dry weight
(g)
植株全氮
Plant total N content
(mg)
根冠比
Root-shoot ratio
(%)
CK 35.7±0.5a 32.1±0.3a 57.3±1.8a 3.27±0.05a 2.77±0.04b 6.04±0.07a 96.4±0.7a 48.2±0.6a
SE 32.4±0.5b 29.2±0.7a 63.0±0.8a 3.29±0.06a 3.11±0.02a 6.40±0.04a 87.8±3.7b 44.4±0.6b
CK:常规土层处理; SE:土层交换处理。不同小写字母表示非根际或根际土土层交换与对照处理间具有显著性差异(P < 0.05)。CK: normal soil layers distribution; SE: soil layers exchange. Different lowercase letters represent significant difference between CK and SE treatments (P < 0.05).


下载: 导出CSV
表4土层交换后非根际土壤硝化、反硝化过程中测定变量之间的相关性
Table4.Correlation between measured variables in nitrification and denitrification of bulk soil after exchanging soil layers
pH NO3--N DOC DON SR NP DC DP AOB- amoA AOA- amoA nirK
NO3--N -0.98**
DOC 0.93** -0.91**
DON -0.97** 1.00** -0.92**
SR 0.74 -0.79* 0.86* -0.84*
NP -0.94** 0.96** -0.87* 0.94** -0.69
DC 0.72 -0.70 0.89** -0.74 0.93** -0.60
DP 0.81* -0.91** 0.81* -0.93** 0.87* -0.85* 0.67
AOB- amoA -0.96** 0.97** -0.93** 0.96** -0.76* 0.91** -0.71 -0.88**
AOA- amoA -0.63 0.63 -0.61 0.69 -0.75 0.41 -0.72 -0.64 0.64
nirK 0.88** -0.96** 0.83* -0.96** 0.78* -0.91** 0.61 0.97** -0.94** -0.60
nirS 0.99** -0.99** 0.91** -0.99** 0.77* -0.96** 0.70 0.86* -0.95** -0.63 0.92**
DOC:可溶性有机碳; DON:可溶性有机氮; SR:土壤呼吸速率; NP:硝化潜势; DC:反硝化能力; DP:反硝化潜势; AOB-amoA: AOB拷贝数; AOA-amoA: AOA拷贝数: nirK: nirK拷贝数; nirS: nirS拷贝数。*: P < 0.05; **: P < 0.01. DOC: dissolved organic carbon; DON: dissolved organic nitrogen; SR: soil respiration; NP: nitrification potential; DC: denitrification capacity; DP: denitrification potential; AOB-amoA: copies of AOB-amoA gene; AOA-amoA: copies of AOA-amoA gene; nirK: copies of nirK gene; nirS: copies of nirS gene.


下载: 导出CSV
表5土层交换后玉米氮素吸收与土壤硝化、反硝化过程和植株及根系形态生理指标之间的相关性
Table5.Correlation between nitrogen uptake and soil nitrification, denitrification process and morphological and physiological indices of plants and roots of maize after exchange of soil layers
指标
Indice
根系全氮
Root total N
植株全氮
Plant total N
叶片SPAD Leaf SPAD 0.26 0.44
光合速率Net photosynthetic rate 0.03 0.41
根平均直径Root average diameter 0.79** -0.68
根尖数Root tips 0.36 -0.81*
根表面积Root surface area 0.90** -0.22
根表面积× nirK拷贝数Root surface area × copies of nirK gene 0.03 0.88**
根表面积× nirS拷贝数Root surface area × copies of nirS gene 0.28 -0.09
根表面积×AOB拷贝数Root surface area × copies of
AOB- amoA gene
0.61* 0.86*
根表面积×AOA拷贝数Root surface area × copies of
AOA- amoA gene
0.05 -0.84*
nirK拷贝数Copies of nirK gene -0.40 0.82*
nirS拷贝数Copies of nirS gene -0.49 0.04
AOB拷贝数Copies of AOB- amoA gene 0.37 0.75
AOA拷贝数Copies of AOA- amoA gene -0.53 -0.68
NP (根际土) NP (rhizospheric soil) 0.92** 0.83*
DC(根际土) DC (rhizospheric soil) 0.74** -0.88**
DP(根际土) DP (rhizospheric soil) 0.39 0.87*
NP (非根际土) NP (bulk soil) 0.95** -0.88**
DC (非根际土) DC (bulk soil) 0.06 -0.79*
DP (非根际土) DP (bulk soil) 0.13 0.91**
NP:硝化潜势; DC:反硝化能力; DP:反硝化潜势。*: P < 0.05; **: P < 0.01. NP: nitrification potential; DC: denitrification capacity; DP: denitrification potential.


下载: 导出CSV

参考文献(47)
[1]张晶, 林先贵, 尹睿.参与土壤氮素循环的微生物功能基因多样性研究进展[J].中国生态农业学报, 2009, 17(5):1029-1034 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200905039
ZHANG J, LIN X G, YIN R. Advances in functional gene diversity of microorganism in relation to soil nitrogen cycling[J]. Chinese Journal of Eco-Agriculture, 2009, 17(5):1029-1034 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200905039
[2]DAVIDSON E A, SWANK W T, PERRY T O. Distinguishing between nitrification and denitrification as sources of gaseous nitrogen production in soil[J]. Applied and Environmental Microbiology, 1986, 52(6):1280-1286 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_239222
[3]KOWALCHUK G A. Ammonia-oxidizing bacteria:a model for molecular microbial ecology[J]. Annual Review of Microbiology, 2001, 55(1):485 doi: 10.1146/annurev.micro.55.1.485
[4]CAVAGNARO T R, JACKSON L E, HRISTOVA K, et al. Short-term population dynamics of ammonia oxidizing bacteria in an agricultural soil[J]. Applied Soil Ecology, 2008, 40(1):13-18 doi: 10.1016/j.apsoil.2008.02.006
[5]MILLER M N, ZEBARTH B J, DANDIE C E, et al. Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil[J]. Soil Biology and Biochemistry, 2008, 40(10):2553-2562 doi: 10.1016/j.soilbio.2008.06.024
[6]ZUMFT W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews:MMBR, 1997, 61(4):533-616 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_232623
[7]范晓晖, 朱兆良.旱地土壤中的硝化-反硝化作用[J].土壤通报, 2002, 33(5):385-391 doi: 10.3321/j.issn:0564-3945.2002.05.017
FAN X H, ZHU Z L. Nitrification and denitrification in upland soils[J]. Chinese Journal of Soil Science, 2002, 33(5):385-391 doi: 10.3321/j.issn:0564-3945.2002.05.017
[8]KHALIL K, MARY B, RENAULT P. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration[J]. Soil Biology and Biochemistry, 2004, 36(4):687-699 doi: 10.1016/j.soilbio.2004.01.004
[9]BARRETT M, KHALIL M I, JAHANGIR M M, et al. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils[J]. Environmental Science and Pollution Research International, 2016, 23(8):7899-7910 doi: 10.1007/s11356-015-6030-1
[10]吕玉, 周龙, 龙光强, 等.不同氮水平下间作对玉米土壤硝化势和氨氧化微生物数量的影响[J].环境科学, 2016, 37(8):3229-3236 http://d.old.wanfangdata.com.cn/Periodical/hjkx201608052
LYU Y, ZHOU L, LONG G Q, et al. Effect of different nitrogen rates on the nitrification potential and abundance of ammonia-oxidizer in intercropping maize soils[J]. Environmental Science, 2016, 37(8):3229-3236 http://d.old.wanfangdata.com.cn/Periodical/hjkx201608052
[11]BOLLMANN A, CONRAD R. Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils[J]. Global Change Biology, 1998, 4(4):387-396 doi: 10.1046/j.1365-2486.1998.00161.x
[12]BERNHARDT E S, LIKENS G E. Dissolved organic carbon enrichment alters nitrogen dynamics in a forest stream[J]. Ecology, 2002, 83(6):1689-1700 doi: 10.1890/0012-9658(2002)083[1689:DOCEAN]2.0.CO;2
[13]O'SULLIVAN C A, WAKELIN S A, FILLERY I R P, et al. Factors affecting ammonia-oxidising microorganisms and potential nitrification rates in southern Australian agricultural soils[J]. Soil Research, 2013, 51(3):240-252 doi: 10.1071/SR13039
[14]KAMEWADA K. Vertical distribution of denitrification activity in an Andisol upland field and its relationship with dissolved organic carbon:Effect of long-term organic matter application[J]. Soil Science and Plant Nutrition, 2007, 53(4):401-412 doi: 10.1111/j.1747-0765.2007.00148.x
[15]刘秋丽, 马娟娟, 孙西欢, 等.土壤的硝化-反硝化作用因素研究进展[J].农业工程, 2011, 1(4):79-83 http://d.old.wanfangdata.com.cn/Periodical/nygch201104019
LIU Q L, MA J J, SUN X H, et al. Research advancement on soil nitrification-denitrification and its influencing factors[J]. Agricultural Engineering, 2011, 1(4):79-83 http://d.old.wanfangdata.com.cn/Periodical/nygch201104019
[16]侯海军, 秦红灵, 陈春兰, 等.土壤氮循环微生物过程的分子生态学研究进展[J].农业现代化研究, 2014, 35(5):588-594 http://d.old.wanfangdata.com.cn/Conference/8420457
HOU H J, QIN H L, CHEN C L, et al. Research progress of the molecular ecology on microbiological processes in soil nitrogen cycling[J]. Research of Agricultural Modernization, 2014, 35(5):588-594 http://d.old.wanfangdata.com.cn/Conference/8420457
[17]FUKA M M, BLA?INKOV M, RADL V, et al. Effect of soil tillage practices on dynamic of bacterial communities in soil[J]. Agriculturae Conspectus Scientificus, 2015, 80(3):147-151 https://www.cabdirect.org/?target=%2fcabdirect%2fabstract%2f20163130448
[18]赵亚丽, 郭海斌, 薛志伟, 等.耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响[J].应用生态学报, 2015, 26(6):1785-1792 http://d.old.wanfangdata.com.cn/Periodical/yystxb201506025
ZHAO Y L, GUO H B, XUE Z W, et al. Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield[J]. Chinese Journal of Applied Ecology, 2015, 26(6):1785-1792 http://d.old.wanfangdata.com.cn/Periodical/yystxb201506025
[19]张雪靓, 孔祥斌.黄淮海平原地下水危机下的耕地资源可持续利用[J].中国土地科学, 2014, 28(5):90-96 doi: 10.3969/j.issn.1001-8158.2014.05.012
ZHANG X L, KONG X B. Cropland sustainable use impacted by groundwater depletion in China's HHH Plains[J]. China Land Sciences, 2014, 28(5):90-96 doi: 10.3969/j.issn.1001-8158.2014.05.012
[20]HAMONTS K, CLOUGH T J, STEWART A, et al. Effect of nitrogen and waterlogging on denitrifier gene abundance, community structure and activity in the rhizosphere of wheat[J]. FEMS Microbiology Ecology, 2013, 83(3):568-584 doi: 10.1111/1574-6941.12015
[21]TAYLOR A E, ZEGLIN L H, DOOLEY S, et al. Evidence for different contributions of archaea and bacteria to the ammonia-oxidizing potential of diverse Oregon soils[J]. Applied and Environmental Microbiology, 2010, 76(23):7691-7698 doi: 10.1128/AEM.01324-10
[22]?IMEK M, KAL?íK J. Carbon and nitrate utilization in soils:the effect of long-term fertilization on potential denitrification[J]. Geoderma, 1998, 83(3/4):269-280 https://www.sciencedirect.com/science/article/pii/S0016706198000020
[23]YEOMANS J C, BREMNER J M, MCCARTY G W. Denitrification capacity and denitrification potential of subsurface soils[J]. Communications in Soil Science and Plant Analysis, 1992, 23(9/10):919-927 doi: 10.1080-00103629209368639/
[24]HENRY S, BAUDOIN E, LóPEZ-GUTIéRREZ J C, et al. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR[J]. Journal of Microbiological Methods, 2004, 59(3):327-335 doi: 10.1016/j.mimet.2004.07.002
[25]王军, 申田田, 车钊, 等.有机和无机肥配比对黄褐土硝化和反硝化微生物丰度及功能的影响[J].植物营养与肥料学报, 2018, 24(3):641-650 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201803009
WANG J, SHEN T T, CHE Z, et al. Effects of combination of organic and inorganic fertilizers on abundances of nitrifiers and denitrifiers and their function in yellow-cinnamon soil[J]. Plant Nutrition and Fertilizer Science, 2018, 24(3):641-650 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201803009
[26]KANDELER E, DEIGLMAYR K, TSCHERKO D, et al. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland[J]. Applied and Environmental Microbiology, 2006, 72(9):5957-5962 doi: 10.1128/AEM.00439-06
[27]THROB?CK I N, ENWALL K, JARVIS A, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 2004, 49(3):401-417 doi: 10.1016/j.femsec.2004.04.011
[28]王晓辉.生物炭对设施栽培土壤硝化和反硝化微生物群落的影响研究[D].北京: 中国科学院大学, 2013: 27-29 http://www.irgrid.ac.cn/handle/1471x/855235
WANG X H. Effect of biochar on nitrifying and denitrifying microbe communities in greenhouse soils[D]. Beijing: University of Chinese Academy of Sciences, 2013: 27-29 http://www.irgrid.ac.cn/handle/1471x/855235
[29]KATUPITIYA A, EISENHAUER D E, FERGUSON R B, et al. Long-term tillage and crop rotation effects on residual nitrate in the crop root zone and nitrate accumulation in the intemedlate vadose zone[J]. Transactions of the Asae, 1997, 40(5):1321-1327 doi: 10.13031/2013.21390
[30]郑成岩, 于振文, 王东, 等.耕作方式对冬小麦氮素积累与转运及土壤硝态氮含量的影响[J].植物营养与肥料学报, 2012, 18(6):1303-1311 http://www.cnki.com.cn/Article/CJFDTotal-ZWYF201206003.htm
ZHENG C Y, YU Z W, WANG D, et al. Effects of tillage practices on nitrogen accumulation and translocation in winter wheat and NO3--N content in soil[J]. Plant Nutrition and Fertilizer Science, 2012, 18(6):1303-1311 http://www.cnki.com.cn/Article/CJFDTotal-ZWYF201206003.htm
[31]董文旭.不同耕作措施对氮素总转化过程以及作物与环境影响[D].北京: 中国科学院遗传与发育生物学研究所, 2009 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1627236
DONG W X. Effects of tillage practices on nitrogen transformation, crops and environment[D]. Beijing: University of Chinese Academy of Sciences, 2009 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1627236
[32]王玉贞, 李维岳.玉米根系与产量关系的研究进展[J].吉林农业科学, 1999, 24(4):6-8 http://www.cnki.com.cn/Article/CJFDTotal-JLNK199904001.htm
WANG Y Z, LI W Y. Research progress on relationship between roots and yield of maize[J]. Jilin Agricultural Sciences, 1999, 24(4):6-8 http://www.cnki.com.cn/Article/CJFDTotal-JLNK199904001.htm
[33]张音霄, 邹洪涛, 张玉龙, 等.免耕年限对东北旱田土壤性质及玉米根系、产量的影响[J].土壤通报, 2015, 46(2):433-437 http://d.old.wanfangdata.com.cn/Periodical/trtb201502027
ZHANG Y X, ZOU H T, ZHANG Y L, et al. Effects of no-tillage years on soil properties and maize growth[J]. Chinese Journal of Soil Science, 2015, 46(2):433-437 http://d.old.wanfangdata.com.cn/Periodical/trtb201502027
[34]邱红波, 何腾兵, 龙友华, 等.免耕栽培对玉米根系性状及其产量的影响[J].贵州农业科学, 2011, 39(9):55-57 doi: 10.3969/j.issn.1001-3601.2011.09.014
QIU H B, HE T B, LONG Y H, et al. Effect of no-tillage cultivation on maize root characters and yield[J]. Guizhou Agricultural Sciences, 2011, 39(9):55-57 doi: 10.3969/j.issn.1001-3601.2011.09.014
[35]杨丽琴, 夏小燕, 汪晓丽, 等. pH、氮素形态和Ca2+对玉米幼苗根系发育的影响[J].扬州大学学报:农业与生命科学版, 2007, 28(4):47-51 http://d.old.wanfangdata.com.cn/Periodical/jsnyyj200704012
YANG L Q, XIA X Y, WANG X L, et al. Effects of pH levels, nitrogen forms and calcium ion on root development of maize seedlings[J]. Journal of Yangzhou University:Agricultural and Life Science Edition, 2007, 28(4):47-51 http://d.old.wanfangdata.com.cn/Periodical/jsnyyj200704012
[36]党蕊娟, 李世清, 穆晓慧, 等.施氮对半湿润农田夏玉米冠层氮素及叶绿素相对值(SPAD值)垂直分布的影响[J].中国生态农业学报, 2009, 17(1):54-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200901010
DANG R J, LI S Q, MU X H, et al. Effect of nitrogen on vertical distribution of canopy nitrogen and chlorophyll relative value (SPAD value) of summer maize in sub-humid areas[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1):54-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200901010
[37]范晓晖, 朱兆良.我国几种农田土壤硝化势的研究[J].土壤通报, 2002, 33(2):124-125 doi: 10.3321/j.issn:0564-3945.2002.02.013
FAN X H, ZHU Z L. Potential of nitrification in the three soil profiles of China[J]. Chinese Journal of Soil Science, 2002, 33(2):124-125 doi: 10.3321/j.issn:0564-3945.2002.02.013
[38]胡小凤, 王正银, 孙倩倩, 等.缓释复合肥料在不同pH值紫色土中氨挥发特性[J].农业工程学报, 2009, 25(6):100-103 doi: 10.3969/j.issn.1002-6819.2009.06.018
HU X F, WANG Z Y, SUN Q Q, et al. Characteristics of ammonia volatilization of slow release compound fertilizer in different pH values of purple soils[J]. Transactions of the CSAE, 2009, 25(6):100-103 doi: 10.3969/j.issn.1002-6819.2009.06.018
[39]MINCER T J, CHURCH M J, TAYLOR L T, et al. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific subtropical gyre[J]. Environmental Microbiology, 2007, 9(5):1162-1175 doi: 10.1111/j.1462-2920.2007.01239.x
[40]刘晶静, 吴伟祥, 丁颖, 等.氨氧化古菌及其在氮循环中的重要作用[J].应用生态学报, 2010, 21(8):2154-2160 http://d.old.wanfangdata.com.cn/Periodical/yystxb201008037
LIU J J, WU W X, DING Y, et al. Ammonia-oxidizing archaea and their important roles in nitrogen biogeochemical cycling:A review[J]. Chinese Journal of Applied Ecology, 2010, 21(8):2154-2160 http://d.old.wanfangdata.com.cn/Periodical/yystxb201008037
[41]刘正辉, 李德豪.氨氧化古菌及其对氮循环贡献的研究进展[J].微生物学通报, 2015, 42(4):774-782 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201504017
LIU Z H, LI D H. Ammonia-oxidizing archaea and their contribution to global nitrogen cycling:a review[J]. Microbiology China, 2015, 42(4):774-782 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201504017
[42]贺纪正, 张丽梅.氨氧化微生物生态学与氮循环研究进展[J].生态学报, 2009, 29(1):406-415 doi: 10.3321/j.issn:1000-0933.2009.01.049
HE J Z, ZHANG L M. Advances in ammonia-oxidizing microorganisms and global nitrogen cycle[J]. Acta Ecologica Sinica, 2009, 29(1):406-415 doi: 10.3321/j.issn:1000-0933.2009.01.049
[43]周丽, 付智丹, 杜青, 等.减量施氮对玉米/大豆套作系统中作物氮素吸收及土壤氨氧化与反硝化细菌多样性的影响[J].中国农业科学, 2017, 50(6):1076-1087 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201706009
ZHOU L, FU Z D, DU Q, et al. Effects of reduced N fertilization on crop N uptake, soil ammonia oxidation and denitrification bacteria diversity in maize/soybean relay strip intercropping system[J]. Scientia Agricultura Sinica, 2017, 50(6):1076-1087 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201706009
[44]LI Y L, FAN X R, SHEN Q R. The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants[J]. Plant, Cell & Environment, 2008, 31(1):73-85 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=97e72352cf5b9fbe2e9dacae491e8052
[45]王祎, 汤继华, 付延磊, 等.不同氮水平下玉米苗期根系形态和氮吸收量的QTL定位[J].植物营养与肥料学报, 2017, 23(4):942-956 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201704011
WANG Y, TANG J H, FU Y L, et al. Mapping of QTLs for root morphology and nitrogen uptake of maize under different nitrogen conditions[J]. Plant Nutrition and Fertilizer Science, 2017, 23(4):942-956 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201704011
[46]ZHU S S, VIVANCO J M, MANTER D K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize[J]. Applied Soil Ecology, 2016, 107:324-333 doi: 10.1016/j.apsoil.2016.07.009
[47]宋利娜.农田施用可溶性有机碳源(葡萄糖)对土壤反硝化脱氮强度的影响[D].北京: 中国科学院大学, 2012 http://www.irgrid.ac.cn/handle/1471x/522988
SONG L N. Effects of soluble organic carbon source (glucose) on denitrification and denitrification intensity in farmland[D]. Beijing: University of Chinese Academy of Sciences, 2012 http://www.irgrid.ac.cn/handle/1471x/522988

相关话题/交换 土壤 图片 微生物 土层