删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

猪场肥水施用对玉米-小麦农田氨排放、氮素利用与表观平衡的影响

本站小编 Free考研考试/2022-01-01

李硕1,,
王选1,
张西群2,
刘泽龙1,
赵浩1,
赵占轻1,
张玉铭1,
孙宏勇1,
马林1,,
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省土壤生态学重点实验室 石家庄 050022
2.河北省农业机械化研究所有限公司 石家庄 050022
基金项目: 国家重点研发计划2018YFC0213300
国家自然基金项目31872403
国家自然基金项目31801943
中国科学院科技服务网络计划(STS)项目KFJ-STS-ZDTP-053
大气重污染成因与治理攻关项目DQGG0208
中国科学院重点部署项目ZDRW-ZS-2016-5
中国科学院****项目ZDRW-ZS-2016-5
河北省****基金项目D2017503023
河北省现代农业产业技术体系奶牛产业创新团队项目HBCT2018120206

详细信息
作者简介:李硕, 主要研究方向为农业生态学与养分资源管理。E-mail:lishuo@sjziam.ac.cn
通讯作者:马林, 主要研究方向为农业生态学与养分资源管理。E-mail:malin1979@sjziam.ac.cn
中图分类号:S143.1

计量

文章访问数:687
HTML全文浏览量:2
PDF下载量:570
被引次数:0
出版历程

收稿日期:2019-02-28
录用日期:2019-05-20
刊出日期:2019-10-01

Effects of swine slurry application on ammonia emission, nitrogen utilization and apparent balance of a winter wheat-summer maize rotation system

LI Shuo1,,
WANG Xuan1,
ZHANG Xiqun2,
LIU Zelong1,
ZHAO Hao1,
ZHAO Zhanqing1,
ZHANG Yuming1,
SUN Hongyong1,
MA Lin1,,
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Soil Ecology, Shijiazhuang 050022, China
2. Hebei Agricultural Mechanization Institute Co. Ltd., Shijiazhuang 050022, China
Funds: the National Key R & D Program of China2018YFC0213300
the National Natural Science Foundation of China31872403
the National Natural Science Foundation of China31801943
the Science and Technology Service Network Initiative of Chinese Academy of SciencesKFJ-STS-ZDTP-053
the National Research Program for Key Issues in Air Pollution Control of ChinaDQGG0208
the 100-Talent Project of Chinese Academy of Sciences,ZDRW-ZS-2016-5
the Key Research Program of the Chinese Academy SciencesZDRW-ZS-2016-5
the Distinguished Young Scientists Project of Natural Science Foundation of HebeiD2017503023
the Hebei Dairy Cattle Innovation Team of Modern Agro-industry Technology Research SystemHBCT2018120206

More Information
Corresponding author:MA Lin, E-mail:malin1979@sjziam.ac.cn


摘要
HTML全文
(3)(6)
参考文献(41)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:规模化生猪养殖废弃物已成为当前重要污染来源, 为有效解决猪场废水所引发面源污染问题, 有必要开展将其替代矿物氮肥(作为肥水)施用于农田的探索。以华北平原高度集约化玉米-小麦一年两熟轮作体系为对象, 通过田间小区试验, 定量研究猪场肥水施用对作物产量、氮素吸收、氮素利用效率、土壤矿质氮累积、氨挥发损失及轮作体系氮素表观平衡的影响。试验包括7个处理:不施肥对照(CK)、尿素表施(CK1)、尿素注射施用(CK2)、猪场肥水替代25%尿素氮表施(25% WB)、猪场肥水替代50%尿素氮表施(50% WB)、猪场肥水替代25%尿素氮注射施用(25% WI)和猪场肥水替代50%尿素氮注射施用(50% WI)。猪场肥水作为基肥施用。结果表明, 与CK相比, 施用尿素和猪场肥水均可显著提高玉米、小麦产量和籽粒氮吸收量, 其中25% WI最高, 50% WI次之。与尿素表施相比, 尿素注射施用、猪场肥水表施和注射施用均可明显提高氮肥农学效率、偏生产力和表观利用率, 且肥水注射施用最高, 肥水表施次之, 而25% WI和50% WI之间无显著差异。与不施肥处理相比, 施用尿素和猪场肥水0~100 cm土体矿质氮残留量显著增加50.8%~87.9%, 其中50% WB、25% WI和50% WI无显著差异。与尿素表施相比, 尿素注射施用、肥水表施和注射施用均可显著降低玉米和小麦基肥期土壤氨损失总量, 降幅分别为26.5%~48.6%和11.4%~29.1%;同时, 肥水表施和注射施用下轮作体统氮盈余显著降低7.6%~16.0%, 其中25% WI降幅最高, 但与50% WI无显著差异。综合考虑作物产量、氮素利用和环境效应, 猪场肥水替代25%和50%尿素氮注射施用是该区玉米-小麦轮作农田猪场肥水最佳施用方式。
关键词:玉米-小麦轮作农田/
猪场肥水/
注射施用/
氨排放/
氮素利用/
氮素表观平衡
Abstract:With the development of intensive swine production in China, large amounts of slurry are produced, which causes nitrogen and phosphorus loss and serious non-point pollution. A potentially efficient way to solve these environmental problems is to substitute mineral fertilizer with swine slurry in intensive maize (Zea mays L.)-wheat (Triticum aestivum L.) double-cropping rotation systems, which could promote the development of sustainable agriculture and animal husbandry. A field experiment was performed with swine slurry application in a maize-wheat double-cropping rotation system in the North China Plain. The study included the following seven treatments with three replications:zero-N control (CK); urea broadcast (CK1); urea injection (CK2); swine slurry as a substitute for 25% urea-N broadcast (25%WB), 50% urea-N broadcast (50%WB), 25% urea-N injection (25%WI), and 50% urea-N injection (50%WI). Swine slurry was applied to the soil before maize and wheat seeding. Compared with the CK, the application of urea and swine slurry significantly improved maize and wheat grain yield and N uptake, with the greatest effect seen in the 25%WI, followed by the 50%WI. Compared with the CK1, the N agronomic efficiency, N partial productivity, and apparent N recovery rate under treatments of urea injection and swine slurry broadcast and injection were significantly improved. The greatest improvement was seen in treatments of swine slurry injection, followed by treatments of swine slurry broadcast, but no significant difference was found between the 25%WI and 50%WI treatments. Compared with CK, the application of urea and swine slurry significantly improved nitrate accumulation. The increase in inorganic nitrogen ranged from 50.8%-87.9% throughout the 0-100 cm soil profile after maize harvest. No significant difference in nitrate accumulation was found among the 50%WB, 25%WI, and 50%WI treatments. Compared with CK1, swine slurry broadcast and urea and swine slurry injection significantly reduced the total amount of ammonia loss during the seeding period of maize and wheat, with reductions ranging from 26.5% to 48.6% and 11.4% to 29.1%, respectively. Meanwhile, swine slurry broadcast and injection significantly reduced N surplus from 7.6% to 16.0%, with the biggest difference found in the 25%WI treatments. However, no significant difference was found between the 25%WI and 50%WI treatments. In view of the yield, nitrogen utilization, and environmental benefits, swine slurry as a substitute for 25% and 50% urea-N injection were reasonable methods of swine slurry application in the intensive summer maize-winter wheat double-cropping rotation field.
Key words:Maize-wheat rotation field/
Swine slurry/
Injection/
Ammonia emission/
Nitrogen utilization/
Nitrogen apparent balance

HTML全文


图1不同猪场肥水施用处理下玉米基肥期(A)和追肥期(B)的氨排放速率
施肥后同天不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure1.Temporal variation of NH3 volatilization after basal fertilization (A) and top-dressing (B) in maize growth period under different swine slurry application treatments
Different lowercase letters at the same day after fertilization indicate significant differences among treatments at P < 0.05.


下载: 全尺寸图片幻灯片


图2不同猪场肥水施用处理下小麦基肥期(A)和追肥期(B)的氨排放速率
施肥后同天不同小写字母表示不同施肥处理间差异显著(P < 0.05)。
Figure2.Temporal variation of NH3 volatilization after basal fertilization (A) and top-dressing (B) in wheat growth period under different swine slurry application treatments
Different lowercase letters at the same day after fertilization indicate significant differences among treatments at P < 0.05.


下载: 全尺寸图片幻灯片


图3不同猪场肥水施用处理下玉米(A)和小麦(B)收获后0~180 cm土壤剖面NO3-N分布
Figure3.Soil NO3-N contents in 0–180 cm at harvest seasons of maize (A) and wheat (B) under different swine slurry application treatments


下载: 全尺寸图片幻灯片

表1不同处理的玉米和小麦生长期氮素施用类型、施用量和施用方法
Table1.Resources, rates of applied nitrogen and application methods during maize-wheat rotation period in different treatments of the experiment
处理
Treatment
玉米生育期Maize growth period 小麦生育期Wheat growth period
猪场肥水氮
Swine slurry-N [kg(N)?hm–2]
尿素氮
Urea-N [kg(N)?hm–2]
共计
Total [kg(N)?hm–2]
施用方式
Application method
尿素氮
Urea-N [kg(N)?hm–2]
猪场肥水氮
Swine slurry-N [kg(N)?hm–2]
共计
Total [kg(N)?hm–2]
施用方式
Application method
CK 0 0 0 0 0 0
CK1 0 240 240 表施Broadcast 0 180 180 表施Broadcast
CK2 0 240 240 注射Injection 0 180 180 注射Injection
25%WB 60 180 240 表施Broadcast 45 135 180 表施Broadcast
50%WB 120 120 240 表施Broadcast 90 90 180 表施Broadcast
25%WI 60 180 240 注射Injection 45 135 180 注射Injection
50%WI 120 120 240 注射Injection 90 90 180 注射Injection


下载: 导出CSV
表2不同猪场肥水施用处理对玉米和小麦籽粒产量的影响
Table2.Effects of different swine slurry application treatments on grain yields of maize and wheat
处理
Treatment
玉米Maize 小麦Wheat
籽粒产量
Grain yield (Mg?hm–2)
增幅
Increase (%)
相对增幅
Relative increase (%)
籽粒产量
Grain yield (Mg?hm–2)
增幅
Increase (%)
相对增幅
Relative increase (%)
CK 6.53± 0.19e 5.59±0.02e
CK1 7.57±0.46d 15.9 5.81±0.07d 3.9
CK2 7.97±0.49cd 22.0 5.3 5.92±0.20d 6.0 2.0
25%WB 8.82±0.33bc 35.0 16.5 6.40±0.07c 14.6 10.2
50%WB 9.26±0.67ab 41.6 22.3 6.47±0.05bc 15.8 11.5
25%WI 10.07±0.12a 54.1 33.0 6.74±0.05a 20.5 16.0
50%WI 10.02±0.32a 53.4 32.4 6.69±0.11ab 19.6 15.1
相对增幅为各处理相对于CK1的增幅。同列不同小写字母表示不同处理间差异显著(P < 0.05)。The relative increase is the increase as to CK1. Different lowercase letters within the same column indicate significant differences among treatments at P < 0.05.


下载: 导出CSV
表3不同猪场肥水施用处理对玉米和小麦地上部生物量的影响
Table3.Effects of different swine slurry application treatments on shoot biomasses of maize and wheat
处理
Treatment
玉米Maize 小麦Wheat
地上部生物量
Shoot biomass (Mg?hm–2)
增幅
Increase (%)
相对增幅
Relative increase (%)
地上部生物量
Shoot biomass (Mg?hm–2)
增幅
Increase (%)
相对增幅
Relative increase (%)
CK 14.92±0.24c 11.54±0.02d
CK1 17.80±1.14bc 19.3 11.97±0.10cd 3.7
CK2 19.01±0.41b 27.4 6.8 12.11±0.72bcd 5.0 1.2
25%WB 19.91±0.40ab 33.5 11.9 12.95±0.10ab 12.2 8.2
50%WB 20.72±0.55ab 38.9 16.4 12.74±0.61abc 10.4 6.4
25%WI 23.14±0.14a 55.1 30.0 13.47±0.42a 16.8 12.5
50%WI 23.12±0.41a 55.0 29.9 13.56±0.14a 17.5 13.3
相对增幅:各处理相对于CK1的增幅。同列不同小写字母表示不同处理间差异显著(P < 0.05)。The relative increase is the increase as to CK1. Different lowercase letters within the same column indicate significant differences among treatments at P < 0.05.


下载: 导出CSV
表4不同猪场肥水施用处理对玉米和小麦氮素吸收和氮肥利用效率的影响
Table4.Effects of different swine slurry application treatments on N uptake and utilization in a maize-wheat rotation succession
处理
Treatment
玉米生育期Maize period 小麦生育期Wheat period
籽粒氮吸收
Grain N uptake (kg?kg–1)
地上部氮吸收
Aboveground N uptake (kg?kg–1)
NAE (kg?kg–1) NPE (kg?kg–1) ANR (%) 籽粒氮吸收
Grain N uptake (kg?kg–1)
地上部氮吸收
Aboveground N uptake (kg?kg–1)
NAE (kg?kg–1) NPE (kg?kg–1) ANR (%)
CK 77.98±1.95e 130.20±0.25d 132.09±1.04c 172.95±1.16d
CK1 94.64±5.30d 175.84±1.14c 4.32±1.96d 31.54±1.90c 19.02±3.86c 142.10± 1.21b 185.28±1.34c 1.22±0.40d 32.27±0.40d 6.85±0.75d
CK2 103.08±5.76cd 184.98±0.41c 5.98±2.04cd 33.20±2.04bc 22.83±2.75bc 148.03±6.79b 190.93±5.45c 1.85±1.13d 32.90±1.13d 9.99±3.03d
25%WB 108.72±4.34c 194.67±0.40bc 9.52±1.39bc 36.74±1.39abc 26.86±10.29b 158.75±2.13a 203.20±1.94b 4.53±0.40c 35.57±0.40c 16.81±1.08c
50%WB 122.48±8.50b 226.40±0.55ab 11.34±2.77ab 38.56±2.77abc 40.09±14.36a 160.05±1.03a 203.98±3.87b 4.92±0.29bc 35.97±0.29bc 17.24±2.15bc
25%WI 134.63±2.00a 246.77±0.14a 14.72±0.50a 41.95±0.51a 48.57±4.60a 165.47±3.52a 213.20±5.33a 6.37±0.29a 37.42±0.29a 22.36±2.96a
50%WI 133.29±5.89ab 246.17±0.41a 14.54±1.33a 41.76±1.33a 48.32±3.88a 164.81±2.99a 212.48±4.07a 6.10±0.62ab 37.15±0.62ab 21.96±2.26ab
NAE:氮肥农学效率; NPE:氮肥偏生产力; ANR:氮肥表观利用率。同列不同小写字母表示不同处理间差异显著(P < 0.05)。NAE: N agronomic efficiency; NPE: N partial productivity; ANR: apparent N recovery rate. Different lowercase letters within the same column indicate significant differences among treatments at P < 0.05.


下载: 导出CSV
表5玉米、小麦基肥和追肥期不同猪场肥水施用处理对氨挥发及其排放因子的影响
Table5.Amount of NH3 volatilization and the proportion of applied N lost as NH3 volatilization at basal fertilization and top-dressing stages in maize and wheat growth periods under different swine slurry application treatments
作物
Crop
处理
Treatment
氨挥发
NH3 volatilization [kg(N)?hm–2?d–1]
排放因子
N lost as NH3 volatilization of the applied N (%)
基肥期
Basal fertilization
追肥期
Top-dressing
共计
Total
基肥期
Basal fertilization
追肥期
Top-dressing
共计
Total
玉米
Maize
CK 2.62±0.06d 1.86±0.15b 4.48±0.12d
CK1 8.52±0.62a 19.44±0.08a 27.96±0.66a 4.92 14.65 9.78
CK2 5.29±0.68bc 20.24±1.24a 25.54±1.57abc 2.23 15.32 8.77
25%WB 5.56±0.55bc 20.35±1.06a 25.91±1.35ab 2.45 15.41 8.93
50%WB 6.27±1.26b 20.18±0.57a 26.45±1.82ab 3.04 15.27 9.15
25%WI 5.23±0.73bc 19.49±0.76a 24.72±1.26bc 2.17 14.69 8.43
50%WI 4.38±0.47c 18.95±0.02a 23.33±0.48c 1.46 14.24 7.85
小麦
Wheat
CK 1.16±0.05f 1.31±0.13b 2.47±0.11e
CK1 11.88±0.16a 8.80±0.14a 20.68±0.23a 11.91 8.33 10.12
CK2 10.21±0.45bc 8.47±0.14a 18.69±0.57bc 10.06 7.96 9.01
25%WB 9.44±0.15d 8.69±0.19a 18.13±0.31c 9.20 8.21 8.70
50%WB 10.52±0.22b 8.62±0.12a 19.15±0.31b 10.40 8.13 9.27
25%WI 9.95±0.16c 8.58±0.23a 18.53±0.35bc 9.76 8.08 8.92
50%WI 8.43±0.23e 8.79±0.11a 17.22±0.26d 8.08 8.32 8.20
同列不同小写字母表示不同处理间差异显著(P < 0.05)。Different lowercase letters within the same column indicate significant differences among treatments at P < 0.05.


下载: 导出CSV
表6不同猪场肥水施用处理下玉米-小麦轮作周期内土壤(0~100 cm)-作物系统氮素表观平衡
Table6.Apparent N balance in soil (0-100 cm)-crop system in a maize-wheat cropping rotation succession under different swine slurry application treatments
kg(N)?hm–2
氮素收支N budget CK CK1 CK2 25%WB 50%WB 25%WI 50%WI
氮输入
N input
肥料氮Fertilizer N 0.0 420.0 420.0 420.0 420.0 420.0 420.0
种子Seeds N 7.5 7.5 7.5 7.5 7.5 7.5 7.5
大气沉降Deposition N 23.0 23.0 23.0 23.0 23.0 23.0 23.0
灌溉Irrigation N 12.0 12.0 12.0 12.0 12.0 12.0 12.0
起始矿质氮Initial Nmin 197.8 197.8 197.8 197.8 197.8 197.8 197.8
秸秆氮Straw N 95.1 124.1 124.8 128.8 146.8 155.0 155.8
总输入Total input 335.4 784.4 785.1 789.1 807.1 815.3 816.1
氮输出
N output
作物吸收Crop uptake N 303.1±9.7d 361.1±9.7c 375.9±11.4c 397.9±23.6b 430.4±37.7a 460.0±7.1a 458.6±12.9a
残留Nmin Residual N min 155.2±7.0d 233.9±27.2c 263.6±21.5abc 264.8±13.2abc 291.6±10.62a 272.3±4.0ab 255.9±9.7bc
氨挥发损失NH3-loss N 6.9±0.1d 48.6±0.7a 44.2±1.1b 44.0±1.4b 45.6±2.1b 43.2±0.9b 40.5±0.3c
其他形式氮损失Other N loss -129.9±16.6d 140.7±33.2a 101.4±31.0ab 82.4±37.1bc 39.6±25.9c 39.8±3.8c 61.0±8.5bc
氮素盈余N surplus 32.3±9.7e 423.3±9.6a 409.2±11.4ab 391.3±23.6bc 376.7±37.7cd 355.3±7.1d 357.4±12.9 d
Nmin:矿质氮。同行不同小写字母表示不同施肥处理间差异显著(P < 0.05)。Nmin: mineral nitrogen. Different lowercase letters within the same row indicate significant differences among treatments at P < 0.05.


下载: 导出CSV

参考文献(41)
[1]BAI Z H, MA L, JIN S Q, et al. Nitrogen, phosphorus, and potassium flows through the manure management chain in China[J]. Environmental Science & Technology, 2016, 50(24):13409-13418 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=529ab8bfc04341fe9a7ea8c260600d8e
[2]WANG Y, DONG H M, ZHU Z P, et al. Mitigating greenhouse gas and ammonia emissions from swine manure management:A system analysis[J]. Environmental Science & Technology, 2017, 51(8):4503-4511 http://cn.bing.com/academic/profile?id=28b5152c6889c32769eb52df8487cfaf&encoded=0&v=paper_preview&mkt=zh-cn
[3]SCHLEGEL A J, ASSEFA Y, BOND H D, et al. Changes in soil nutrients after 10 years of cattle manure and swine effluent application[J]. Soil and Tillage Research, 2017, 172:48-58 doi: 10.1016/j.still.2017.05.004
[4]VETSCH J A, SCHERDER E F, RUEN D C. Does liquid swine manure application timing and nitrapyrin affect corn yield and inorganic soil nitrogen?[J]. Agronomy Journal, 2017, 109(5):2358-2370 doi: 10.2134/agronj2017.03.0163
[5]HAO X J, ZHANG T Q, WANG Y T, et al. Soil test phosphorus and phosphorus availability of swine manures with long-term application[J]. Agronomy Journal, 2018, 110(5):1943-1950 doi: 10.2134/agronj2017.07.0412
[6]陶晓婷, 朱正杰, 高威, 等.规模化猪场处理废水与化肥配施对小麦氮素吸收利用的影响[J].农业环境科学学报, 2014, 33(3):555-561 http://www.cnki.com.cn/Article/CJFDTotal-NHBH201403024.htm
TAO X T, ZHU Z J, GAO W, et al. Nitrogen uptake and utilization in wheat as influenced by pig slurry from large-scale pig farm[J]. Journal of Agro-Environment Science, 2014, 33(3):555-561 http://www.cnki.com.cn/Article/CJFDTotal-NHBH201403024.htm
[7]杜会英, 冯洁, 张克强, 等.牛场肥水灌溉对冬小麦产量与氮利用效率及土壤硝态氮的影响[J].植物营养与肥料学报, 2016, 22(2):536-541 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201602029
DU H Y, FENG J, ZHANG K Q, et al. Effects of dairy effluents irrigation on yield and nitrogen use efficiency of winter wheat and soil nitrate nitrogen[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2):536-541 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201602029
[8]ARONSSON H, LIU J, EKRE E, et al. Effects of pig and dairy slurry application on N and P leaching from crop rotations with spring cereals and forage leys[J]. Nutrient Cycling in Agroecosystems, 2014, 98(3):281-293 doi: 10.1007/s10705-014-9611-3
[9]GIROTTO E, CERETTA C A, LOURENZI C R, et al. Nutrient transfers by leaching in a no-tillage system through soil treated with repeated pig slurry applications[J]. Nutrient Cycling in Agroecosystems, 2013, 95(1):115-131 doi: 10.1007/s10705-013-9552-2
[10]GONZATTO R, AITA C, B LANGER G, et al. Response of no-till grain crops to pig slurry application methods and a nitrification inhibitor[J]. Agronomy Journal, 2017, 109(4):1687-1696 doi: 10.2134/agronj2016.09.0547
[11]AITA C, GONZATTO R, MIOLA E C C, et al. Injection of dicyandiamide-treated pig slurry reduced ammonia volatilization without enhancing soil nitrous oxide emissions from no-till corn in southern Brazil[J]. Journal of Environment Quality, 2014, 43(3):789-800 doi: 10.2134/jeq2013.07.0301
[12]PIETZNER B, R CKNAGEL J, KOBLENZ B, et al. Impact of slurry strip-till and surface slurry incorporation on NH3 and N2O emissions on different plot trials in central Germany[J]. Soil and Tillage Research, 2017, 169:54-64 doi: 10.1016/j.still.2017.01.011
[13]CONGREVES K A, GRANT B B, DUTTA B, et al. Predicting ammonia volatilization after field application of swine slurry:DNDC model development[J]. Agriculture, Ecosystems & Environment, 2016, 219:179-189 http://cn.bing.com/academic/profile?id=dcd7dc65af2debd2cd5b3e7a4b294da6&encoded=0&v=paper_preview&mkt=zh-cn
[14]JING Q, JéGO G, BéLANGER G, et al. Simulation of water and nitrogen balances in a perennial forage system using the STICS model[J]. Field Crops Research, 2017, 201:10-18 doi: 10.1016/j.fcr.2016.10.017
[15]HERNáNDEZ D, POLO A, PLAZA C. Long-term effects of pig slurry on barley yield and N use efficiency under semiarid Mediterranean conditions[J]. European Journal of Agronomy, 2013, 44:78-86 doi: 10.1016/j.eja.2012.09.001
[16]MORENO-GARCíA B, GUILLéN M, QU LEZíD. Response of paddy rice to fertilisation with pig slurry in Northeast Spain:Strategies to optimise nitrogen use efficiency[J]. Field Crops Research, 2017, 208:44-54 doi: 10.1016/j.fcr.2017.01.023
[17]PLAZA-BONILLA D, CANTERO-MARTíNEZ C, BARECHE J, et al. Do no-till and pig slurry application improve barley yield and water and nitrogen use efficiencies in rainfed Mediterranean conditions?[J]. Field Crops Research, 2017, 203:74-85 doi: 10.1016/j.fcr.2016.12.008
[18]刘学军, 赵紫娟, 巨晓棠, 等.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J].生态学报, 2002, 22(7):1122-1128 doi: 10.3321/j.issn:1000-0933.2002.07.022
LIU X J, ZHAO Z J, JU X T, et al. Effect of N application as basal fertilizer on grain yield of winter wheat, fertilizer N recovery and N balance[J]. Acta Ecologica Sinica, 2002, 22(7):1122-1128 doi: 10.3321/j.issn:1000-0933.2002.07.022
[19]杨晓卡, 米慧玲, 高韩钰, 等.不同栽培模式对冬小麦-夏玉米轮作系统产量、氮素累积和平衡的影响[J].应用生态学报, 2016, 27(6):1935-1941 http://d.old.wanfangdata.com.cn/Periodical/yystxb201606028
YANG X K, MI H L, GAO H Y, et al. Effects of different cultivation patterns on yield, nitrate accumulation and nitrogen balance in winter wheat and summer maize rotation system[J]. Chinese Journal of Applied Ecology, 2016, 27(6):1935-1941 http://d.old.wanfangdata.com.cn/Periodical/yystxb201606028
[20]JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9):3041-3046 doi: 10.1073/pnas.0813417106
[21]PAN D, KONG F B, ZHANG N, et al. Knowledge training and the change of fertilizer use intensity:Evidence from wheat farmers in China[J]. Journal of Environmental Management, 2017, 197:130-139 doi: 10.1016/j.jenvman.2017.03.069
[22]LIU Z, GAO J, GAO F, et al. Integrated agronomic practices management improve yield and nitrogen balance in double cropping of winter wheat-summer maize[J]. Field Crops Research, 2018, 221:196-206 doi: 10.1016/j.fcr.2018.03.001
[23]SUN L Y, WU Z, MA Y C, et al. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China[J]. Atmospheric Environment, 2018, 181:97-105 doi: 10.1016/j.atmosenv.2018.02.050
[24]石鹏飞, 郑媛媛, 赵平, 等.华北平原种养一体规模化农场氮素流动特征及利用效率——以河北津龙循环农业园区为例[J].应用生态学报, 2017, 28(4):1281-1288 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201704027
SHI P F, ZHENG Y Y, ZHAO P, et al. Nitrogen flow characteristic and use efficiency in mixed crop-livestock system in North China Plain:Hebei Jinlong circular agriculture farm as an example[J]. Chinese Journal of Applied Ecology, 2017, 28(4):1281-1288 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201704027
[25]苏芳, 丁新泉, 高志岭, 等.华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发[J].中国环境科学, 2007, 27(3):409-413 doi: 10.3321/j.issn:1000-6923.2007.03.025
SU F, DING X Q, GAO Z L, et al. Ammonia volatilization from nitrogen fertilization of winter wheat-summer maize rotation system in the North China Plain[J]. China Environmental Science, 2007, 27(3):409-413 doi: 10.3321/j.issn:1000-6923.2007.03.025
[26]董文旭, 吴电明, 胡春胜, 等.华北山前平原农田氨挥发速率与调控研究[J].中国生态农业学报, 2011, 19(5):1115-1121 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201105022
DONG W X, WU D M, HU C S, et al. Ammonia volatilization and control mechanisms in the piedmont of North China plain[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5):1115-1121 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201105022
[27]郑凤霞, 董树亭, 刘鹏, 等.长期有机无机肥配施对冬小麦籽粒产量及氨挥发损失的影响[J].植物营养与肥料学报, 2017, 23(3):567-577 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201703002
ZHENG F X, DONG S T, LIU P, et al. Effects of combined application of manure and chemical fertilizers on ammonia volatilization loss and yield of winter wheat[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3):567-577 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201703002
[28]THOMPSON R B, PAIN B F, REES Y J. Ammonia volatilization from cattle slurry following surface application to grassland[J]. Plant and Soil, 1990, 125(1):119-128 doi: 10.1007/BF00010751
[29]陈效民, 吴华山, 孙静红.太湖地区农田土壤中铵态氮和硝态氮的时空变异[J].环境科学, 2006, 27(6):1217-1222 doi: 10.3321/j.issn:0250-3301.2006.06.035
CHEN X M, WU H S, SUN J H. Time-spatial variability of ammonium and nitrate in farmland soil of Taihu Lake region[J]. Environmental Science, 2006, 27(6):1217-1222 doi: 10.3321/j.issn:0250-3301.2006.06.035
[30]MARTINES A M, NOGUEIRA M A, SANTOS C A, et al. Ammonia volatilization in soil treated with tannery sludge[J]. Bioresource Technology, 2010, 101(12):4690-4696 doi: 10.1016/j.biortech.2010.01.104
[31]SUBKE J, HAHN V, BATTIPAGLIA G, et al. Feedback interactions between needle litter decomposition and rhizosphere activity[J]. Oecologia, 2004, 139(4):551-559 doi: 10.1007/s00442-004-1540-4
[32]BASSO B, RITCHIE J T. Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize-alfalfa rotation in Michigan[J]. Agriculture, Ecosystems & Environment, 2005, 108(4):329-341 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b53152b78bd17812a430a4ec0e5ca9fa
[33]杨军, 张蕾, 张克强, 等.猪场废水灌溉对潮土硝态氮含量变化的影响[J].农业工程学报, 2009, 25(5):35-39 http://d.old.wanfangdata.com.cn/Periodical/nygcxb200905007
YANG J, ZHANG L, ZHANG K Q, et al. Effects of irrigation with piggery wastewater on nitrate nitrogen dynamics in fluvio-aquatic soil[J]. Transactions of the CSAE, 2009, 25(5):35-39 http://d.old.wanfangdata.com.cn/Periodical/nygcxb200905007
[34]杜会英, 冯洁, 郭海刚, 等.麦季牛场肥水灌溉对冬小麦-夏玉米轮作土壤氮素平衡的影响[J].农业工程学报, 2015, 31(3):159-165 doi: 10.3969/j.issn.1002-6819.2015.03.022
DU H Y, FENG J, GUO H G, et al. Effects of dairy effluents irrigation on N balance in soil under winter wheat-summer maize rotation system[J]. Transactions of the CSAE, 2015, 31(3):159-165 doi: 10.3969/j.issn.1002-6819.2015.03.022
[35]LALOR S T J, SCHR?DER J J, LANTINGA E A, et al. Nitrogen fertilizer replacement value of cattle slurry in grassland as affected by method and timing of application[J]. Journal of Environment Quality, 2011, 40(2):362 doi: 10.2134/jeq2010.0038
[36]MARTíNEZ E, MARESMA A, BIAU A, et al. Long-term effects of pig slurry combined with mineral nitrogen on maize in a Mediterranean irrigated environment[J]. Field Crops Research, 2017, 214:341-349 doi: 10.1016/j.fcr.2017.09.025
[37]彭少兵, 黄见良, 钟旭华, 等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学, 2002, 35(9):1095-1103 doi: 10.3321/j.issn:0578-1752.2002.09.012
PENG S B, HUANG J L, ZHONG X H, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002, 35(9):1095-1103 doi: 10.3321/j.issn:0578-1752.2002.09.012
[38]DOBERMANN A R. Nitrogen use efficiency-State of the art[C]//IFA International Workshop on Enhanced Efficiency Fertilizers. Frankfurt, Germany, 2005
[39]张福锁, 王激清, 张卫峰, 等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报, 2008, 45(5):915-924 doi: 10.3321/j.issn:0564-3929.2008.05.018
ZHANG F S, WANG J Q, ZHANG W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5):915-924 doi: 10.3321/j.issn:0564-3929.2008.05.018
[40]刘学军, 巨晓棠, 张福锁.减量施氮对冬小麦-夏玉米种植体系中氮利用与平衡的影响[J].应用生态学报, 2004, 15(3):458-462 doi: 10.3321/j.issn:1001-9332.2004.03.020
LIU X J, JU X T, ZHANG F S. Effect of reduced N application on N utilization and balance in winter wheat-summer maize cropping system[J]. Chinese Journal of Applied Ecology, 2004, 15(3):458-462 doi: 10.3321/j.issn:1001-9332.2004.03.020
[41]石德杨, 张海艳, 董树亭.土壤高残留氮条件下施氮对夏玉米氮素平衡、利用及产量的影响[J].植物营养与肥料学报, 2013, 19(1):37-44 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201301005
SHI D Y, ZHANG H Y, DONG S T. Effects of nitrogen application on nitrogen balance and use efficiency and yield of summer maize in soil with high residual nitrogen[J]. Plant Nutrition and Fertilizer Science, 2013, 19(1):37-44 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201301005

相关话题/土壤 农田 中国科学院 农业 作物