删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

玉米/大豆、玉米/花生间作对作物氮素吸收及结瘤固氮的影响

本站小编 Free考研考试/2022-01-01

张晓娜,
陈平,
杜青,
周颖,
任建锐,
金福,
杨文钰,
雍太文,
四川农业大学农学院/农业部西南作物生理生态与耕作重点实验室/四川省作物带状复合种植工程技术研究中心 成都 611130
基金项目: 国家重点研发计划2018YFD0201006
国家现代农业(大豆)产业技术体系专项CARS-04-03A

详细信息
作者简介:张晓娜, 主要从事作物氮素营养相关研究。E-mail:1039738012@qq.com
通讯作者:雍太文, 主要从事作物栽培生理生态研究。E-mail:yongtaiwen@sicau.edu.cn
中图分类号:S513;S565

计量

文章访问数:690
HTML全文浏览量:1
PDF下载量:448
被引次数:0
出版历程

收稿日期:2018-12-05
录用日期:2019-03-28
刊出日期:2019-08-01

Effects of maize/soybean and maize/peanut intercropping systems on crops nitrogen uptake and nodulation nitrogen fixation

ZHANG Xiaona,
CHEN Ping,
DU Qing,
ZHOU Ying,
REN Jianrui,
JIN Fu,
YANG Wenyu,
YONG Taiwen,
College of Agriculture, Sichuan Agriculture University/Key Laboratory of Crop Physiology, Ecology and Cultivation in Southwest China, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, China
Funds: the National Key Research and Development Project of China2018YFD0201006
the Special Fund for the Industrial System Construction of Modern Agriculture of ChinaCARS-04-03A

More Information
Corresponding author:YONG Taiwen, E-mail:yongtaiwen@sicau.edu.cn


摘要
HTML全文
(10)(2)
参考文献(42)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:禾本科与豆科作物间作具有显著的增氮作用。为探明玉米/大豆、玉米/花生间作模式的氮素吸收、氮营养竞争能力及豆科结瘤特性的变化,解释玉米与豆科间作体系的增氮效应,通过田间试验,设置玉米单作(MM)、大豆单作(SS)、玉米/大豆间作(MS)、花生单作(PP)、玉米/花生间作(MP)等5种种植模式,研究不同种植模式对作物氮素积累、氮营养竞争强弱及豆科结瘤固氮特性的调控作用。结果表明,与单作相比,间作显著降低玉米和大豆的氮素积累量,对花生的氮素积累量影响不显著。5种模式系统氮素积累总量表现为MS > SS > MP,PP和MM处理最低且差异不显著,MS处理比MP处理显著高21.8%。与MM处理相比,MS和MP处理的玉米氮素积累量分别降低20.5%和11.7%,其中MP处理籽粒、叶片和茎秆氮素积累量比MS处理高8.9%、21.2%和14.3%。与SS处理相比,MS处理的大豆氮素积累量降低28.5%,其中,中行、边行分别降低10.1%、15.4%。玉米相对大豆氮营养竞争比率表现为强(CRms>1),相对花生则表现为弱(CRmp < 1)。与SS处理相比,五叶期MS处理的大豆根瘤数量显著增加,根瘤鲜重无显著差异,盛花期后根瘤数量和鲜重均显著降低;MS处理的大豆根瘤固氮酶活性均降低,且中行降低幅度更大。与PP处理相比,开花期MP处理的花生根瘤数量和鲜重均显著增加,下针期后均显著降低;MP处理的花生根瘤固氮酶活性均降低,且边行降低幅度更大。各间作模式作物的氮素积累量虽然降低,但间作模式的系统氮素积累量却显著高于各单作模式,两种间作模式中MS处理的氮素积累总量最高。
Abstract:Cereal/legume-based intercropping systems have a significant effect on the soil by increasing nitrogen (N) content. To understand the trends of N uptake, N nutrient competition capacity, and the legume nodulation characteristics in a maize/legume intercropping system, we investigated the N absorption advantage in maize/soybean and maize/peanut strip intercropping systems. We conducted a field experiment to study N accumulation, N nutrient competition, and the legume nodulation N fixation regulation characteristics in different planting patterns, which were maize monoculture (MM), soybean monoculture (SS), maize/soybean intercropping (MS), peanut monoculture (PP), and maize/peanut intercropping (MP). The results showed that compared with the monocultures, intercropping decreased N accumulation in maize and soybeans and had no significant effect on the N accumulation in peanuts. The trend of total N accumulation in the five planting patterns was MS > SS > MP; PP and MM treatments exhibited the lowest accumulation and the difference was not significant. Moreover, the N accumulation of MS treatment was 21.8% higher than that of MP treatment. Additionally, N accumulation of maize in MS and MP treatments decreased by 20.5% and 11.7%, respectively, compared with MM treatment. N accumulation of grain, leaves, and stalks of maize in MP treatment was 8.9%, 21.2%, and 14.3% higher than those in MS treatment. Furthermore, N accumulation of soybean in MS treatment decreased by 28.5%, and the central and fringe rows decreased by 10.1% and 15.4%, respectively compared with SS treatment. The effect of MP treatment on peanut N accumulation was not significant. The value of N nutrition competition indicated that maize had a dominant position in MS, whereas it exhibited less competition in MP treatment. Compared with SS treatment, the number of soybean nodules in MS treatment was higher at the fifth trifoliate stage and lower after the full bloom stage. The effect of nodule fresh weight was not significant at the fifth trifoliate stage, and it decreased after the full bloom stage. Nitrogenase activity of soybean nodules in MS treatment decreased, and the decrease was greater in the central rows. Relative to PP treatment, the number and fresh weight of peanut nodules in MP treatment were higher at the early flowering stage and lower after the acicula forming stage. The nitrogenase activity of peanut nodules in MP treatment decreased, and the amplitude of the decrease was greater in the fringe row. Although the amount of N accumulation of crops in the intercropping planting patterns was reduced, the total N accumulation of the intercropping system was significantly higher than the monoculture planting patterns. The amount of N accumulation of MS treatment was the highest in the two intercropping planting patterns.

HTML全文


图1不同种植模式示意图
MM:玉米单作; SS:大豆单作; PP:花生单作; MS:玉米/大豆间作; MP:玉米/花生间作。
Figure1.Diagrammatic sketchs of different planting patterns
MM: maize monoculture; SS: soybean monoculture; PP: peanut monoculture; MS: maize/soybean intercropping; MP: maize/peanut intercropping.


下载: 全尺寸图片幻灯片


图2与玉米间作对大豆中行和边行根瘤数量(A)和根瘤鲜重(B)的影响
C:宽行中的中行; F:宽行中的边行; SS:大豆单作; MS:玉米/大豆间作。V5:五叶期; R2:盛花期; R6:鼓粒期。不同字母表示单作和间作的中行和边行间0.05水平上差异显著。
Figure2.Effects of intercropping with maize on nodule number (A) and nodule fresh weight (B) of soybeans in central and fringe rows
C: central row in the wide-rows; F: fringe row in the wide-rows; SS: soybean monoculture; MS: maize/soybean intercropping. V5: 5-trifoliate stage; R2: full bloom stage; R6: seed filling stage. Different lowercase letters mean significant differences among central row and fringe row of monoculture and intercropping at 0.05 probability level.


下载: 全尺寸图片幻灯片


图3与玉米间作对花生中行和边行根瘤数量(A)和根瘤鲜重(B)的影响
C:宽行中的中行; F:宽行中的边行; PP:花生单作; MP:玉米/花生间作。ES:开花期; AS:下针期; FS:饱果期。不同字母表示单作和间作的中行和边行间0.05水平上差异显著。
Figure3.Effects of intercropping with maize on nodule number (A) and nodule fresh weight (B) of peanuts in central and fringe rows
C: central row in the wide-rows; F: fringe row in the wide-rows; PP: peanut monoculture; MP: maize/peanut intercropping. ES: early flowering stage; AS: acicula forming stage; FS: filling stage. Different lowercase letters mean significant differences among central row and fringe row of monoculture and intercropping at 0.05 probability level.


下载: 全尺寸图片幻灯片


图4与玉米间作对中行和边行大豆根瘤固氮酶活性(A)和固氮酶潜力(B)的影响
C:宽行中的中行; F:宽行中的边行; SS:大豆单作; MS:玉米/大豆间作。V5:五叶期; R2:盛花期; R6:鼓粒期。不同字母表示单作和间作的中行和边行间0.05水平上差异显著。
Figure4.Effect of intercropping with maize on nitrogenase activity (A) and nitrogenase fixation potential (B) of nodule of soybeans in central and fringe rows
C: central row in the wide-rows; F: fringe row in the wide-rows; SS: soybean monoculture; MS: maize/soybean intercropping. V5: 5-trifoliate stage; R2: full bloom stage; R6: seed filling stage. Different lowercase letters mean significant differences among central row and fringe row of monoculture and intercropping at 0.05 probability level.


下载: 全尺寸图片幻灯片


图5与玉米间作对中行和边行花生根瘤固氮酶活性(A)和固氮酶潜力(B)的影响
C:宽行中的中行; F:宽行中的边行; PP:花生单作; MP:玉米/花生间作。ES:开花期; AS:下针期; FS:饱果期。不同字母表示单作和间作的中行和边行间0.05水平上差异显著。
Figure5.Effect of intercropping with maize on nitrogenase activity (A) and nitrogenase fixation potential (B) of nodule of peanuts in central and fringe rows
C: central row in the wide-rows; F: fringe row in the wide-rows; PP: peanut monoculture; MP: maize/peanut intercropping. ES: early flowering stage; AS: acicula forming stage; FS: filling stage. Different lowercase letters mean significant differences among central row and fringe row of monoculture and intercropping at 0.05 probability level.


下载: 全尺寸图片幻灯片


图6间作模式对玉米单株氮素积累(A)和氮素分配(B)的影响
MM:玉米单作; MS:玉米/大豆间作; MP:玉米/花生间作。不同小写字母表示不同处理间0.05水平上差异显著。
Figure6.Effect of intercropping patterns on N accumulation (A) and N distribution (B) of maize
MM: maize monoculture; MS: maize/soybean intercropping; MP: maize/peanut intercropping. Different lowercase letters mean significant differences among planting patterns at 0.05 probability level.


下载: 全尺寸图片幻灯片


图7与玉米间作对中行和边行大豆氮素积累(A)和氮素分配(B)的影响
C:宽行中的中行; F:宽行中的边行; SS:大豆单作; MS:玉米/大豆间作。不同小写字母表示单作和间作的中行和边行间0.05水平上差异显著。
Figure7.Effect of intercropping with maize on N accumulation (A) and N distribution (B) in soybeans in central and fringe rows
C: central row in the wide-rows; F: fringe row in the wide-rows; SS: soybean monoculture; MS: maize/soybean intercropping. Different lowercase letters mean significant differences among central row and fringe row of monoculture and intercropping at 0.05 probability level.


下载: 全尺寸图片幻灯片


图8间作模式对中行和边行花生氮素积累(A)和氮素分配(B)的影响
C:宽行中的中行; F:宽行中的边行; PP:花生单作; MP:玉米/花生间作。不同小写字母表示单作和间作的中行和边行间0.05水平上差异显著。
Figure8.Effects of intercropping patterns on N accumulation (A) and N distribution (B) in central and fringe rows of peanut
C: central row in the wide-rows; F: fringe row in the wide-rows; PP: peanut monoculture; MP: maize/peanut intercropping. Different lowercase letters mean significant differences among central row and fringe row of monoculture and intercropping at 0.05 probability level.


下载: 全尺寸图片幻灯片


图9玉米/大豆(MS)和玉米/花生(MP)间作系统中玉米相对大豆(CRms)和花生(CRmp)的氮营养竞争比率
Figure9.N nutrient competition ratios of maize relative to soybean (CRms) and to peanut (CRmp) in maize/soybean (MS) and maize/peanut (MP) intercropping systems


下载: 全尺寸图片幻灯片


图10大豆(A)和花生(B)氮素积累量与根瘤固氮酶活性的相关性
“**”表示在0.01水平上显著相关。
Figure10.Correlation between N accumulation and nodule nitrogenase activity of soybean (A) and peanut (B)
"**" indicates significant correlation at the level of 0.01.


下载: 全尺寸图片幻灯片

表1间作模式对大豆和花生不同生育期根瘤数量和鲜重的影响
Table1.Effects of intercropping patterns on nodule number and fresh weight of soybean and peanut at different growth stages
作物
Crop
处理
Treatment
根瘤数量?Nodule number per plant 根瘤鲜重?Nodule fresh weight (g·plant-1)
V5(ES) R2(AS) R6(FS) V5(ES) R2(AS) R6(FS)
大豆
Soybean
SS 31.8±1.57b 249.8±5.56a 249.9±4.10a 0.4±0.01a 5.2±0.19a 4.1±0.13a
MS 36.7±0.75a 177.2±2.16b 229.9±2.80b 0.4±0.02a 4.1±0.04b 3.8±0.16a
花生
Peanut
PP 29.3±0.37b 217.9±0.30a 256.6±6.88a 0.4±0.01b 2.1±0.08a 2.9±0.07a
MP 38.7±0.39a 116.8±2.02b 205.8±1.25b 0.5±0.01a 1.2±0.06b 2.4±0.16b
SS:大豆单作; MS:玉米/大豆间作; PP:花生单作; MP:玉米/花生间作。大豆的生育时期: V5, 五叶期; R2, 盛花期; R6, 鼓粒期。花生的生育时期: ES, 开花期; AS, 下针期; FS, 饱果期。同列数据同一作物后不同字母表示单作与间作在0.05水平上差异显著。SS: soybean monoculture; MS: maize/soybean intercropping; PP: peanut monoculture; MP: maize/peanut intercropping. V5, R2 and R6 are the growth stages of soybean of 5-trifoliate stage, full bloom stage and seed filling stage. ES, AS and FS are the growth stages of peanut of early flowering stage, acicula forming stage and filling stage. Different lowercase letters of the same crop in a column mean significant difference between monoculture and intercropping at 0.05 probability level.


下载: 导出CSV
表2玉米/大豆和玉米/花作间作对作物氮素积累量的影响
Table2.N accumulate of maize, soybean and peanut of maize/soybean and maize/peanut intercropping patterns
kg?hm-2
处理
Treatment
玉米
Maize
大豆
Soybean
花生
Peanut
总量
Total
MM 152.6±2.49a 152.6±2.49d
SS 356.8±1.91a 356.8±1.91b
MS 121.3±3.78c 254.9±0.95b 376.2±2.95a
PP 153.4±4.95a 153.4±4.95d
MP 134.7±1.54b 160.9±5.93a 295.4±7.42c
MM:玉米单作; SS:大豆单作; MS:玉米/大豆间作; PP:花生单作; MP:玉米/花生间作。同列数据后不同小写字母表示在0.05水平上差异显著。MM: maize monoculture; SS: soybean monoculture; MS: maize/soybean intercropping; PP: peanut monoculture; MP: maize/peanut intercropping. Values followed by different lowercase letters with a column are significantly different at 0.05 probability level.


下载: 导出CSV

参考文献(42)
[1]刘均霞, 陆引罡, 远红伟, 等.玉米/大豆间作条件下作物根系对氮素的吸收利用[J].华北农学报, 2008, 23(1): 173-175 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnxb200801038
LIU J X, LU Y G, YUAN H W, et al. The roots of the crop usually absorb and utilize studying to nitrogen under the maize/soybean intercropping condition[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(1): 173-175 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnxb200801038
[2]王自奎, 吴普特, 赵西宁, 等.作物间套作群体光能截获和利用机理研究进展[J].自然资源学报, 2015, 30(6): 1057-1066 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201506016
WANG Z K, WU P T, ZHAO X N, et al. A review of light interception and utilization by intercropped canopies[J]. Journal of Natural Resources, 2015, 30(6): 1057-1066 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201506016
[3]夏海勇, 李隆, 张正.间套作体系土壤磷素吸收优势和机理研究进展[J].中国土壤与肥料, 2015, (1): 1-6 http://d.old.wanfangdata.com.cn/Periodical/trfl201501001
XIA H Y, LI L, ZHANG Z. Research advances on soil phosphorus acquisition advantages and mechanisms in intercropping systems[J]. Soil and Fertilizer Sciences in China, 2015, (1): 1-6 http://d.old.wanfangdata.com.cn/Periodical/trfl201501001
[4]张凤云, 吴普特, 赵西宁, 等.间套作提高农田水分利用效率的节水机理[J].应用生态学报, 2012, 23(5): 1400-1406 http://d.old.wanfangdata.com.cn/Periodical/yystxb201205036
ZHANG F Y, WU P T, ZHAO X N, et al. Water-saving mechanisms of intercropping system in improving cropland water use efficiency[J]. Chinese Journal of Applied Ecology, 2012, 23(5): 1400-1406 http://d.old.wanfangdata.com.cn/Periodical/yystxb201205036
[5]肖靖秀, 郑毅.间套作系统中作物的养分吸收利用与病虫害控制[J].中国农学通报, 2005, 21(3): 150-154 doi: 10.3969/j.issn.1000-6850.2005.03.041
XIAO J X, ZHENG Y. Nutrients uptake and pests and diseases control of crops in intercropping system[J]. Chinese Agricultural Science Bulletin, 2005, 21(3): 150-154 doi: 10.3969/j.issn.1000-6850.2005.03.041
[6]李隆.间套作强化农田生态系统服务功能的研究进展与应用展望[J].中国生态农业学报, 2016, 24(4): 403-415 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016401&flag=1
LI L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403-415 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016401&flag=1
[7]徐燕, 郑毅, 毛昆明, 等.玉米魔芋间作条件下作物的氮素养分吸收规律研究[J].云南农业大学学报, 2007, 22(6): 881-886 doi: 10.3969/j.issn.1004-390X.2007.06.022
XU Y, ZHENG Y, MAO K M, et al. Nitrogen uptake and utilization of plant in maize and konjaku intercropping[J]. Journal of Yunnan Agricultural University, 2007, 22(6): 881-886 doi: 10.3969/j.issn.1004-390X.2007.06.022
[8]柏文恋, 郑毅, 肖靖秀.豆科禾本科间作促进磷高效吸收利用的地下部生物学机制研究进展[J].作物杂志, 2018, (4): 20-27 http://d.old.wanfangdata.com.cn/Periodical/zwzz201804004
BAI W L, ZHENG Y, XIAO J X. Below-ground biotic mechanisms of phosphorus uptake and utilization improved by cereal and legume intercropping-a review[J]. Crops, 2018, (4): 20-27 http://d.old.wanfangdata.com.cn/Periodical/zwzz201804004
[9]付学鹏, 吴凤芝, 吴瑕, 等.间套作改善作物矿质营养的机理研究进展[J].植物营养与肥料学报, 2016, 22(2): 525-535 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201602028
FU X P, WU F Z, WU X, et al. Advances in the mechanism of improving crop mineral nutrients in intercropping and relay intercropping systems[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 525-535 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201602028
[10]王树起, 沈其荣, 褚贵新, 等.种间竞争对旱作水稻与花生间作系统根系分布和氮素吸收积累的影响[J].土壤学报, 2006, 43(5): 860-863 doi: 10.3321/j.issn:0564-3929.2006.05.022
WANG S Q, SHEN Q R, CHU G X, et al. Effect of interspecies competition on root distribution and nitrogen uptake of peanut and rice in intercropping in aerobic soil[J]. Acta Pedologica Sinica, 2006, 43(5): 860-863 doi: 10.3321/j.issn:0564-3929.2006.05.022
[11]董楠.不同作物组合间作优势和时空稳定性的生态机制[D].北京: 中国农业大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10019-1017164670.htm
DONG N. The ecological mechanism of yield advantage and spatio-temporal stability in different crop combinations[D]. Beijing: China Agricultural University, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10019-1017164670.htm
[12]徐强.线辣椒/玉米套作生理生态机制研究[D].杨凌: 西北农林科技大学, 2007 http://cdmd.cnki.com.cn/Article/CDMD-10712-2007189332.htm
XU Q. Study on physiology and ecology mechanism of capsicum and maize relay intercropping system[D]. Yangling: Northwest A & F University, 2007 http://cdmd.cnki.com.cn/Article/CDMD-10712-2007189332.htm
[13]张德闪, 李洪波, 申建波.集约化互作体系植物根系高效获取土壤养分的策略与机制[J].植物营养与肥料学报, 2017, 23(6): 1547-1555 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201706013
ZHANG D S, LI H B, SHEN J B. Strategies for root's foraging and acquiring soil nutrient in high efficiency under intensive cropping systems[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1547-1555 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201706013
[14]张少斌, 梁开明, 郭靖, 等.基于生态位角度的农作物间套作增产机制研究进展[J].福建农业学报, 2016, 31(9): 1005-1012 http://d.old.wanfangdata.com.cn/Periodical/fjnyxb201609020
ZHANG S B, LIANG K M, GUO J, et al. Yield improvement by intercropping - Viewed from a niche perspective[J]. Fujian Journal of Agricultural Sciences, 2016, 31(9): 1005-1012 http://d.old.wanfangdata.com.cn/Periodical/fjnyxb201609020
[15]肖焱波.豆科/禾本科间作体系中养分竞争和氮素转移研究[D].北京: 中国农业大学, 2003 http://cdmd.cnki.com.cn/Article/CDMD-10019-2003092777.htm
XIAO Y B. Interspecific competition for nutrients and nitrogen transfer between the intercropped legume and cereal[D]. Beijing: China Agricultural University, 2003 http://cdmd.cnki.com.cn/Article/CDMD-10019-2003092777.htm
[16]谢凯, 翁伯琦.玉米与旱地作物间作套种研究进展[J].中国农学通报, 2014, 30(6): 26-32 http://d.old.wanfangdata.com.cn/Periodical/csjsllyj2014200589
XIE K, WENG B Q. Research advances on intercropping technology of maize with other dryland crops[J]. Chinese Agricultural Science Bulletin, 2014, 30(6): 26-32 http://d.old.wanfangdata.com.cn/Periodical/csjsllyj2014200589
[17]赵叶舟, 王浩铭, 汪自强.豆科植物和根瘤菌在生态环境中的地位和作用[J].农业环境与发展, 2013, 30(4): 7-12 doi: 10.3969/j.issn.1005-4944.2013.04.002
ZHAO Y Z, WANG H M, WANG Z Q. The role of leguminous plants and rhizobium in ecological environment[J]. Agro-Environment and Development, 2013, 30(4): 7-12 doi: 10.3969/j.issn.1005-4944.2013.04.002
[18]陈文新, 陈文峰.发挥生物固氮作用减少化学氮肥用量[J].中国农业科技导报, 2004, 6(6): 3-6 doi: 10.3969/j.issn.1008-0864.2004.06.001
CHEN W X, CHEN W F. Exertion of biological nitrogen fixation in order to reducing the consumption of chemical nitrogenous fertilizer[J]. Review of China Agricultural Science and Technology, 2004, 6(6): 3-6 doi: 10.3969/j.issn.1008-0864.2004.06.001
[19]韦革宏, 马占强.根瘤菌-豆科植物共生体系在重金属污染环境修复中的地位、应用及潜力[J].微生物学报, 2010, 50(11): 1421-1430 http://d.old.wanfangdata.com.cn/Periodical/wswxb201011001
WEI G H, MA Z Q. Application of rhizobia-legume symbiosis for remediation of heavy-metal contaminated soils[J]. Acta Microbiologica Sinica, 2010, 50(11): 1421-1430 http://d.old.wanfangdata.com.cn/Periodical/wswxb201011001
[20]于晓波, 苏本营, 龚万灼, 等.玉米-大豆带状套作对大豆根瘤性状和固氮能力的影响[J].中国农业科学, 2014, 47(9): 1743-1753 doi: 10.3864/j.issn.0578-1752.2014.09.009
YU X B, SU B Y, GONG W Z, et al. The nodule characteristics and nitrogen fixation of soybean in maize-soybean relay strip intercropping[J]. Scientia Agricultura Sinica, 2014, 47(9): 1743-1753 doi: 10.3864/j.issn.0578-1752.2014.09.009
[21]冯晓敏, 杨永, 臧华栋, 等.燕麦花生间作系统作物氮素累积与转移规律[J].植物营养与肥料学报, 2018, 24(3): 617-624 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201803006
FENG X M, YANG Y, ZANG H D, et al. Characteristics of crop nitrogen accumulation and nitrogen transfer in oat and peanut intercropping system[J]. Plant Nutrition and Fertilizer Science, 2018, 24(3): 617-624 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201803006
[22]赵财, 柴强, 乔寅英, 等.禾豆间距对间作豌豆"氮阻遏"减缓效应的影响[J].中国生态农业学报, 2016, 24(9): 1169-1176 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016903&flag=1
ZHAO C, CHAI Q, QIAO Y Y, et al. Effect of cereal-legume spacing in intercropping system on alleviating "N inhibition" in pea plants[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1169-1176 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016903&flag=1
[23]房增国, 左元梅, 赵秀芬, 等.玉米-花生混作系统中的氮铁营养效应[J].生态环境, 2006, 15(1): 134-139 doi: 10.3969/j.issn.1674-5906.2006.01.029
FANG Z G, ZUO Y M, ZHAO X F, et al. Effects of maize-peanut mixed cropping on N and Fe nutrition[J]. Ecology and Environment, 2006, 15(1): 134-139 doi: 10.3969/j.issn.1674-5906.2006.01.029
[24]杨燕竹, 杜青, 陈平, 等.玉米大豆播期衔接对间作大豆干物质积累及产量的影响[J].华北农学报, 2017, 32(3): 96-102 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201703015
YANG Y Z, DU Q, CHEN P, et al. Effect of maize and soybean sowing date cohesion on soybean dry matter accumulation and yield in intercropping[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(3): 96-102 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201703015
[25]范元芳, 刘沁林, 王锐, 等.玉米-大豆带状间作对大豆生长、光合荧光特性及产量的影响[J].核农学报, 2017, 31(5): 972-978 http://d.old.wanfangdata.com.cn/Periodical/hnxb201705019
FAN Y F, LIU Q L, WANG R, et al. Effects of shading on growth, photosynthetic fluorescence characteristics and yield of soybean in maize-soybean intercropping systems[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(5): 972-978 http://d.old.wanfangdata.com.cn/Periodical/hnxb201705019
[26]王小春, 杨文钰, 邓小燕, 等.玉米/大豆和玉米/甘薯模式下玉米干物质积累与分配差异及氮肥的调控效应[J].植物营养与肥料学报, 2015, 21(1): 46-57 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201501005
WANG X C, YANG W Y, DENG X Y, et al. Differences of dry matter accumulation and distribution of maize and their responses to nitrogen fertilization in maize/soybean and maize/sweet potato relay intercropping systems[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 46-57 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201501005
[27]张晓娜, 陈平, 庞婷, 等.玉米/豆科间作种植模式对作物干物质积累、分配及产量的影响[J].四川农业大学学报, 2017, 35(4): 484-490 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scnydxxb201704004
ZHANG X N, CHEN P, PANG T, et al. The effects of dry matter accumulation, distribution and yield in the maize/soybean and maize/peanut intercropping system[J]. Journal of Sichuan Agricultural University, 2017, 35(4): 484-490 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scnydxxb201704004
[28]刘文钰, 雍太文, 刘小明, 等.减量施氮对玉米-大豆套作体系中大豆根瘤固氮及氮素吸收利用的影响[J].大豆科学, 2014, 33(5): 705-712 http://d.old.wanfangdata.com.cn/Periodical/ddkx201405015
LIU W Y, YONG T W, LIU X M, et al. Effect of reduced N application on nodule N fixation, N uptake and utilization of soybean in maize-soybean relay strip intercropping system[J]. Soybean Science, 2014, 33(5): 705-712 http://d.old.wanfangdata.com.cn/Periodical/ddkx201405015
[29]WILLEY R W, RAO M R. A competitive ratio for quantifying competition between intercrops[J]. Experimental Agriculture, 1980, 16(2): 117-125 doi: 10.1017/S0014479700010802
[30]李玉英, 胡汉升, 程序, 等.种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响[J].生态学报, 2011, 31(6): 1617-1630 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201106015
LI Y Y, HU H S, CHENG X, et al. Effects of interspecific interactions and nitrogen fertilization rates on above- and below-growth in faba bean/maize intercropping system[J]. Acta Ecologica Sinica, 2011, 31(6): 1617-1630 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201106015
[31]秦娟, 上官周平.植物之间互作效应及其生理机制[J].干旱地区农业研究, 2005, 23(3): 225-230 doi: 10.3321/j.issn:1000-7601.2005.03.048
QIN J, SHANGGUAN Z P. Interaction effect and physiological mechanism in plants[J]. Agricultural Research in the Arid Areas, 2005, 23(3): 225-230 doi: 10.3321/j.issn:1000-7601.2005.03.048
[32]左元梅, 刘永秀, 张福锁.玉米/花生混作改善花生铁营养对花生根瘤碳氮代谢及固氮的影响[J].生态学报, 2004, 24(11): 2584-2590 doi: 10.3321/j.issn:1000-0933.2004.11.034
ZUO Y M, LIU Y X, ZHANG F S. Effects of improved iron nutrition of peanut intercropped with maize on carbon and nitrogen metabolism and nitrogen-fixing of peanut nodule[J]. Acta Ecologica Sinica, 2004, 24(11): 2584-2590 doi: 10.3321/j.issn:1000-0933.2004.11.034
[33]李秀平, 李穆, 年海, 等.甘蔗/大豆间作对甘蔗和大豆产量与品质的影响[J].东北农业大学学报, 2012, 43(7): 42-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbnydxxb201207010
LI X P, LI M, NIAN H, et al. Effect of sugarcane/soybean intercropping on growth, yield and quality of sugarcane and soybean[J]. Journal of Northeast Agricultural University, 2012, 43(7): 42-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbnydxxb201207010
[34]李娟, 王文丽, 赵旭, 等.根际分隔对玉米/豌豆间作种间竞争及豌豆结瘤固氮的影响[J].干旱地区农业研究, 2016, 34(6): 177-183 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201606027
LI J, WANG W L, ZHAO X, et al. Effect of roots partitions on interspecific competition and nitrogen fixation in the pea-maize intercropping[J]. Agricultural Research in the Arid Areas, 2016, 34(6): 177-183 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201606027
[35]刘卫国, 蒋涛, 佘跃辉, 等.大豆苗期茎秆对荫蔽胁迫响应的生理机制初探[J].中国油料作物学报, 2011, 33(2): 141-146 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201102009
LIU W G, JIANG T, SHE Y H, et al. Preliminary study on physiological response mechanism of soybean (Glycine max) stem to shade stress at seedling stage[J]. Chinese Journal of Oil Crop Sciences, 2011, 33(2): 141-146 http://d.old.wanfangdata.com.cn/Periodical/zgylzwxb201102009
[36]林佩真, 周惠民, 樊庆笙.光照强度对大豆根瘤固氮作用的影响[J].南京农业大学学报, 1985, 8(4): 58-63 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Y1627992
LIN P Z, ZHOU H M, FAN Q S. Effect of light intensity on nitrogen fixation of rhizobium-soybean symbiosis[J]. Journal of Nanjing Agricultural University, 1985, 8(4): 58-63 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Y1627992
[37]吴巍, 赵军.植物对氮素吸收利用的研究进展[J].中国农学通报, 2010, 26(13): 75-78 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201013017
WU W, ZHAO J. Advances on plants' nitrogen assimilation and utilization[J]. Chinese Agricultural Science Bulletin, 2010, 26(13): 75-78 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201013017
[38]张雷昌, 汤利, 董艳, 等.根系互作影响玉米大豆间作作物氮吸收[J].云南农业大学学报:自然科学版, 2016, 31(6): 1111-1119 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ynnydxxb201606022
ZHANG L C, TANG L, DONG Y, et al. Nitrogen absorption of crops affected by root interaction in maize and soybean intercropping[J]. Journal of Yunnan Agricultural University: Natural Science, 2016, 31(6): 1111-1119 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ynnydxxb201606022
[39]赵平, 郑毅, 汤利, 等.小麦蚕豆间作施氮对小麦氮素吸收、累积的影响[J].中国生态农业学报, 2010, 18(4): 742-747 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20104742&flag=1
ZHAO P, ZHENG Y, TANG L, et al. Effect of N supply and wheat/faba bean intercropping on N uptake and accumulation of wheat[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 742-747 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20104742&flag=1
[40]余常兵, 孙建好, 李隆.种间相互作用对作物生长及养分吸收的影响[J].植物营养与肥料学报, 2009, 15(1): 1-8 doi: 10.3321/j.issn:1008-505X.2009.01.001
YU C B, SUN J H, LI L. Effect of interspecific interaction on crop growth and nutrition accumulation[J]. Plant Nutrition and Fertilizer Science, 2009, 15(1): 1-8 doi: 10.3321/j.issn:1008-505X.2009.01.001
[41]夏志超.根系分泌物介导的植物种间地下化学作用[D].北京: 中国农业大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10019-1017164671.htm
XIA Z C. Root exudates mediated belowground chemical interactions between plants[D]. Beijing: China Agricultural University, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10019-1017164671.htm
[42]杨雪芳.化感水稻对邻近植物的生物化学响应及其化感物质衍生物的抑草机制[D].北京: 中国农业大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10019-1017164657.htm
YANG X F. Biological and chemical responses of allelopathic rice to neighboring plants and the weed-suppressive mechanisms of rice allelochemical derivatives[D]. Beijing: China Agricultural University, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10019-1017164657.htm

相关话题/作物 营养 植物 图片 生态