删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于结构突变的农牧交错带草地生态足迹演变阶段分析

本站小编 Free考研考试/2022-01-01

高艺宁1,,
赵萌莉1,,,
王宏亮2, 4, 5,
郝晋珉3, 4,
熊梅1,
赵天启1
1.内蒙古农业大学草原与资源环境学院 呼和浩特 010010
2.内蒙古大学公共管理学院 呼和浩特 010010
3.中国农业大学土地科学与技术学院 北京 100193
4.自然资源部农用地质量与监控重点实验室 北京 100193
5.呼和浩特市国土资源局 呼和浩特 010010
基金项目: 国家自然科学基金项目31861143001
国家自然科学基金项目31660108
国家科技支撑项目2015BAD06B01

详细信息
作者简介:高艺宁, 主要研究方向为草地生态与景观规划。E-mail:nmggyn@126.com
通讯作者:赵萌莉, 主要研究方向为草地生态学。E-mail:nmgmlzh@126.com
中图分类号:S812

计量

文章访问数:545
HTML全文浏览量:6
PDF下载量:503
被引次数:0
出版历程

收稿日期:2018-10-10
录用日期:2019-01-08
刊出日期:2019-05-01

Evolution of grassland ecological footprints based on variable structures of farming-pasturing interlocked areas

GAO Yining1,,
ZHAO Mengli1,,,
WANG Hongliang2, 4, 5,
HAO Jinmin3, 4,
XIONG Mei1,
ZHAO Tianqi1
1. College of Grassland Resources and Environment, Inner Mongolia Agriculture University, Hohhot 010010, China
2. School of Public Administration, Inner Mongolia University, Hohhot 010010, China
3. College of Land Science and Technology, China Agricultural University, Beijing 100193, China
4. Key Laboratory for Farmland Quality and Monitoring of Ministry of Natural Resources, Beijing 100193, China
5. Hohhot Bureau of Land and Resources, Hohhot 010010, China
Funds: National Natural Science Foundation of China31861143001
National Natural Science Foundation of China31660108
National Key Technologies R & D Program of China2015BAD06B01

More Information
Corresponding author:Corresponding author, E-mail: nmgmlzh@126.com


摘要
HTML全文
(1)(8)
参考文献(21)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为准确判定草原生态与经济发展之间的互动关系,科学划分草地生态足迹演变的时间节点,本文以内蒙古典型农牧交错带四子王旗为研究对象,采用1987-2016年草地生态足迹和人均GDP的时间序列,基于BP结构突变协整检验对该区域的草地消耗与经济增长展开分析。结果表明:不考虑结构突变的协整检验,对草原生态保护政策下的四子王旗并不适合;而结构突变的协整检验能良好地反映长时期农牧交错带资源与经济的结构性变化,体现资源消耗与经济增长的动态均衡,并呈现出资源消耗到经济增长的单向因果关系。研究区草地生态足迹的演变可划分为3个阶段:低度协同阶段(1987-2002年)、政策驱动阶段(2002-2009年)和快速发展阶段(2009-2016年)。不同阶段,草地生态足迹的短期波动(-2.289、-1.082和0.495)趋于平缓,长期均衡系数(0.292%、0.728%和1.355%)逐步提升,表明生态保护政策有助于草地资源利用效率的提升。该结果不仅有益于协调区域经济发展与草地资源利用,也为农牧交错带科学编制草地生态保护规划提供一定的参考。
关键词:草地生态足迹/
经济增长/
演变阶段/
BP结构突变/
协整分析/
四子王旗
Abstract:Siziwang Banner is a typical agri-pastoral ecotone of Inner Mongolia, where animal husbandry is the foundation supporting economic development. The grassland resources have a profound influence on the livestock industry. The time scale studied in this paper spans nearly 30 years, and during this period, the grassland resources of Siziwang Banner were degraded by human economic activities on a large scale. With the increasing awareness of environmental protection, the national and local governments have adopted a series of ecological measures, through projects such as returning farmland to grasslands, and the comprehensive management of grasslands to help improve their ecology. The transformation from grassland degradation to improving ecological, to a certain extent, reflects that regional economic construction is no longer purely at the expense of the environment but is gradually adopting a sustainable development approach. Coordination between economic construction and ecological protection should be emphasized. In order to study grassland ecology and economic development, a feasible ecological evaluation model is needed. The ecological footprint model has been widely used in China, but grassland ecological footprints are rarely found in agro-pastoral interlaced areas. The ecological footprint of the grassland and the time series of GDP per capita from 1987 to 2016 were used to analyze the grassland consumption and economic growth in Siziwang Banner, by using the Bai-Perron structural mutation co-integration test. The results of this co-integration test, which did not consider structural mutation, showed that it was not suitable for Siziwang Banner under a variety of grassland ecological protection policies. Besides, a co-integration test of structural mutation could reflect the economy of the agricultural and pastoral ecotone over a long period. The structural changes reflected the dynamic equilibrium between grassland consumption and economic growth and presented a one-way causality from grassland consumption to economic growth. The evolution of the grassland ecological footprint could be divided into three stages:a low-degree coordination stage (1987-2002), a policy-driven stage (2002-2009), and a rapid development stage (2009-2016). In the different stages, the absolute value of short-term fluctuations of the grasslands ecological footprint tended to be flat, but the long-term equilibrium coefficients gradually increased. The results showed that the ecological protection policy was helpful for improving the utilization efficiency of grassland resources. We found that the dependence of economic growth on grassland consumption gradually decreased, and the mode of economic growth at the expense of resources changed under the policies of ecological protection over the past 20 years. Sustainable methods for both economic development and ecological protection were advancing. Our results were not only beneficial to coordinate the development of regional economies and the utilization of grassland resources, but could also be used as reference for the future scientific planning of grassland ecological protection in the ecotones of agriculture and animal husbandry.
Key words:Grassland ecological footprint/
Economic growth/
Evolution stage/
BP structural mutation/
Co-integration analysis/
Siziwang Banner

HTML全文


图11987—2016年四子王旗草地生态足迹与人均GDP时序变化图
Figure1.Change of grassland ecological footprint and per capita GDP from 1987 to 2016 in Siziwang Banner


下载: 全尺寸图片幻灯片

表1非结构突变协整关系的草地生态足迹单位根检验结果
Table1.Results of unit root tests on the co-integration of grassland ecological footprint based on unstructured mutation
检验变量
Test variable
检验类型(C, T)
Test type (C, T)
ADF检验值
ADF test value
临界值Critical valuePP检验值PP test value可调整T值Adjusted T value结论
1%5%10%1%5%10%Conclusion
lnGEF(1, 1)-2.747-4.310-3.574-3.222-2.859-4.310-3.574-3.222非平稳Unsteady
(1, 0)-2.548-3.679-2.968-2.623-2.563-3.679-2.968-2.623非平稳Unsteady
(0, 0)0.780-2.650-1.953-1.6101.308-2.647-1.953-1.610非平稳Unsteady
ΔlnGEF(1, 1)-9.188***-4.324-3.581-3.225-31.511***-4.324-3.581-3.225平稳Steady
(1, 0)-9.356***-3.689-2.972-2.625-28.079***-3.689-2.972-2.625平稳Steady
(0, 0)-9.364***-2.650-1.953-1.610-12.298***-2.650-1.953-1.610平稳Steady
lnGDP(1, 1)-2.265-4.310-3.574-3.222-2.344-4.310-3.574-3.222非平稳Unsteady
(1, 0)-2.580-3.753-2.998-2.639-0.833-3.679-2.968-2.623非平稳Unsteady
(0, 0)3.716-2.647-1.953-1.6104.220-2.647-1.953-1.610非平稳Unsteady
ΔlnGDP(1, 1)-6.667***-4.324-3.581-3.225-6.539***-4.324-3.581-3.225平稳Steady
(1, 0)-6.802***-3.689-2.972-2.625-6.662***-3.689-2.972-2.625平稳Steady
(0, 0)-1.340-2.657-1.954-1.609-4.890***-2.650-1.953-1.610平稳Steady
E0(1, 1)-6.107***-4.310-3.574-3.222-9.628***-4.310-3.574-3.222平稳Steady
(1, 0)-6.221***-3.679-2.968-2.623-10.018***-3.679-2.968-2.623平稳Steady
(0, 0)-6.335***-2.647-1.953-1.610-10.422***-2.647-1.953-1.610平稳Steady
??GEF:草地生态足迹; GDP:人均国民生产总值; C为截距项; T为时间趋势。*、**和***分别表示在90%、95%和99%置信水平的显著性; Δ代表一阶差分; E0为残差序列。GEF means grassland ecological footprint. GDP means per capita GDP. C is intercept. T is time trend item. Δ is the first difference of sequence variable. E0 is residual sequence. *, ** and *** show significant at 90%, 95% and 99% confidence intervals.


下载: 导出CSV
表2基于BP结构突变的草地生态足迹间断时点估计
Table2.Estimation of breakpoints of grassland ecological footprint based on BP structural mutation
间断点数
Breaks number
F统计值
F-statistic
标度F统计值
Scaled F-statistic
加权F统计值
Weighted F-statistic
临界值
Critical value
等权最大化统计
UDmax statistic
加权最大化统计
WDmax statistic
估计间断时点
Estimated breakpoint
12.0864.1734.17311.470161.815317.2682009
26.41812.83611.80315.1012002, 2009
??UDmax和WDmax在1%统计水平显著的临界值分别为11.70和12.81。The critical values of UDmax and WDmax are 11.70 and 12.81 at 1% statistical level, respectively.


下载: 导出CSV
表3基于BP结构突变的草地生态足迹Chow断点检验结果
Table3.Results of Chow breakpoint test of grassland ecological footprint based on BP structural mutation
断点检验
Breakpoint test
样本时间跨度
Time span of sample
F统计量
F statistic
对数似然比
Log likelihood ratio
瓦尔德统计
Wald statistic
F值概率
Prob. F
卡方概率(1)
Prob. Chi-square (1)
卡方概率(2)
Prob. Chi-square (2)
20021987—200947.18441.08294.3670.0000.0000.000
1987—201639.94142.12779.8820.0000.0000.000
20092002—201632.50528.99565.0110.0000.0000.000
1987—201613.26521.09926.5300.0000.0000.000


下载: 导出CSV
表4基于BP结构突变的草地生态足迹不同阶段单位根检验结果
Table4.Results of different stage unit root tests of grassland ecological footprint based on BP structural mutation
检验阶段
Test stage
时间跨度
Time span
变量
Variable
ADF检验ADF testPP检验PP test
检验值(C, T, L)
Test value (C, T, L)
临界值
Critical value
结论
Conclusion
检验值
Test value
临界值
Critical value
结论
Conclusion
1t阶段
1t stage
1987—2002lnGEF-0.456 (0, 0, 0)-1.605非平稳Unsteady-0.463-1.605非平稳Unsteady
ΔlnGEF-2.311 (0, 0, 0)-1.968**平稳Steady-2.401-1.968**平稳Steady
lnGDP-0.350 (1, 0, 0)-2.681非平稳Unsteady-0.350-2.681非平稳Unsteady
ΔlnGDP-4.926 (1, 0, 0)-4.004***平稳Steady-4.795-4.004***平稳Steady
2t阶段
2t stage
2002—2009lnGEF0.221 (0, 0, 0)-1.598非平稳Unsteady0.244-1.598非平稳Unsteady
ΔlnGEF-3.107 (0, 0, 0)-3.007***平稳Steady-3.107-3.007***平稳Steady
lnGDP4.835 (0, 0, 0)-1.598非平稳Unsteady-1.527-3.702非平稳Unsteady
ΔlnGDP-1.927 (1, 0, 1)-1.597*平稳Steady-5.542-4.773**平稳Steady
3t阶段
3t stage
2009—2016lnGEF0.861 (0, 0, 0)-1.598非平稳Unsteady1.044-1.598非平稳Unsteady
ΔlnGEF-6.894 (0, 0, 0)-3.007***平稳Steady-11.883-3.007***平稳Steady
lnGDP0.058 (1, 1, 0)-3.702非平稳Unsteady2.579-3.702非平稳Unsteady
ΔlnGDP-4.056 (1, 1, 0)-3.878*平稳Steady-7.963-7.006***平稳Steady
4t阶段
4t stage
1987—2009lnGEF0.359 (0, 0, 0)-1.608非平稳Unsteady-0.070-1.608非平稳Unsteady
ΔlnGEF-6.815 (0, 0, 0)-2.680***平稳Steady-7.281-2.680***平稳Steady
lnGDP-0.305 (1, 0, 0)-2.642非平稳Unsteady-0.305-2.642非平稳Unsteady
ΔlnGDP-6.147 (1, 0, 0)-3.788***平稳Steady-5.988-3.788***平稳Steady
5t阶段
5t stage
2002—2016lnGEF0.554 (0, 0, 1)-1.604非平稳Unsteady0.643-1.604非平稳Unsteady
ΔlnGEF-6.888 (0, 0, 0)-2.755***平稳Steady-7.844-2.755***平稳Steady
lnGDP-0.329 (1, 1, 0)-3.342非平稳Unsteady-0.077-3.342非平稳Unsteady
ΔlnGDP-3.617 (1, 1, 0)-3.363***平稳Steady-3.622-3.363*平稳Steady
??GEF:草地生态足迹; GDP:人均国民生产总值; C为截距项; T为时间趋势; L为滞后阶数。*、**和***分别表示在90%、95%和99%置信水平显著; Δ为序列变量的一阶差分; PP检验法的结尾期由序列样本自动获取。GEF means grassland ecological footprint. GDP means per capita GDP. C is intercept. T is time trend item. L is lag. *, ** and *** show significant at 90%, 95% and 99% confidence intervals. Δ is the first difference of sequence variable. The truncated period of PP test is automatically obtained from sequence samples.


下载: 导出CSV
表5基于BP结构突变的草地生态足迹不同阶段协整模型构建结果
Table5.Results of different stage co-integration models of grassland ecological footprint based on BP structural mutation
检验阶段
Test stage
时间跨度
Time span
模型类型
Model type
方程
Formula
R2F统计量
F-statistic
1t阶段
1t stage
1987—2002协整方程Co-integration equationlnGEFt=0.292lnGDPt+11.689+ε0.2183.903
修正项Correction termECMt=lnGEFt-1-0.423lnGDPt-1-10.308
修正模型Modified modelΔlnGEFt=-2.289ECMt-1+0.384ΔlnGDPt-0.1280.4120.982
2t阶段
2t stage
2002—2009协整方程Co-integration equationlnGEFt=0.728lnGDPt+7.272+ε0.2984.428
修正项Correction termECMt=lnGEFt-1+0.048lnGDPt-1-14.614
修正模型Modified modelΔlnGEFt=-1.082ECMt-1+0.451ΔlnGDPt+0.2790.6083.096
3t阶段
3t stage
2009—2016协整方程Co-integration equationlnGEFt=1.355lnGDPt+0.770+ε0.5166.407
修正项Correction termECMt=lnGEFt-1+0.771lnGDPt-1-21.753
修正模型Modified modelΔlnGEFt=0.495ECMt-1+0.186ΔlnGDPt+0.5550.5532.469
4t阶段
4t stage
1987—2009协整方程Cointegration equationlnGEFt=0.372lnGDPt+10.623+ε0.43516.192
修正项Correction termECMt=lnGDPt-1-0.379lnGEFt-1-10.609
修正模型Modified modelΔlnGEFt=-1.278ECMt-1+0.004ΔlnGDPt+0.0080.5453.359
5t阶段5t stage2002—2016协整方程Cointegration equationlnGEFt=0.599lnGDPt+8.433+ε0.3025.617
修正项Correction termECMt=lnGDPt-1-0.201lnGEFt-1-16.146
修正模型Modified modelΔlnGEFt=-0.914ECMt-1+0.171ΔlnGDPt+0.2900.5984.464
??GEF:草地生态足迹; GDP:人均国民生产总值; ε为扰动向量; ECM为误差修正项; t-1为样本阶段滞后1期, 表中样本阶段共划分为5期; Δ为序列变量的一阶差分。GEF means grassland ecological footprint. GDP means per capita GDP. ε is disturbance vector. ECM is error correction term. t-1 is one lag phase of sample stage, and the sample stages are divided into five stages in the table. Δ is the first difference of sequence variable.


下载: 导出CSV
表6基于BP结构突变的草地生态足迹协整方程残差序列单位根检验结果
Table6.Results of co-integration residual unit root tests of grassland ecological footprint based on BP structural mutation
残差序列
Residual sequence
检验阶段
Test stage
检验类型(C, T, L)
Test type (C, T, L)
ADF检验值
ADF test value
临界值
Critical value (%)
结论
Conclusion
1510
E11t阶段1t stage(1, 0, 0)-3.918**-4.200-3.175-2.729平稳Steady
E22t阶段2t stage(0, 0, 0)-2.577**-2.847-1.988-1.600平稳Steady
E33t阶段3t stage(0, 0, 0)-2.305**-2.847-1.988-1.600平稳Steady
E44t阶段4t stage(0, 0, 0)-4.438***-2.692-1.960-1.607平稳Steady
E55t阶段5t stage(1, 0, 0)-3.886***-2.817-3.213-1.601平稳Steady
??E为残差; C为截距项; T为时间趋势; L为滞后阶数。*、**和***分别表示在90%、95%和99%置信水平显著。E was residual. C is intercept. T is time trend item. L is lag. *, ** and *** show significance in the 90%, 95% and 99% confidence intervals.


下载: 导出CSV
表7基于BP结构突变的草地生态足迹不同阶段格兰杰因果关系检验结果
Table7.Results of Granger causality tests in different stages of grassland ecological footprint based on BP structural mutation
检验阶段
Test stage
时间跨度
Time span
最优滞后期
Lag phase
lnGEF不是lnGDP的格兰杰原因
lnGEF is not the Granger cause of lnGDP
lnGDP不是lnGEF的格兰杰原因
lnGDP is not the Granger cause of lnGEF
F统计量F statisticPP value结论
Conclusion
F统计量F statisticPP value结论
Conclusion
1t阶段1t stage1987—200217.9730.015拒绝Refuse1.4900.246接受Accept
2t阶段2t stage2002—200911.0930.355接受Accept0.5050.517接受Accept
3t阶段3t stage2009—2016111.2570.028拒绝Refuse0.5990.482接受Accept
??GEF:草地生态足迹; GDP:人均国民生产总值。GEF means grassland ecological footprint. GDP means per capita GDP.


下载: 导出CSV
表8草地生态足迹的模型估计比较结果
Table8.Results of different models estimation comparison of grassland ecological footprint
检验阶段
Test stage
时间跨度
Time span
均方根误差
Root mean square error
平均绝对误差
Mean absolute error
平均绝对百分比误
Mean absolute percentage error
泰尔系数
Theil coefficient
0t阶段0t stage1987—20168.1808.09898.1620.960
1t阶段1t stage1987—20027.0016.94497.6440.944
2t阶段2t stage2002—20097.6567.35798.1120.934
3t阶段3t stage2009—20168.0667.97497.9460.928


下载: 导出CSV

参考文献(21)
[1]侯向阳.中国草原科学[M].北京:科学出版社, 2013
HOU X Y. Chinese Grassland Science[M]. Beijing:Science Press, 2013
[2]赵英伟, 刘黎明, 白晓飞.西部大开发草地资源可持续利用评价与发展对策[J].中国生态农业学报, 2004, 12(2):15-18 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2004205&flag=1
ZHAO Y W, LIU L M, BAI X F. Evaluation and countermeasures of the sustainable utilization of grassland resources in development of western China[J]. Chinese Journal of Eco-agriculture, 2004, 12(2):15-18 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2004205&flag=1
[3]高艺宁, 赵萌莉, 熊梅, 等.农牧交错带草地景观格局特征及其影响因素分析[J].中国农业大学学报, 2018, 23(10):103-111 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201810013
GAO Y N, ZHAO M L, XIONG M, et al. Analysis of characteristics and influencing factors of grassland landscape pattern in the farming-pasturing interlocked areas[J]. Journal of China Agricultural University, 2018, 23(10):103-111 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201810013
[4]侯向阳.中国草原保护建设技术进展及推广应用效果[J].中国草地学报, 2009, 31(1):4-12 http://d.old.wanfangdata.com.cn/Periodical/zgcd200901002
HOU X Y. Research progress and extension effects of grassland protection and construction techniques in China[J]. Chinese Journal of Grassland, 2009, 31(1):4-12 http://d.old.wanfangdata.com.cn/Periodical/zgcd200901002
[5]陈操操, 张妍, 刘春兰, 等.北京市能源消费与经济增长关系的协整检验分析[J].环境科学, 2012, 33(6):2139-2144 http://d.old.wanfangdata.com.cn/Periodical/hjkx201206057
CHEN C C, ZHANG Y, LIU C L, et al. Energy consumption and GDP growth in Beijing:Cointegration and causality analysis[J]. Environmental Science, 2012, 33(6):2139-2144 http://d.old.wanfangdata.com.cn/Periodical/hjkx201206057
[6]韩智勇, 魏一鸣, 焦建玲, 等.中国能源消费与经济增长的协整性与因果关系分析[J].系统工程, 2004, 22(12):17-21 doi: 10.3969/j.issn.1001-4098.2004.12.004
HAN Z Y, WEI Y M, JIAO J L, et al. On the cointegration and causality between Chinese GDP and energy consumption[J]. Systems Engineering, 2004, 22(12):17-21 doi: 10.3969/j.issn.1001-4098.2004.12.004
[7]马宏伟, 刘思峰, 袁潮清, 等.基于生产函数的中国能源消费与经济增长的多变量协整关系的分析[J].资源科学, 2012, 34(12):2374-2381 http://d.old.wanfangdata.com.cn/Periodical/zykx201212018
MA H W, LIU S F, YUAN C Q, et al. Cointegration analysis of economic growth and energy consumption in China using a multivariate framework based on Neo-classical production[J]. Resources Science, 2012, 34(12):2374-2381 http://d.old.wanfangdata.com.cn/Periodical/zykx201212018
[8]汪旭晖, 刘勇.中国能源消费与经济增长:基于协整分析和Granger因果检验[J].资源科学, 2007, 29(5):57-62 doi: 10.3321/j.issn:1007-7588.2007.05.009
WANG X H, LIU Y. China's energy consumption and economic growth:A study based on the cointegration analysis and Granger causality test[J]. Resources Science, 2007, 29(5):57-62 doi: 10.3321/j.issn:1007-7588.2007.05.009
[9]姬超, 颜玮.广义系统下中国草地资源的退化成因与可持续利用对策[J].农业现代化研究, 2013, 34(5):538-542 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyxdhyj201305006
JI C, YAN W. Analysis of China grassland degradation problems and sustainable use under perspective of generalized system[J]. Research of Agricultural Modernization, 2013, 34(5):538-542 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyxdhyj201305006
[10]陈秋红.经济发展与草地资源退化之间的一般规律[J].中国人口?资源与环境, 2010, 20(11):122-127 http://d.old.wanfangdata.com.cn/Periodical/zgrkzyyhj201011022
CHEN Q H. The general law of the relationship between natural grassland degradation and economic development in China[J]. China Population, Resources and Environment, 2010, 20(11):122-127 http://d.old.wanfangdata.com.cn/Periodical/zgrkzyyhj201011022
[11]沈政, 李军, 张也.探析经济增长与保持草原生态——基于EKC理论的实证分析[J].中国农业资源与区划, 2012, 33(3):51-57 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyzyyqh201203010
SHEN Z, LI J, ZHANG Y. Does economic growth benefit grassland ecosystems[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2012, 33(3):51-57 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyzyyqh201203010
[12]姚兴成, 曲恬甜, 常文静, 等.基于MODIS数据和植被特征估算草地生物量[J].中国生态农业学报, 2017, 25(4):530-541 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170407&flag=1
YAO X C, QU T T, CHANG W J, et al. Estimation of grassland biomass using MODIS data and plant community characteristics[J]. Chinese Journal of Eco-agriculture, 2017, 25(4):530-541 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170407&flag=1
[13]吴郁玲, 冯忠垒, 周勇, 等.耕地集约利用影响因素的协整分析[J].中国人口·资源与环境, 2011, 21(11):67-72 doi: 10.3969/J.issn.1002-2104.2011.11.012
WU Y L, FENG Z L, ZHOU Y, et al. Co-integration analysis on driving factors of intensive cultivated land use based on perspective of farmers:A case study of Hubei Province[J]. China Population, Resources and Environment, 2011, 21(11):67-72 doi: 10.3969/J.issn.1002-2104.2011.11.012
[14]WACKERNAGEL M, REES W. Our Ecological Footprint:Reducing Human Impact on the Earth[M]. Gabriola Island:New Society Publishers, 1996
[15]周涛, 王云鹏, 龚健周, 等.生态足迹的模型修正与方法改进[J].生态学报, 2015, 35(14):4592-4603 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201514004
ZHOU T, WANG Y P, GONG J Z, et al. Ecological footprint model modification and method improvement[J]. Acta Ecologica Sinica, 2015, 35(14):4592-4603 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201514004
[16]刘玉杰, 李向林, 何峰.基于饲养标准的家畜单位折算方法[J].草地学报, 2009, 17(4):500-504 http://d.old.wanfangdata.com.cn/Periodical/cdxb200904017
LIU Y J, LI X L, HE F. Animal unit conversion method based on feeding standard[J]. Acta Agrestia Sinica, 2009, 17(4):500-504 http://d.old.wanfangdata.com.cn/Periodical/cdxb200904017
[17]WACKERNAGEL M, MONFREDA C, ERB K H, et al. Ecological footprint time series of Austria, the Philippines, and South Korea for 1961-1999:Comparing the conventional approach to an 'actual land area' approach[J]. Land Use Policy, 2004, 21(3):261-269 doi: 10.1016/j.landusepol.2003.10.007
[18]BAI J, PERRON P. Estimating and testing linear models with multiple structural changes[J]. Econometrica, 1998, 66(1):47-78 doi: 10.2307-2998540/
[19]BAI J. Likelihood ratio tests for multiple structural changes[J]. Journal of Econometrics, 1999, 91(2):299-323 doi: 10.1016-S0304-4076(98)00079-7/
[20]BAI J, PERRON P. Critical values for multiple structural change tests[J]. Econometrics journal, 2003, 6(1):72-78 http://cn.bing.com/academic/profile?id=a86d8dab94ef7c7c6a25f692478d19c9&encoded=0&v=paper_preview&mkt=zh-cn
[21]王劲屹.农村金融发展、资本存量提升与农村经济增长[J].数量经济技术经济研究, 2018, 35(2):64-81 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sljjjsjjyj201802004
WANG J Y. Rural financial development, capital stock increase, and rural economy growth[J]. The Journal of Quantitative & Technical Economics, 2018, 35(2):64-81 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sljjjsjjyj201802004

相关话题/检验 生态 资源 结构 统计