删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

九龙坡花椒种植区地形、土壤肥力与花椒产量的关系

本站小编 Free考研考试/2022-01-01

杨仕曦1,,
吕广斌1,
黄云1,,,
向华辉2,
王正银1
1.西南大学资源环境学院 重庆 400716
2.重庆市九龙坡区农业技术推广中心 重庆 400039
基金项目: 国家自然科学基金重点项目41530855
国际植物营养研究所(IPNI)项目2013-Chongqing-02

详细信息
作者简介:杨仕曦, 研究方向为植物营养与土壤酸化改良技术。E-mail:751743470@qq.com
通讯作者:黄云, 主要研究方向为植物营养与施肥。E-mail:huangyun1622@126.com
中图分类号:S158.3

计量

文章访问数:368
HTML全文浏览量:6
PDF下载量:280
被引次数:0
出版历程

收稿日期:2019-02-21
录用日期:2019-07-20
刊出日期:2019-12-01

Relationships of Zanthoxylum bungeanum yield with topography and soil fertility in Jiulongpo area

YANG Shixi1,,
LYU Guangbin1,
HUANG Yun1,,,
XIANG Huahui2,
WANG Zhengyin1
1. College of Resources and Environmental Sciences, Southwest University, Chongqing 400716, China
2. Extension Centre of Agricultural Techniques of Jiulongpo District in Chongqing, Chongqing 400039, China
Funds: the National Natural Science Foundation of China41530855
the International Plant Nutrition Institute (IPNI) Funded Project2013-Chongqing-02

More Information
Corresponding author:HUANG Yun, E-mail:huangyun1622@126.com


摘要
HTML全文
(1)(6)
参考文献(33)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为了解九龙坡花椒种植区土壤养分状况及该区地形因子、土壤肥力因子与花椒产量的关系,为科学合理制定花椒高效施肥措施提供理论依据,本研究采用田间调查研究和室内分析的方法,研究了九龙坡花椒种植区低、中、高产区的海拔、坡度及土壤pH、有机质、大量微量元素含量和交换性能的变化特征,及其与花椒产量的关系。研究结果表明:九龙坡花椒普遍种植于200~500 m海拔范围,高产区集中在300 m左右的海拔;从低产区到高产区坡度略有增加,但未达显著水平。土壤均属酸性土,pH < 6.5。土壤肥力总体属高水平范围,但各养分因子差异很大,其中土壤阳离子交换量(CEC)、有效磷、有效钙、有效镁、有效铁、有效锰、有效铜、有效锌含量丰富,分别为27.2 cmol(+)·kg-1、35.2 mg·kg-1、3 289.8 mg·kg-1、271.8 mg·kg-1、48.6 mg·kg-1、62.1 mg·kg-1、1.5 mg·kg-1、4.5 mg·kg-1;有机质、碱解氮、速效钾、交换性酸属适中水平,分别为19.1 mg·kg-1、114.9 mg·kg-1、107.0 mg·kg-1、8.1 cmol(+)·kg-1;水溶性硼缺乏,为0.28 mg·kg-1。相关分析表明花椒产量与有效钙、CEC、pH、有效锰、水溶性硼呈显著正相关;通径分析结果表明有效钙、CEC、交换性酸、有效铜、有效铁、有效锌是影响花椒产量的主要因子,逐步回归分析构建了有效钙(X6)与花椒产量(Y)的最优回归线性方程:Y=11.693+0.003X6。综上所述,九龙坡花椒种植区土壤养分失衡较为严重,施肥应注重养分的平衡,增施有机肥,改善土壤理化性状,治理土壤酸化。
Abstract:The relationships of soil nutrient conditions and topography with production in Jiulongpo Zanthoxylum bungeanum planting areas was studied through a field investigation-based research and lab analysis to provide a theoretical basis for scientific and effective fertilization practices. The characteristics of altitude and slope, and soil pH, organic matter content, macro- and micro-elements content, cation exchange capacity (CEC) and exchange acidity as well as Z. bungeanum yeild in low-, medium and high-yield areas of Z. bungeanum were investigated. The results showed that Z. bungeanum was generally planted at altitudes between 200 and 500 meters in Jiulongpo, and the altitude of the high-yield area was approximately 300 meters. The slope from low-to high-yield areas appeared to be slight increase but not obvious. The soil was acidic, with a pH < 6.5; and soil fertility was high, with large differences in nutrient factors. CEC and available phosphorus, calcium, magnesium, iron, manganese, copper, and zinc were abundant at 27.2 cmol(+)·kg-1, 35.2 mg·kg-1, 3 289.8 mg·kg-1, 271.8 mg·kg-1, 48.6 mg·kg-1, 62.1 mg·kg-1, 1.5 mg·kg-1, and 4.5 mg·kg-1, respectively. Organic matter and available nitrogen, potassium and exchange acid were at a moderate levels of 19.1 mg·kg-1, 114.9 mg·kg-1, 107.0 mg·kg-1 and 8.1 cmol(+)·kg-1, respectively. The content of water-soluble boron was a relatively low 0.28 mg·kg-1. Z. bungeanum yield exhibited a positive correlation with available calcium, CEC, pH, available manganese, and water-soluble boron. Available calcium, CEC, exchange acidity, and available copper, iron, and zinc were the main influencing factors on yield. An optimal linear regression equation of available calcium (X6) and yield (Y) was established based on stepwise regression analysis (Y=11.693 + 0.003X6). In conclusion, soil nutrient in Jiulongpo Z. bungeanum area was imbalanced seriously, more attention should be paid to balancing fertilization, increasing organic fertilizer, improving the physical and chemical properties of soil, and relieving soil acidification.

HTML全文


图1不同花椒产区海拔与坡度因子分布状况
不同字母表示不同产区间差异显著(P < 0.05)。
Figure1.Distribution of elevation and slope factors in different Zanthoxylum bungeanum yield areas
Different lowercase letters indicate significant differences at 0.05 level among different yield areas.


下载: 全尺寸图片幻灯片

表1不同产区花椒产量水平
Table1.Production levels of Zanthoxylum bungeanum in different yield areas
产区Yield area 产量Yield
(kg·tree-1)
变幅Range
(kg·tree-1)
变异系数
CV (%)
低产区Low-yield area 12.77±1.68c 9.84~14.73 13.1
中产区
Medium-yield area
19.97±2.74b 15.68~23.37 13.7
高产区High-yield area 28.32±2.84a 25.51~33.12 10.1
产量表示为平均值±标准差, 同列不同小写字母表示不同产区间差异显著(P < 0.05)。Yield was expressed as mean ± S.D., and different lowercase letters in the same column indicate significant differences at 0.05 level among different yield areas.


下载: 导出CSV
表2花椒不同产区土壤肥力特征
Table2.Characteristics of soil fertility in different yield areas of Zanthoxylum bungeanum
指标
Index
项目
Item
全产区
Entire region
低产区
Low-yield area
中产区
Medium-yield area
高产区
High-yield area
pH 平均值Mean 5.1±0.7 4.8±0.7b 5.1±0.7ab 5.4±0.7a
变幅Range 4.0~6.4 4.0~6.1 4.4~6.4 4.4~6.3
CV (%) 13.82 13.69 12.74 13.82
有机质
Organic matter
平均值Mean (g·kg-1) 19.1±7.3 16.6±5.8a 20.6±9.2a 20.3±6.7a
变幅Range (g·kg-1) 8.7~36.9 8.7~25.3 10.2~36.9 8.7~30.7
CV (%) 35.06 44.51 33.30 38.41
碱解氮
Available N
平均值Mean (mg·kg-1) 114.9±47.5 129.7±49.6a 108.8±48.7a 106.2±45.5a
变幅Range (mg·kg-1) 43.2~215.0 75.0~213.9 43.2~187.4 60.1~215
CV (%) 38.26 44.74 42.83 41.34
有效磷
Available P
平均值Mean (mg·kg-1) 35.2±33.9 30.2±19.1a 34.2±39.4a 41.3±41.6a
变幅Range (mg·kg-1) 2.1~124.0 5.2~63.6 2.1~123.4 4.6~124.0
CV (%) 63.09 115.36 100.71 96.43
速效钾
Available K
平均值Mean (mg·kg-1) 107.0±75.8 89.8±56.8b 125.0±97.4a 106.2±71.6ab
变幅Range (mg·kg-1) 15~293 15~210 25~270 33~293
CV (%) 63.22 77.96 67.43 70.88
有效钙
Available Ca
平均值Mean (mg·kg-1) 3 289.8±1 536.5 2 486.0±1 562.4b 2 868.6±966.6b 4 515.0±1 284.2a
变幅Range (mg·kg-1) 605.1~6 282.5 605.1~4 619.6 1 809.4~4 499.4 1 931.3~6 282.5
CV (%) 62.85 33.70 28.44 46.71
有效镁
Available Mg
平均值Mean (mg·kg-1) 271.8±75.1 238.7±67.4b 265.7±94.2ab 311.1±42.2a
变幅Range (mg·kg-1) 127.5~435.5 127.5~326.5 167.3~435.5 241.1~366.9
CV (%) 28.22 35.44 13.57 27.61
阳离子交换量
Cation exchange capacity
平均值Mean [cmol(+)·kg-1] 27.2±7.9 22.7±7.5b 25.3±5.5b 33.6±6.5a
变幅Range [cmol(+)·kg-1] 13.0~42.4 13.0~32.8 14.8~31.0 20.9~42.4
CV (%) 32.86 21.97 19.28 29.02
交换性酸
Exchange acidity
平均值Mean [cmol(+)·kg-1] 8.1±3.2 8.25±3.6a 8.23±4.0a 7.8±2.2a
变幅Range [cmol(+)·kg-1] 1.52~13.71 1.52~13.30 3.05~13.70 4.57~11.10
CV (%) 43.29 48.97 27.53 39.91
有效铁
Available Fe
平均值Mean (mg·kg-1) 48.6±74.5 63.2±92.1a 61.1±82.5a 21.3±36.8b
变幅Range (mg·kg-1) 1.2~288.0 1.4~288.0 1.2~214.5 1.2~102.0
CV (%) 145.67 134.85 172.95 153.41
有效锰
Available Mn
平均值Mean (mg·kg-1) 62.1±34.1 43.6±25.3b 64.7±41.4ab 78.0±27.2a
变幅Range (mg·kg-1) 10.7~160.0 10.7~79.2 19.2~160.0 33.1~116.0
CV (%) 57.90 63.87 34.81 54.94
有效铜
Available Cu
平均值Mean (mg·kg-1) 1.5±1.2 1.9±1.7a 1.5±0.9a 1.1±0.7a
变幅Range (mg·kg-1) 0.21~6.06 0.21~6.06 0.42~2.94 0.23~1.96
CV (%) 90.20 61.08 61.58 79.70
有效锌
Available Zn
平均值Mean (mg·kg-1) 4.5±3.1 3.5±2.1a 5.4±4.6a 4.5±1.5a
变幅Range (mg·kg-1) 0.10~15.54 0.10~6.24 0.33~15.54 1.67~6.85
CV (%) 59.79 85.76 33.59 68.61
水溶性硼
Water soluble B
平均值Mean (mg·kg-1) 0.28±0.12 0.23±0.10b 0.28±0.10ab 0.35±0.13 a
变幅Range (mg·kg-1) 0.09~0.64 0.09~0.36 0.13~0.47 0.17~0.64
CV (%) 44.46 38.42 38.49 42.82
同行不同小写字母表示不同产区间差异显著(P < 0.05)。Different lowercase letters in the same line indicate significant differences at 0.05 level among different yield areas.


下载: 导出CSV
表3花椒产量与地形因子、土壤肥力因子的相关矩阵(r值)
Table3.Correlation matrix (r value) of Zanthoxylum bungeanum yield and topographic and soil fertility factors
Ele Slo pH OM AN AP AK ACa AMg CEC EA AFe AMn ACu AZn WB
Y 0.090 0.187 0.403* 0.145 -0.142 0.065 0.002 0.587** 0.346 0.570** -0.140 -0.211 0.390* -0.309 0.019 0.388*
Ele -0.040 0.079 0.176 -0.196 0.186 -0.282 -0.080 -0.099 -0.021 0.194 0.006 0.027 -0.041 -0.047 0.330
Slo 0.220 0.113 0.055 0.121 0.330 0.356 0.111 0.304 -0.174 -0.079 0.226 -0.221 0.272 0.265
pH 0.052 0.047 -0.100 0.189 0.543** 0.442* 0.332 -0.616** -0.378* 0.381* -0.524** -0.090 0.235
OM 0.931** 0.330 0.406* 0.097 -0.086 0.180 0.194 -0.014 0.189 0.060 0.638** 0.144
AN -0.306 -0.315 -0.043 0.130 -0.139 -0.252 -0.014 -0.199 -0.162 -0.537** -0.156
AP 0.433* 0.199 -0.294 0.350 0.411* -0.319 0.059 -0.243 0.201 0.054
AK 0.268 0.050 0.288 0.003 -0.385* 0.170 -0.404* 0.526** 0.147
ACa 0.636** 0.912** -0.360 -0.438* 0.708** -0.391* -0.088 0.309
AMg 0.613** -0.286 -0.306 0.597** -0.324 0.007 0.276
CEC 0.046 -0.449* 0.782** -0.339 0.109 0.323
EA 0.076 0.021 0.233 0.415* -0.052
AFe -0.347 0.786** -0.110 -0.268
AMn -0.312 0.066 0.157
ACu -0.013 -0.139
AZn 0.268
Y:产量; Ele:海拔; Slo:坡度; OM:有机质; AN:碱解氮; AP:有效磷; AK:速效钾; ACa:有效钙; AMg:有效镁; CEC:阳离子交换量; EA:交换性酸; AFe:有效铁; AMn:有效锰; ACu:有效铜; AZn:有效锌; WB:水溶性硼。*表示在0.05水平上显著相关(P < 0.05); **表示在0.01水平上显著相关(P < 0.01)。Y: yield; Ele: elevation; Slo: slope; OM: organic matter; AN: alkali-hydrolysis nitrogen; AP: available phosphorus; AK: available potassium; ACa: available calcium; AMg: available magnesium; CEC: cation exchange capacity; EA: exchangeable acid; AFe: effective iron; AMn: effective manganese; ACu: effective copper; AZn: effective zinc; WB: water-soluble boron. * indicates a significant correlation at 0.05 level; ** indicates a significant correlation at 0.01 level.


下载: 导出CSV
表4土壤肥力因子对花椒产量(Y)的通径系数
Table4.Path coefficients of soil fertility factors to Zanthoxylum bungeanum yield (Y)
因子
Factor
直接通径系数
Direct path coefficient
间接通径系数Indirect path coefficient
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 合计
Total
X1 0.215 -0.007 0.005 0.030 -0.067 1.642 -0.123 -0.609 -0.751 -0.166 -0.084 0.305 -0.035 0.049 0.188
X2 -0.140 0.011 0.097 -0.100 -0.145 0.293 0.024 -0.330 0.236 -0.006 -0.042 -0.035 0.251 0.030 0.285
X3 0.104 0.010 -0.130 0.093 0.112 -0.130 -0.036 0.255 -0.307 -0.006 0.044 0.094 -0.211 -0.032 -0.246
X4 -0.303 -0.021 -0.046 -0.032 -0.154 0.602 0.082 -0.642 0.501 -0.140 -0.013 0.141 0.079 0.011 0.368
X5 -0.356 0.041 -0.057 -0.033 -0.131 0.811 -0.014 -0.528 0.004 -0.169 -0.037 0.235 0.207 0.030 0.358
X6 3.024 0.117 -0.014 -0.004 -0.060 -0.095 -0.177 -1.673 -0.439 -0.192 -0.156 0.228 -0.035 0.064 -2.437
X7 -0.279 0.095 0.012 0.013 0.089 -0.018 1.924 -1.124 -0.349 -0.134 -0.131 0.189 0.003 0.057 0.625
X8 -1.834 0.071 -0.025 -0.014 -0.106 -0.103 2.758 -0.171 0.056 -0.197 -0.172 0.197 0.043 0.067 2.404
X9 1.219 -0.132 -0.027 -0.026 -0.125 -0.001 -1.089 0.080 -0.084 0.033 -0.005 -0.136 0.163 -0.011 -1.359
X10 0.439 -0.081 0.002 -0.001 0.097 0.137 -1.325 0.085 0.824 0.093 0.076 -0.458 -0.043 -0.055 -0.650
X11 -0.220 0.082 -0.026 -0.021 -0.018 -0.061 2.141 -0.167 -1.434 0.026 -0.152 0.182 0.026 0.032 0.610
X12 -0.582 -0.113 -0.008 -0.017 0.074 0.144 -1.183 0.090 0.622 0.284 0.345 0.069 -0.005 -0.029 0.273
X13 0.394 -0.019 -0.089 -0.056 -0.061 -0.187 -0.266 -0.002 -0.200 0.506 -0.048 -0.015 0.008 0.055 -0.375
X14 0.207 0.050 -0.020 -0.016 -0.016 -0.052 0.935 -0.077 -0.593 -0.063 -0.118 -0.035 0.081 0.106 0.181
X1: pH; X2:有机质; X3:碱解氮; X4:有效磷; X5:速效钾; X6:有效钙; X7:有效镁; X8:阳离子交换量; X9:交换性酸; X10:有效铁; X11:有效锰; X12:有效铜; X13:有效锌; X14:水溶性硼。X1: pH; X2: organic matter; X3: alkali-hydrolysis nitrogen; X4: available phosphorus; X5: available potassium; X6: available calcium; X7: available magnesium; X8: cation exchange capacity; X9: exchangeable acid; X10: available iron; X11: available manganese; X12: available copper; X13: available zinc; X14: water soluble boron.


下载: 导出CSV
表5花椒产量与土壤有效钙的逐步回归分析模型汇总
Table5.Summary of stepwise regression analysis model of Zanthoxylum bungeanum yield and soil available calcium
模型Model R R2 调整R2 Adjust R2 标准估计误差Standard estimate error
1 0.587a 0.344 0.321 5.677 91


下载: 导出CSV
表6花椒产量与土壤有效钙的逐步回归方程系数及检验
Table6.Coefficients and test of stepwise regression equation of Zanthoxylum bungeanum yield and soil available calcium
模型Model 非标准系数Unstandardized coefficient 标准系数试用版
Standard coefficient of trial version
t Sig.
Beta in 标准误差Standard Error
1 常量Constant 11.693 2.484 4.707 0
X6 0.003 0.001 0.587 3.836 0.001
a:预测变量(常量); X6:有效钙。a: predictor (constant); X6: available calcium.


下载: 导出CSV

参考文献(33)
[1]侯丽秀, 魏安智, 王丽华, 等.花椒转录组SSR信息分析及其分子标记开发[J].农业生物技术学报, 2018, 26(7): 1226-1236 http://d.old.wanfangdata.com.cn/Periodical/nyswjsxb201807015
HOU L X, WEI A Z, WANG L H, et al. Analysis of SSR loci and development of molecular markers in Zanthoxylum bungeanum transcriptome[J]. Journal of Agricultural Biotechnology, 2018, 26(7): 1226-1236 http://d.old.wanfangdata.com.cn/Periodical/nyswjsxb201807015
[2]王景燕, 龚伟, 包秀兰, 等.水肥耦合对汉源花椒幼苗叶片光合作用的影响[J].生态学报, 2016, 36(5): 1321-1330 http://d.old.wanfangdata.com.cn/Periodical/stxb201605016
WANG J Y, GONG W, BAO X L, et al. Coupling effects of water and fertilizer on diurnal variation of photosynthesis of Zanthoxylum bungeanum Maxim 'hanyuan' seedling leaf[J]. Acta Ecologica Sinica, 2016, 36(5): 1321-1330 http://d.old.wanfangdata.com.cn/Periodical/stxb201605016
[3]何腾兵, 刘元生, 李天智, 等.贵州喀斯特峡谷水保经济植物花椒土壤特性研究[J].水土保持学报, 2000, 14(2): 55-59 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb200002013
HE T B, LIU Y S, LI T Z, et al. Soil characteristics of Zanthoxylum bungeanum with soil and water conservation benefits in Karst valley of Guizhou Province[J]. Journal of Soil and Water Conservation, 2000, 14(2): 55-59 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb200002013
[4]王进闯, 潘开文, 吴宁, 等.花椒农林复合生态系统的简化对某些相关因子的影响[J].应用与环境生物学报, 2005, 11(1): 36-39 http://d.old.wanfangdata.com.cn/Periodical/yyyhjswxb200501008
WANG J C, PAN K W, WU N, et al. Effect of simplified agro-forest system of Sichuan pepper (Zanthoxylum avicennia) on some ecological factors[J]. Chinese Journal of Applied and Environmental Biology, 2005, 11(1): 36-39 http://d.old.wanfangdata.com.cn/Periodical/yyyhjswxb200501008
[5]张立新, 耿增超, 张朝阳, 等.韩城市花椒园土壤养分状况及施肥研究[J].干旱地区农业研究, 2003, 21(4): 65-67 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200304016
ZHANG L X, GENG Z C, ZHANG C Y, et al. Study on soil nutrient condition and fertilizer application in Chinese prickly ash orchard in Hancheng[J]. Agricultural Research in the Arid Areas, 2003, 21(4): 65-67 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200304016
[6]郑海峰, 赵新峰, 马岩.地形和土壤属性对大豆产量的影响[J].土壤通报, 2008, 39(6): 1348-1352 http://d.old.wanfangdata.com.cn/Periodical/trtb200806025
ZHENG H F, ZHAO X F, MA Y. Soybean yields related to topography and soil properties[J]. Chinese Journal of Soil Science, 2008, 39(6): 1348-1352 http://d.old.wanfangdata.com.cn/Periodical/trtb200806025
[7]周国朋, 谢志坚, 曹卫东, 等.稻草高茬-紫云英联合还田改善土壤肥力提高作物产量[J].农业工程学报, 2017, 33(23): 157-163 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201723020
ZHOU G P, XIE Z J, CAO W D, et al. Co-incorporation of high rice stubble and Chinese milk vetch improving soil fertility and yield of rice[J]. Transactions of the CSAE, 2017, 33(23): 157-163 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201723020
[8]于君宝, 刘景双, 王金达, 等.典型黑土pH值变化对营养元素有效态含量的影响研究[J].土壤通报, 2003, 34(5): 404-408 http://d.old.wanfangdata.com.cn/Periodical/trtb200305006
YU J B, LIU J S, WANG J D, et al. Effect of soil pH value on the effective content of nutrient elements in typical black soil[J]. Chinese Journal of Soil Science, 2003, 34(5): 404-408 http://d.old.wanfangdata.com.cn/Periodical/trtb200305006
[9]LI J R, OKIN G S, ALVAREZ L, et al. Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities[J]. Biogeochemistry, 2008, 88(1): 73-88 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=44ba87e324ec2d2b2287e9ff2eef9d53
[10]鲍士旦.土壤农业化学分析[M].第3版.北京:中国农业出版社, 2000
BAO S D. Soil Agrochemical Analysis[M]. Third Edition. Beijing: China Agriculture Press, 2000
[11]GONG W, YAN X Y, WANG J Y, et al. Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize cropping system in North China Plain[J]. Plant and Soil, 2009, 314(1/2): 67-76 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f10f084ddc3d02be284e572e381abf15
[12]孟凡乔, 吴文良, 辛德惠.高产农田土壤有机质、养分的变化规律与作物产量的关系[J].植物营养与肥料学报, 2000, 6(4): 370-374 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb200004002
MENG F Q, WU W L, XIN D H. Changes of soil organic matter and nutrients and their relationship with crop yield in high yield farmland[J]. Plant Nutrition and Fertilizer Science, 2000, 6(4): 370-374 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb200004002
[13]范庆锋, 虞娜, 张玉玲, 等.设施蔬菜栽培对土壤阳离子交换性能的影响[J].土壤学报, 2014, 51(5): 1132-1137 http://d.old.wanfangdata.com.cn/Periodical/jxnye201822026
FAN Q F, YU N, ZHANG Y L, et al. Effects of vegetable cultivation on soil cation exchange capacity in greenhouse[J]. Acta Pedologica Sinica, 2014, 51(5): 1132-1137 http://d.old.wanfangdata.com.cn/Periodical/jxnye201822026
[14]李忠意, 白颖艳, 程永毅, 等.几种土壤交换性酸测定方法的效果比较[J].土壤, 2017, 49(6): 1210-1215 http://d.old.wanfangdata.com.cn/Periodical/tr201706021
LI Z Y, BAI Y Y, CHENG Y Y, et al. Comparison of soil exchangeable acidities by different measured methods[J]. Soils, 2017, 49(6): 1210-1215 http://d.old.wanfangdata.com.cn/Periodical/tr201706021
[15]Kozak M, Kang M S. Note on modern path analysis in application to crop science[J]. Communications in Biometry and Crop Science, 2006, 1(1): 32-34 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_4871738bda959bf39c18871905dbac05
[16]张晓光, 黄标, 张贝尔, 等.盐渍化平原区玉米产量空间变异与地形关系研究[J].农业机械学报, 2012, 43(11): 51-57 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201211011
ZHANG X G, HUANG B, ZHANG B E, et al. Spatial variability of maize yield and relations to terrain attributes in salinized plain region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 51-57 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201211011
[17]雷斯越, 赵文慧, 杨亚辉, 等.不同坡位植被生长状况与土壤养分空间分布特征[J].水土保持研究, 2019, 26(1): 86-91 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201901015
LEI S Y, ZHAO W H, YANG Y H, et al. Spatial distribution characteristics of soil nutrients and vegetation growth status in different slopes[J]. Research of Soil and Water Conservation, 2019, 26(1): 86-91 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201901015
[18]余玲, 王彦荣, 毛玉林, 等.黄土高原地形对苜蓿种子产量和质量的影响[J].草业学报, 2002, 11(4): 62-67 http://d.old.wanfangdata.com.cn/Periodical/caoyexb200204010
YU L, WANG Y R, MAO Y L, et al. Effect of topography on seed yield and quality of alfalfa grown in the Loess Plateau[J]. Acta Prataculturae Sinica, 2002, 11(4): 62-67 http://d.old.wanfangdata.com.cn/Periodical/caoyexb200204010
[19]李春喜, 韩蕊, 邵云, 等.黄淮海地区麦玉周年土壤肥力与玉米产量相关和通径分析[J].玉米科学, 2019, 27(3): 127-133 http://www.cnki.com.cn/Article/CJFDTotal-YMKX201903020.htm
LI C X, HAN R, SHAO Y, et al. Correlation and path analysis between soil fertility and maize yield in wheat-maize rotation system of Huang-Huai-Hai region[J]. Journal of Maize Sciences, 2019, 27(3): 127-133 http://www.cnki.com.cn/Article/CJFDTotal-YMKX201903020.htm
[20]彭卫福, 吕伟生, 黄山, 等.土壤肥力对红壤性水稻土水稻产量和氮肥利用效率的影响[J].中国农业科学, 2018, 51(18): 3614-3624 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201818017
PENG W F, LYU W S, HUANG S, et al. Effects of soil fertility on rice yield and nitrogen use efficiency in a red paddy soil[J]. Scientia Agricultura Sinica, 2018, 51(18): 3614-3624 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201818017
[21]曾祥明, 韩宝吉, 徐芳森, 等.不同基础地力土壤优化施肥对水稻产量和氮肥利用率的影响[J].中国农业科学, 2012, 45(14): 2886-2894 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201214011
ZENG X M, HAN B J, XU F S, et al. Effect of optimized fertilization on grain yield of rice and nitrogen use efficiency in paddy fields with different basic soil fertilities[J]. Scientia Agricultura Sinica, 2012, 45(14): 2886-2894 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201214011
[22]鲁艳红, 廖育林, 周兴, 等.长期不同施肥对红壤性水稻土产量及基础地力的影响[J].土壤学报, 2015, 52(3): 597-606 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201503014
LU Y H, LIAO Y L, ZHOU X, et al. Effect of long-term fertilization on rice yield and basic soil productivity in red paddy soil under double-rice system[J]. Acta Pedologica Sinica, 2015, 52(3): 597-606 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201503014
[23]汤珧华, 潘建萍, 邹福生, 等.上海松柏古树生长与土壤肥力因子的关系[J].植物营养与肥料学报, 2017, 23(5): 1402-1408 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201705031
TANG Y H, PAN J P, ZOU F S, et al. Relationship between soil fertility factors and growth of old pines and cypress in Shanghai[J]. Plant Nutrition and Fertilizer Science, 2017, 23(5): 1402-1408 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201705031
[24]张强, 魏钦平, 刘旭东, 等.北京昌平苹果园土壤养分、pH与果实矿质营养的多元分析[J].果树学报, 2011, 28(3): 377-383 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gskx201103001
ZHANG Q, WEI Q P, LIU X D, et al. Multivariate analysis of relationship between soil nutrients, pH and fruit mineral nutrition in Fuji apple orchards of Changping, Beijing[J]. Journal of Fruit Science, 2011, 28(3): 377-383 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gskx201103001
[25]MARTINSEN V, ALLING V, NURIDA N L, et al. pH effects of the addition of three biochars to acidic Indonesian mineral soils[J]. Soil Science and Plant Nutrition, 2015, 61(5): 821-834 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00380768.2015.1052985
[26]王倩, 李军, 宁芳, 等.渭北旱作麦田长期保护性耕作土壤肥力特征综合评价[J].应用生态学报, 2018, 29(9): 2925-2934 http://d.old.wanfangdata.com.cn/Periodical/yystxb201809015
WANG Q, LI J, NING F, et al. Comprehensive assessment of soil fertility characteristics under different long-term conservation tillages of wheat field in Weibei Highland, China[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 2925-2934 http://d.old.wanfangdata.com.cn/Periodical/yystxb201809015
[27]王飞, 何春梅, 李清华, 等.外源钙水平与花生下针期不同土壤水分对植株生理特性的影响[J].植物营养与肥料学报, 2013, 19(3): 623-631 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201303012
WANG F, HE C M, LI Q H, et al. Effects of exogenous calcium and soil moisture at acicula forming stage of peanut on some physiological characteristics of plants[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 623-631 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201303012
[28]张大庚, 栗杰, 刘慧.外源低分子量有机酸对土壤中钙素迁移特征的影响[J].水土保持学报, 2015, 29(5): 152-155 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201505028
ZHANG D G, LI J, LIU H. Effect of exogenous low molecular weight organic acids on calcium migration in soil[J]. Journal of Soil and Water Conservation, 2015, 29(5): 152-155 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201505028
[29]董珊珊, 李宁冉, 杨海燕, 等.蓝莓根系对土壤锰胁迫的生理影响[J].南京林业大学学报:自然科学版: 2019, 43(3): 169-173 http://www.cnki.com.cn/Article/CJFDTotal-NJLY201903024.htm
DONG S S, LI N R, YANG H Y, et al. Physiological response of blueberry roots to Mn2+ stress in soil[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2019, 43(3): 169-173 http://www.cnki.com.cn/Article/CJFDTotal-NJLY201903024.htm
[30]卢晓佩, 刘秀红, 董肖昌, 等.南丰和衢州柑橘产区土壤及叶片硼含量状况分析[J].华中农业大学学报, 2015, 34(6): 61-65 http://d.old.wanfangdata.com.cn/Periodical/hznydx201506010
LU X P, LIU X H, DONG X C, et al. Analyzing boron contents in soil and leaf of Citrus orchards in the Nanfeng and Quzhou[J]. Journal of Huazhong Agricultural University, 2015, 34(6): 61-65 http://d.old.wanfangdata.com.cn/Periodical/hznydx201506010
[31]冀建华, 李絮花, 刘秀梅, 等.硅钙钾镁肥对南方稻田土壤酸度的改良作用[J].土壤学报, 2019, 56(4): 895-906 http://d.old.wanfangdata.com.cn/Periodical/trxb201904012
JI J H, LI X H, LIU X M, et al. Effect of Si-Ca-K-Mg fertilizer remedying acid paddy soil in South China[J]. Acta Pedologica Sinica, 2019, 56(4): 895-906 http://d.old.wanfangdata.com.cn/Periodical/trxb201904012
[32]Kirkham J M, Rowe B A, Doyle R B. Persistent improvements in the structure and hydraulic conductivity of a ferrosol due to liming[J]. Australian Journal of Soil Research, 2007, 45(3): 218-223 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f1bd4d0cea8220d006495bf18db4df6
[33]SARNO, IIJIMA M, LUMBANRAJA J, et al. Soil chemical properties of an Indonesian red acid soil as affected by land use and crop management[J]. Soil and Tillage Research, 2004, 76(2): 115-124 http://cn.bing.com/academic/profile?id=2504db1509f31cf3d8f055ba26448f93&encoded=0&v=paper_preview&mkt=zh-cn

相关话题/土壤 交换 营养 植物 农业