删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

生物质改良剂对川西北地区高寒草地沙化土壤有机碳特征的影响

本站小编 Free考研考试/2022-01-01

张晓丽1,,
孔凡磊2,
刘晓林2,
胡立峰3,
李玉义1,,
1.中国农业科学院农业资源与农业区划研究所 北京 100081
2.四川农业大学农学院/农业部西南作物生理生态与耕作重点实验室 成都 611130
3.国家开放大学 北京 100039
基金项目: 国家科技支撑计划课题2015BAC05B05

详细信息
作者简介:张晓丽, 主要从事土壤耕作与土壤改良等研究。E-mail:1695952120@qq.com
通讯作者:李玉义, 主要从事土壤改良、土壤耕作与合理耕层构建等方面研究。E-mail:liyuyi@caas.cn
中图分类号:X71

计量

文章访问数:538
HTML全文浏览量:15
PDF下载量:351
被引次数:0
出版历程

收稿日期:2019-04-02
录用日期:2019-07-22
刊出日期:2019-11-01

Effects of different biomass amendments on soil organic carbon characteristics in alpine desertification grassland of Northwest Sichuan

ZHANG Xiaoli1,,
KONG Fanlei2,
LIU Xiaolin2,
HU Lifeng3,
LI Yuyi1,,
1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2. College of Agriculture, Sichuan Agricultural University/Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Chengdu 611130, China
3. National Open University, Beijing 100039, China
Funds: the National Science and Technology Support Program of China2015BAC05B05

More Information
Corresponding author:LI Yuyi, E-mail:liyuyi@caas.cn


摘要
HTML全文
(3)(5)
参考文献(41)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:川西北高寒草原特殊的地理环境、气候条件以及过度人为放牧导致草地沙化问题突出。为了探讨不同生物质改良剂对高寒草地沙化土壤有机碳特征的影响,采用随机区组试验设计方法,设置3种生物质改良剂[秸秆类(JG)、菌渣类(JZ)、生物炭类(SWT)],2个施用水平(6 t·hm-2和18 t·hm-2),以空白处理(CK)为对照,研究高寒草地沙化土壤总有机碳、活性有机碳和呼吸特征的变化。结果表明:1)施用生物质改良剂显著提高了土壤有机碳(TOC)、微生物量碳(MBC)和易氧化有机碳(EOC)含量,且提高效果随改良剂施用量的增加而增强。与CK相比,JG、JZ、SWT处理0~10 cm TOC含量分别平均提高60.66%、39.22%、34.99%,且JG处理显著高于JZ和SWT处理;MBC含量在0~10 cm则表现为JZ > JG > SWT > CK,且处理间差异达显著水平;EOC含量表现为JG处理最高,在0~10 cm、10~20 cm土层处分别比对照提高108.82%、79.26%。2)不同生物质改良剂处理中,EOC/TOC表现为JG > JZ > SWT > CK,MBC/TOC表现为JZ > JG > SWT > CK,且不同处理间差异显著。3)施用不同改良剂均显著提高了土壤呼吸速率,且随改良剂施用量的增加,土壤呼吸速率显著增加。与CK相比,施用6 t·hm-2的JG、JZ、SWT的土壤呼吸速率平均提高103.42%、86.31%、18.83%,JZ和JG处理的土壤呼吸速率显著高于SWT和CK处理。相关性分析表明,土壤水分与土壤呼吸速率呈显著正相关关系,TOC、MBC以及EOC与土壤呼吸速率呈极显著正相关关系。4)施入不同改良剂均显著提高了土壤呼吸总量、土壤微生物呼吸总量和净生态系统生产力(NEP值),均表现出较强的碳汇潜力,JG处理的NEP值较JZ和SWT处理分别显著提高56.45%和122.12%,且各处理间差异显著,说明秸秆改良剂具有较高的碳汇强度。该研究可为川西北藏区补充完善高寒草地沙化土壤制定科学有效的土壤碳调控管理措施提供依据。
关键词:高寒草地/
沙化土壤/
生物质改良剂/
土壤有机碳/
微生物量碳/
易氧化有机碳/
土壤呼吸/
碳平衡
Abstract:The special geographical environment, climatic conditions, and excessive artificial grazing in the alpine grassland of northwestern Sichuan have caused grassland desertification. To examine the effects of different biomass amendments on the soil organic carbon composition and respiration characteristics in alpine desertification grassland, we adopted a randomized block test design method and two factors field trials for setting biomass amendments and their application rates. The biomass amendments used were three kinds of straw (JG), slag (JZ), and biochar (SWT). The application rates were 6 t·hm-2 (JG1, JZ1, SWT1) and 18 t·hm-2 (JG3, JZ3, SWT3). We used blank treatment (CK) as a control to examine the effects of the different amendments on the total organic carbon, the activated organic carbon, and the respiratory characteristics in desertified soil. The findings demonstrated that:1) application of the biomass amendments significantly increased the contents of soil organic carbon (TOC), microbial biomass carbon (MBC), and easily oxidized organic carbon (EOC), which became more obvious as the amounts of amendments were increased. Compared with CK, the organic carbon in the 0-10 cm soil layer increased averagely by 60.66%, 39.22%, and 34.99% with JG, JZ and SWT treatments, respectively; the soil MBC content was expressed as JZ > JG > SWT in the 0-10 cm soil layer, and the difference among treatments were significant. EOC content was the highest in JG treatment; in the 0-10 cm and 10-20 cm soil layers, it was increased averagely by 108.82% and 79.26%, respectively, compared with CK. 2) Under different biomass amendments, EOC/TOC revealed that JG > JZ > SWT > CK, MBC/TOC revealed that JZ > JG > SWT > CK, and the differences among treatments were significant. 3) The application of different amendments increased the soil respiration rate significantly in proportion to the increased application rate of the amendment. Compared with CK, the soil respiration rates of JG1, JZ1, and SWT1 treatments increased by 103.42%, 86.31%, and 18.83%, respectively. The soil respiration rates were significantly higher under JZ and JG treatments compared with SWT and CK treatments. Correlation analysis revealed significant positive correlation of the soil respiration rate with soil water (P < 0.05), and significant positive correlations with organic carbon, MBC, and EOC (P < 0.01). 4) The application of different biomass amendments significantly increased soil respiration, soil microbial respiration, and net ecosystem productivity (NEP), both of which showed strong carbon sink potential. Under JG treatment, the NEP value was significantly higher than that under JZ and SWT treatments, by 56.45% and 122.12%, respectively, and there were significant differences among treatments. These findings suggested that the straw improver had higher carbon sink strength. This study can provide a basis for the development of scientific and effective soil carbon regulation and management measures for improving alpine grassland desertification soil in the northwestern Sichuan Basin in China.
Key words:Alpine grassland/
Desertification soil/
Biomass amendment/
Soil organic carbon/
Microbial biomass carbon/
Easily oxidized organic carbon/
Soil respiration/
Carbon budget

HTML全文


图12017年研究区试验期间(5—9月)的降雨量和气温
Figure1.Rainfall and temperature during the experiment period (May-September) in 2017 in the study area


下载: 全尺寸图片幻灯片


图2不同生物质改良剂对高寒草地沙化土壤总有机碳(A)、微生物量碳(B)和易氧化有机碳(C)的影响
CK:空白处理; JG1: 6 t·hm-2秸秆; JZ1: 6 t·hm-2菌渣; SWT1: 6 t·hm-2生物炭; JG3: 18 t·hm-2秸秆; JZ3: 18 t·hm-2菌渣; SWT3: 18 t·hm-2生物炭。不同小写字母表示不同生物质改良剂处理间差异显著(P < 0.05)。
Figure2.Effects of different biomass amendments on soil organic carbon (A), microbial biomass carbon (B) and labile organic carbon (C) contents in alpine desertification grassland
CK: blank treatment; JG1: 6 t·hm-2 straw; JZ1: 6 t·hm-2 slag; SWT1: 6 t·hm-2 biochar; JG3: 18 t·hm-2 straw; JZ3: 18 t·hm-2 slag; SWT3: 18 t·hm-2 biochar. Different lowercase letters mean significant differences among different biomass amendments at 0.05 level.


下载: 全尺寸图片幻灯片


图3不同生物质改良剂对不同时期高寒草地沙化土壤呼吸速率(A)、土壤水分(B)和土壤温度(C)的影响
CK:空白处理; JG1: 6 t·hm-2秸秆; JZ1: 6 t·hm-2菌渣; SWT1: 6 t·hm-2生物炭; JG3: 18 t·hm-2秸秆; JZ3: 18 t·hm-2菌渣; SWT3: 18 t·hm-2生物炭。不同小写字母代表不同改良剂处理间差异显著(P < 0.05)。
Figure3.Effects of different biomass amendments on soil respiration rate (A), soil water content (B) and soil temperature (C) in different time in alpine desertification grassland
CK: blank treatment; JG1: 6 t·hm-2 straw; JZ1: 6 t·hm-2 slag; SWT1: 6 t·hm-2 biochar; JG3: 18 t·hm-2 straw; JZ3: 18 t·hm-2 slag; SWT3: 18 t·hm-2 biochar. Different lowercase letters mean significant differences among different biomass amendments at 0.05 level.


下载: 全尺寸图片幻灯片

表1试验用不同生物质改良剂配方
Table1.Formulations of the tested soil biomass amendments
改良剂
Soil amendment
秸秆/菌渣/生物炭
Straw / fungus dregs / bio-charcoal (g·kg-1)
水分含量
Water content (%)
枯草芽孢杆菌
Bacillus subtilis (g·kg-1)
聚丙烯酰胺
Polyacrylamide (g·kg-1)
尿素
Urea (g·kg-1)
过磷酸钙
Calcium superphosphate (g·kg-1)
硫酸钾
Potassium sulphate (g·kg-1)
秸秆Straw 908 7 2 3 13 50 24
菌渣Slag 908 7 2 3 13 50 24
生物炭Biochar 908 3 2 3 13 50 24


下载: 导出CSV
表2试验用不同生物质改良剂养分含量
Table2.Nutrients contents of biomass amendments used in the experiment
g·kg-1
改良剂
Soil amendment
全氮
Total nitrogen
全磷
Total phosphorus
全钾
Total potassium
全碳
Total carbon
秸秆Straw 16.92 5.36 10.77 262.99
菌渣Slag 13.85 5.86 11.90 168.10
生物炭Biochar 14.53 4.78 14.68 118.40


下载: 导出CSV
表3不同生物质改良剂施用下高寒草地沙化土壤活性碳组分的分配比率
Table3.Fractions of active carbon in soil total organic carbon under application of different biomass amendments in alpine desertification grassland
土层深度
Soil depth (cm)
处理
Treatment
EOC/TOC MBC/TOC
0~10 CK 24.04d 0.58e
JG1 28.86bc 2.29c
JZ1 23.82d 3.19b
SWT1 27.53bcd 1.79d
JG3 33.47a 2.58c
JZ3 30.77ab 3.87a
SWT3 26.32cd 1.86d
10~20 CK 23.76b 1.67d
JG1 25.34ab 3.16bc
JZ1 28.08ab 5.00a
SWT1 26.97ab 2.98bc
JG3 31.94a 3.80b
JZ3 27.78ab 5.00a
SWT3 27.49ab 2.75c
CK:空白处理; JG1: 6 t·hm-2秸秆; JZ1: 6 t·hm-2菌渣; SWT1: 6 t·hm-2生物炭; JG3: 18 t·hm-2秸秆; JZ3: 18 t·hm-2菌渣; SWT3: 18 t·hm-2生物炭。EOC/TOC:易氧化有机碳占总有机碳的比例; MBC/TOC:微生物量碳占总有机碳的比例。同列不同小写字母代表同一土层不同改良剂处理间差异显著(P < 0.05)。CK: blank treatment; JG1: 6 t·hm-2 straw; JZ1: 6 t·hm-2 slag; SWT1: 6 t·hm-2 biochar; JG3: 18 t·hm-2 straw; JZ3: 18 t·hm-2 slag; SWT3: 18 t·hm-2 biochar. EOC/TOC: ratio of labile organic carbon to total organic carbon; MBC/TOC: ratio of microbial biomass carbon to total organic carbon. Different lowercase letters in the same column of the same soil depth mean significant differences among different treatments at 0.05 level.


下载: 导出CSV
表4高寒草地沙化土壤呼吸速率与各影响因素的相关分析
Table4.Correlation analysis between soil respiration rate and its influencing factors in alpine desertification grassland
指标
Parameter
土壤呼吸速率
Soil respiration rate
土壤温度
Soil temperature
土壤水分
Soil moisture
总有机碳
Total organic carbon
微生物量碳
Microbial biomass carbon
易氧化有机碳
Easily organic carbon
土壤呼吸速率Soil respiration rate 1.000 -0.673** 0.452* 0.866** 0.830** 0.895**
土壤温度Soil temperature 1.000 -0.665** -0.843** -0.749** -0.761**
土壤水分Soil moisture 1.000 0.674** 0.489* 0.599**
总有机碳Total organic carbon 1.000 0.728** 0.911**
微生物量碳Microbial biomass carbon 1.000 0.461**
易氧化有机碳Easily organic carbon 1.000
*表示显著相关(P < 0.05), **表示极显著相关(P < 0.01)。* and ** represents significant correlations at P < 0.05 and P < 0.01, respectively.


下载: 导出CSV
表5不同改良剂处理下的高寒草地沙化土壤呼吸总量、微生物呼吸总量与碳平衡
Table5.Soil respiration, cumulative microbial respiration and carbon balance under different amendments treatments in alpine desertification grassland
处理Treatment CK JG1 JZ1 SWT1 JG3 JZ3 SWT3
地上部生物量
Shoot biomass (kg·hm-2)
4 170.39± 175.41f 9 340.79± 219.91c 8 461.77± 175.57d 7 395.10± 438.90e 12 582.78± 288.81a 10 767.96±167.08b 10 313.63± 224.69
根生物量
Root biomass (kg·hm-2)
785.19± 8.55e 811.12± 25.93e 1 255.56± 100.23d 1 323.46± 16.19d 2 359.27± 127.73a 2 155.57± 43.25b 1 929.64± 30.84c
净初级生产力(NPP)
Net primary productivity (kg·hm-2)
4 965.46± 171.09e 10 151.90± 198.98c 9 717.33± 242.78c 8 718.56± 454.36d 14 942.05± 397.39a 12 923.52± 167.72b 12 243.27± 216.99b
净初级生产力固碳量
(NPPC) C fixation of NPP [kg(C)·hm-2)]
2 234.46± 76.99e 4 568.36± 89.54c 4 372.80± 109.25c 3 923.35± 204.46d 6 723.92± 204.46a 5 815.58± 75.48b 5 509.47± 97.65b
CO2排放总量
Total CO2 emission (kg·hm-2)
895.57± 24.24f 1 814.32± 45.80b 1 679.19± 22.31c 1 070.87± 22.43e 2 693.60± 12.71a 2 628.73± 34.38a 1 407.21± 26.79d
碳排放总量
(Ras) Total C emission [kg(C)·hm-2]
244.25± 6.61f 494.82± 12.49b 457.96± 6.08c 292.05± 6.12e 734.62± 3.47a 716.93± 9.38a 383.78± 7.31d
土壤微生物易氧呼吸碳释放量
(Rm=Ras×0.865) C emission from soil microbial respiration [kg(C)·hm-2]
211.27± 5.72f 428.02± 10.81b 396.14± 5.26c 252.63± 5.29e 635.45± 3.00a 620.14± 8.11a 331.97± 6.32d
生物质改良剂输入碳量
C from biomass amendment [kg(C)·hm-2]
0 1 577.94 1 008.60 710.40 4 733.82 3 025.80 2 131.20
净生态系统生产力
(NEP=NPP-Rm) Net ecological productivity [kg(C)·hm-2]
2 023± 78.97g 5 718.28± 92.63d 4 985.26± 109.08e 4 381.13± 202.72f 10 822.30± 181.31a 8 221.24± 70.75b 7 308.70± 103.68c
同行不同字母表示不同处理间在0.05水平差异显著。在进行净初级生产力固碳量计算时, 取45%作为作物植株与根系的平均有机碳含量; 土壤微生物呼吸占土壤总呼吸量的86.5%。Different letters in the same line indicate significant differences among treatments at 0.05 level. NPPC=NPP×45%, 45% is the average organic carbon content of crop plants and roots. Soil microbial respiration accounts for 86.5% of total soil respiration.


下载: 导出CSV

参考文献(41)
[1]林慧龙, 王军, 徐震, 等.草地农业生态系统中的碳循环研究动态[J].草业科学, 2005, 22(4):59-62 doi: 10.3969/j.issn.1001-0629.2005.04.016
LIN H L, WANG J, XU Z, et al. Research progress and trend of the carbon cycle in grassland agroecosystem[J]. Pratacultural Science, 2005, 22(4):59-62 doi: 10.3969/j.issn.1001-0629.2005.04.016
[2]RAICH J W, SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus B:Chemical and Physical Meteorology, 1992, 44(2):81-99 doi: 10.3402/tellusb.v44i2.15428
[3]中国生产力学会.中国草产业发展研究报告[C]//2007-2008中国生产力发展研究报告.北京: 中国统计出版社, 2009: 176-194 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGSC200903001011.htm
Chinese Association of Productivity Science. China grass industry development research report[C]//2007-2008 China Productivity Development Research Report. Beijing: China Statistics Press, 2009: 176-194 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGSC200903001011.htm
[4]赵亮, 李奇, 陈懂懂, 等.三江源区高寒草地碳流失原因、增汇原理及管理实践[J].第四纪研究, 2014, 34(4):795-802 doi: 10.3969/j.issn.1001-7410.2014.04.12
ZHAO L, LI Q, CHEN D D, et al. Principles of alpine grassland ecosystems carbon sequestration and management practices on Sanjiangyuan regions, Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2014, 34(4):795-802 doi: 10.3969/j.issn.1001-7410.2014.04.12
[5]INNANGI M, NIRO E, D'ASCOLI R, et al. Effects of olive pomace amendment on soil enzyme activities[J]. Applied Soil Ecology, 2017, 119:242-249 doi: 10.1016/j.apsoil.2017.06.015
[6]张济世, 于波涛, 张金凤, 等.不同改良剂对滨海盐渍土土壤理化性质和小麦生长的影响[J].植物营养与肥料学报, 2017, 23(3):704-711 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201703017
ZHANG J S, YU B T, ZHANG J F, et al. Effects of different amendments on soil physical and chemical properties and wheat growth in a coastal saline soil[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3):704-711 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201703017
[7]RYALS R, KAISER M, TORN M S, et al. Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils[J]. Soil Biology and Biochemistry, 2014, 68:52-61 doi: 10.1016/j.soilbio.2013.09.011
[8]NINH H T, GRANDY A S, WICKINGS K, et al. Organic amendment effects on potato productivity and quality are related to soil microbial activity[J]. Plant and Soil, 2015, 386(1/2):223-236 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ce5b3dc7678faf9772ff1eb41536f03
[9]程功, 刘廷玺, 李东方, 等.生物炭和秸秆还田对干旱区玉米农田土壤温室气体通量的影响[J].中国生态农业学报(中英文), 2019, 27(7):1004-1014 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0703&flag=1
CHENG G, LIU T X, LI D F, et al. Effects of biochar and straw on greenhouse gas fluxes of corn fields in arid regions[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7):1004-1014 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0703&flag=1
[10]王梦雅, 符云鹏, 黄婷婷, 等.等碳量添加不同有机物料对土壤有机碳组分及土壤呼吸的影响[J].中国烟草学报, 2018, 24(2):65-73 http://d.old.wanfangdata.com.cn/Periodical/zgycxb201802009
WANG M Y, FU Y P, HUANG T T, et al. Effects of organic material application on organic carbon in and respiration of soil[J]. Acta Tabacaria Sinica, 2018, 24(2):65-73 http://d.old.wanfangdata.com.cn/Periodical/zgycxb201802009
[11]王婧, 张莉, 逄焕成, 等.秸秆颗粒化还田加速腐解速率提高培肥效果[J].农业工程学报, 2017, 33(6):177-183 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201706023
WANG J, ZHANG L, PANG H C, et al. Returning granulated straw for accelerating decomposition rate and improving soil fertility[J]. Transactions of the CSAE, 2017, 33(6):177-183 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201706023
[12]严红, 魏湜, 张雷, 等.有机物料施用量对土壤CO2排放速率的影响[J].大连大学学报, 2005, 26(4):46-50 doi: 10.3969/j.issn.1008-2395.2005.04.012
YAN H, WEI S, ZHANG L, et al. Influence of organic material amount on CO2 released rate from the soil[J]. Journal of Dalian University, 2005, 26(4):46-50 doi: 10.3969/j.issn.1008-2395.2005.04.012
[13]MEDINA E, PAREDES C, BUSTAMANTE M A, et al. Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate[J]. Geoderma, 2012, 173/174:152-161 doi: 10.1016/j.geoderma.2011.12.011
[14]黄小林.菌渣还田对农田温室气体排放的影响研究[D].雅安: 四川农业大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10626-1013157649.htm
HUANG X L. Effects of mushroom residues on GHS emissions from soils under rice-wheat rotation[D]. Ya'an: Sichuan Agricultural University, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10626-1013157649.htm
[15]徐国鑫, 王子芳, 高明, 等.秸秆与生物炭还田对土壤团聚体及固碳特征的影响[J].环境科学, 2018, 39(1):355-362 http://d.old.wanfangdata.com.cn/Periodical/hjkx201801044
XU G X, WANG Z F, GAO M, et al. Effects of straw and biochar return in soil on soil aggregate and carbon sequestration[J]. Environmental Science, 2018, 39(1):355-362 http://d.old.wanfangdata.com.cn/Periodical/hjkx201801044
[16]秦彧, 宜树华, 李乃杰, 等.青藏高原草地生态系统碳循环研究进展[J].草业学报, 2012, 21(6):275-285 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201206036
QIN Y, YI S H, LI N J, et al. Advance in studies of carbon cycling on alpine grasslands of the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2012, 21(6):275-285 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201206036
[17]殷文, 史倩倩, 郭瑶, 等.秸秆还田、一膜两年用及间作对农田碳排放的短期效应[J].中国生态农业学报, 2016, 24(6):716-724 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016603&flag=1
YIN W, SHI Q Q, GUO Y, et al. Short-term response of farmland carbon emission to straw return, two-year plastic film mulching and intercropping[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6):716-724 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016603&flag=1
[18]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000:147-195
LU R K. Methods for Chemical Analysis of Agricultural Soil[M]. Beijing:China Agricultural Science and Technology Press, 2000:147-195
[19]LOGINOW W, WISNIEWSKI W, GONET S S, et al. Fractionation of organic carbon based on susceptibility to oxidation[J]. Polish Journal of Soil Science, 1987, 20:47-52 http://agris.fao.org/agris-search/search.do?recordID=PL9000511
[20]VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6):703-707 doi: 10.1016/0038-0717(87)90052-6
[21]CAO M K, PRINCE S D, LI K R, et al. Response of terrestrial carbon uptake to climate interannual variability in China[J]. Global Change Biology, 2003, 9(4):536-546 doi: 10.1046/j.1365-2486.2003.00617.x
[22]KUZYAKOV Y. Separating microbial respiration of exudates from root respiration in non-sterile soils:A comparison of four methods[J]. Soil Biology and Biochemistry, 2002, 34(11):1621-1631 doi: 10.1016/S0038-0717(02)00146-3
[23]李有兵, 把余玲, 李硕, 等.作物残体与其生物炭配施对土壤有机碳及其自身矿化率的提升[J].植物营养与肥料学报, 2015, 21(4):943-950 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201504013
LI Y B, BA Y L, LI S, et al. Combined addition of crop residues and their biochar increase soil organic C content and mineralization rate[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(4):943-950 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201504013
[24]YANO Y, MCDOWELL W H, ABER J D. Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition[J]. Soil Biology and Biochemistry, 2000, 32(11/12):1743-1751 http://www.cabdirect.org/abstracts/20001916979.html
[25]李忠佩, 张桃林, 陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报, 2004, 41(4):544-552 doi: 10.3321/j.issn:0564-3929.2004.04.008
LI Z P, ZHANG T L, CHEN B Y. Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon[J]. Acta Pedologica Sinica, 2004, 41(4):544-552 doi: 10.3321/j.issn:0564-3929.2004.04.008
[26]张瑞, 张贵龙, 姬艳艳, 等.不同施肥措施对土壤活性有机碳的影响[J].环境科学, 2013, 34(1):277-282 http://d.old.wanfangdata.com.cn/Periodical/hjkx201301042
ZHANG R, ZHANG G L, JI Y Y, et al. Effects of different fertilizer application on soil active organic carbon[J]. Environmental Science, 2013, 34(1):277-282 http://d.old.wanfangdata.com.cn/Periodical/hjkx201301042
[27]张杰, 黄金生, 刘佳, 等.秸秆、木质素及其生物炭对潮土CO2释放及有机碳含量的影响[J].农业环境科学学报, 2015, 34(2):401-408 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201502026
ZHANG J, HUANG J S, LIU J, et al. Carbon dioxide emissions and organic carbon contents of fluvo-aquic soil as influenced by straw and lignin and their biochars[J]. Journal of Agro-Environment Science, 2015, 34(2):401-408 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201502026
[28]王宏燕, 许毛毛, 孟雨田, 等.玉米秸秆与秸秆生物炭对2种黑土有机碳含量及碳库指数的影响[J].江苏农业科学, 2017, 45(12):228-232 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201712058
WANG H Y, XU M M, MENG Y T, et al. Influences of maize straw and straw biochar on organic carbon content and carbon pool management index of two kinds of black soils[J]. Jiangsu Agricultural Sciences, 2017, 45(12):228-232 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201712058
[29]BRADLEY R L, FYLES J W. A kinetic parameter describing soil available carbon and its relationship to rate increase in C mineralization[J]. Soil Biology and Biochemistry, 1995, 27(2):167-172 doi: 10.1016/0038-0717(94)00160-3
[30]李新华, 朱振林, 董红云, 等.秸秆不同还田模式对玉米田温室气体排放和碳固定的影响[J].农业环境科学学报, 2015, 34(11):2228-2235 doi: 10.11654/jaes.2015.11.027
LI X H, ZHU Z L, DONG H Y, et al. Effects of different return modes of wheat straws on greenhouse gas emissions and carbon sequestration of maize fields[J]. Journal of Agro-Environment Science, 2015, 34(11):2228-2235 doi: 10.11654/jaes.2015.11.027
[31]侯亚红, 王磊, 付小花, 等.土壤碳收支对秸秆与秸秆生物炭还田的响应及其机制[J].环境科学, 2015, 36(7):2655-2661 http://d.old.wanfangdata.com.cn/Periodical/hjkx201507044
HOU Y H, WANG L, FU X H, et al. Response of straw and straw biochar returning to soil carbon budget and its mechanism[J]. Environmental Science, 2015, 36(7):2655-2661 http://d.old.wanfangdata.com.cn/Periodical/hjkx201507044
[32]祁乐, 高明, 周鹏, 等.菌渣还田量对紫色水稻土净温室气体排放的影响[J].环境科学, 2018, 39(6):2827-2836 http://d.old.wanfangdata.com.cn/Periodical/hjkx201806039
QI L, GAO M, ZHOU P, et al. Effects of mushroom residue application rates on net greenhouse gas emissions in the purple paddy soil[J]. Environmental Science, 2018, 39(6):2827-2836 http://d.old.wanfangdata.com.cn/Periodical/hjkx201806039
[33]贺京, 李涵茂, 方丽, 等.秸秆还田对中国农田土壤温室气体排放的影响[J].中国农学通报, 2011, 27(20):246-250 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201120050
HE J, LI H M, FANG L, et al. Influence of straw application on agricultural greenhouse gas emissions in China[J]. Chinese Agricultural Science Bulletin, 2011, 27(20):246-250 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201120050
[34]强学彩, 袁红莉, 高旺盛.秸秆还田量对土壤CO2释放和土壤微生物量的影响[J].应用生态学报, 2004, 15(3):469-472 doi: 10.3321/j.issn:1001-9332.2004.03.022
QIANG X C, YUAN H L, GAO W S. Effect of crop-residue incorporation on soil CO2 emission and soil microbial biomass[J]. Chinese Journal of Applied Ecology, 2004, 15(3):469-472 doi: 10.3321/j.issn:1001-9332.2004.03.022
[35]江仁涛.川西北高寒草地退化/恢复对土壤团聚体及有机碳的影响[D].绵阳: 西南科技大学, 2018 http://cdmd.cnki.com.cn/Article/CDMD-10619-1018200823.htm
JIANG R T. Effects of alpine degradation and restoration on soil aggregate and organic carbon in northwestern Sichuan[D]. Mianyang: Southwest University of Science and Technology, 2018 http://cdmd.cnki.com.cn/Article/CDMD-10619-1018200823.htm
[36]宋延静, 龚骏.施用生物质炭对土壤生态系统功能的影响[J].鲁东大学学报:自然科学版, 2010, 26(4):361-365 doi: 10.3969/j.issn.1673-8020.2010.04.016
SONG Y J, GONG J. Effects of biochar application on soil ecosystem functions[J]. Ludong University Journal:Natural Science Edition, 2010, 26(4):361-365 doi: 10.3969/j.issn.1673-8020.2010.04.016
[37]王轶虹, 史学正, 王美艳, 等. 2001-2010年中国农田生态系统NPP的时空演变特征[J].土壤学报, 2017, 54(2):319-330 http://d.old.wanfangdata.com.cn/Periodical/trxb201702004
WANG Y H, SHI X Z, WANG M Y, et al. Spatio-temporal variation of NPP in cropland ecosystem of China during the years from 2001 to 2010[J]. Acta Pedologica Sinica, 2017, 54(2):319-330 http://d.old.wanfangdata.com.cn/Periodical/trxb201702004
[38]魏小波, 何文清, 黎晓峰, 等.农田土壤有机碳固定机制及其影响因子研究进展[J].中国农业气象, 2010, 31(4):487-494 doi: 10.3969/j.issn.1000-6362.2010.04.001
WEI X B, HE W Q, LI X F, et al. Review on the mechanism of soil organic carbon sequestration and its influence factors in cropland soils[J]. Chinese Journal of Agrometeorology, 2010, 31(4):487-494 doi: 10.3969/j.issn.1000-6362.2010.04.001
[39]金琳, 李玉娥, 高清竹, 等.中国农田管理土壤碳汇估算[J].中国农业科学, 2008, 41(3):734-743 doi: 10.3864/j.issn.0578-1752.2008.03.014
JIN L, LI Y E, GAO Q Z, et al. Estimate of carbon sequestration under cropland management in China[J]. Scientia Agricultura Sinica, 2008, 41(3):734-743 doi: 10.3864/j.issn.0578-1752.2008.03.014
[40]李柘锦, 隋鹏, 龙攀, 等.不同有机物料还田对农田系统净温室气体排放的影响[J].农业工程学报, 2016, 32(S2):111-117 http://d.old.wanfangdata.com.cn/Periodical/nygcxb2016z2015
LI Z J, SUI P, LONG P, et al. Effects of different organic wastes application on net greenhouse gas emission in farmland system[J]. Transactions of the CSAE, 2016, 32(S2):111-117 http://d.old.wanfangdata.com.cn/Periodical/nygcxb2016z2015
[41]徐敏, 伍钧, 张小洪, 等.生物炭施用的固碳减排潜力及农田效应[J].生态学报, 2018, 38(2):393-404 http://d.old.wanfangdata.com.cn/Periodical/stxb201802004
XU M, WU J, ZHANG X H, et al. Impact of biochar application on carbon sequestration, soil fertility and crop productivity[J]. Acta Ecologica Sinica, 2018, 38(2):393-404 http://d.old.wanfangdata.com.cn/Periodical/stxb201802004

相关话题/土壤 生物 微生物 农田 农业