删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华北典型区域土壤耕作方式对土壤特性和作物产量的影响

本站小编 Free考研考试/2022-01-01

关劼兮1, 2,,
陈素英1,,,
邵立威1,
张玉铭1,
张喜英1,
路杨1, 2,
闫宗正1, 2
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
基金项目: 国家重点研发计划专项2016YFD0300808
国家重点研发计划专项2016YFC0401403
国家自然科学基金项目31371578

详细信息
作者简介:关劼兮, 主要从事农田节水机理与技术研究。E-mail:gjx391214674@qq.com
通讯作者:陈素英, 主要从事农田节水和保护性耕作技术研究。E-mail:csy@sjziam.ac.cn
中图分类号:S342

计量

文章访问数:615
HTML全文浏览量:33
PDF下载量:393
被引次数:0
出版历程

收稿日期:2019-04-02
录用日期:2019-06-04
刊出日期:2019-11-01

Soil tillage practices affecting the soil characteristics and yield of winter wheat and summer maize in North China

GUAN Jiexi1, 2,,
CHEN Suying1,,,
SHAO Liwei1,
ZHANG Yuming1,
ZHANG Xiying1,
LU Yang1, 2,
YAN Zongzheng1, 2
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Agricultural Water-saving, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: National Key R & D Program of China2016YFD0300808
National Key R & D Program of China2016YFC0401403
National Natural Science Foundation of China31371578

More Information
Corresponding author:Corresponding author. E-mail:csy@sjziam.ac.cn


摘要
HTML全文
(5)(4)
参考文献(28)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:华北平原是我国重要的小麦玉米种植区,长期土壤旋耕免耕和秸秆全量还田带来耕层变浅、犁底层变厚和上移、土壤养分表聚等现象,通过耕作方式改变,解决上述问题对维持区域粮食生产有重要意义。试验以冬小麦-夏玉米轮作系统为研究对象,分别在代表华北平原高产区的栾城试验区和代表中低产区的南皮试验区进行,设置冬小麦播种前进行土壤深耕、深松、窄深松3种处理,以生产上常用的旋耕为对照。所有处理夏玉米季均采用土壤免耕播种,测定项目包括土壤容重、作物根系、作物产量和水分利用效率。结果表明,不同耕作方式对土壤特性和作物产量的影响具有区域差异。南皮试验区土壤深耕(松)显著地(P < 0.05)提高了作物产量,深耕、深松和窄深松处理的冬小麦产量比旋耕分别增加16.5%、19.3%和13.1%,夏玉米产量分别增加17.3%、16.2%和21.9%,周年产量分别增加16.9%、17.6%和17.8%;深耕、深松和窄深松处理间作物产量差异不显著。栾城试验区冬小麦、夏玉米产量和周年产量各处理之间差异不显著。土壤深耕、深松、窄深松和旋耕均能降低0~20 cm土层土壤紧实度和土壤容重。冬小麦播种后,与土壤耕作前比较,土壤深耕、深松和旋耕处理土壤紧实度南皮试验区分别平均降低71.6%和68.2%,栾城试验区分别降低88.8%和-7.7%,常用的旋耕模式在栾城试区没有降低土壤紧实度。小麦收获时不同耕作方式0~40 cm土层的土壤容重均低于土壤耕作前的土壤容重,至夏玉米收获时不同耕作处理的土壤容重与耕作前基本一致,不同耕作处理对土壤容重的影响差异不显著。在南皮试验区,3种耕作方式与旋耕相比,均显著提高了冬小麦和夏玉米水分利用效率;在栾城试验区,各处理冬小麦和夏玉米水分利用效率差异不显著。本研究结果显示在华北平原高产区连续实施土壤旋耕模式没有影响作物产量,而在中低产区实施土壤深耕或者深松模式更利于作物产量提高。
Abstract:The North China Plain (NCP) is one of the most intensively farmed agricultural regions in China, with approximately 70% of the total cultivated land being used for an annual double-cropping system of winter wheat and summer maize. Owing to the long-term rotary and no tillage practices accompanying with the whole straw of winter wheat and summer maize return to field for several years, soil physical characteristics are gradually changing in terms of the increased soil pan depth, bulk density and content of soil nutrients in the surface soil layer. Improving soil quality by changing the tillage practices might help to maintain crop productivity in this region. An experiment was conducted for the winter wheat-summer maize rotation system in Luancheng County, which represented a high yield region, and in Nanpi County, which represented a medium and low yield region, in the NCP. Four treatments-soil deep tillage (DT), subsoiling (SS), narrow subsoiling (NSS), and rotary tillage (control, CK)-before winter wheat sowing and no tillage before summer maize sowing to all treatments were simultaneously conducted at the two areas. Soil bulk density, crop root growth, soil water use, yield and water use efficiency (WUE) were monitored throughout. Results showed that the effects of different tillage practices on soil and crop were different in the two regions. At Nanpi, deep tillage and subsoiling significantly increased crop yield. Compared with traditional rotary tillage, winter wheat yield was improved by 16.5% under DT, 19.3% under SS, and 13.1% under NSS. Yield of summer maize was increased by 17.3%, 16.2%, and 21.9%, respectively, with annual yield increases of 16.9%, 17.6% and 17.8%, respectively. Yield differences were not observed among the DT, SS, and NSS treatments. However, no significant difference in crop yield among the four treatments was found at Luancheng. Furthermore, four tillage practices reduced soil penetration resistance and bulk density for the 0-20-cm soil layer in both Luancheng and Nanpi. At Nanpi, after sowing winter wheat, the soil penetration resistance of the 0-20-cm soil layer under DT, SS, NSS and CK decreased by 69.7%, 72.7%, 72.5% and 68.2%, respectively. At Luancheng, soil penetration resistance of the 0-20-cm soil layer was reduced by 88.8% averagely under treatments of deep tillage and subsoiling, and slightly increased by 7.7% under CK. Soil bulk density of the 0-40-cm soil layer under the four tillage treatments were all lower at wheat harvest compared with that before tillage. Until the summer maize harvest, soil bulk density under different tillage treatments was essentially similar to that before tillage, and there was no significant difference among the four tillage treatments. At Nanpi, WUE of winter wheat and summer maize was significantly increased under DT, SS, and NSS compared with that under CK. At Luancheng, the WUE of winter wheat and summer maize was similar among the four treatments. These results indicated that different tillage practices in the low yield regions benefited crop production and water productivity. However, in the high yield regions, the three tillage practices did not enhance crop performance compared with traditional tillage practice. Therefore, it is suggested that the model of soil rotary tillage can be continuously implemented in the high yield regions of the NCP, whereas DT can be beneficially implemented in the medium and low yield regions.

HTML全文


图1南皮试验区(南皮)和栾城试验区(栾城)逐月日照时数和温度日较差(2016年10月至2017年9月)
Figure1.Monthly average sunshine hours and daily temperature range of Nanpi experiment site (NP) and Luancheng experiment site (LC) from October 2016 to September 2017


下载: 全尺寸图片幻灯片


图2不同耕作措施对南皮试验区(a)和栾城试验区(b)小麦苗期土壤紧实度的影响(2016年11月)
Figure2.Effects of tillage patterns on soil penetration resistance at seedling stage of winter wheat at Nanpi experiment site (a) and Luancheng experiment site (b)
CK: rotary tillage; DT: deep tillage; SS: subsoiling; NSS: narrow subsoiling.


下载: 全尺寸图片幻灯片


图3不同耕作措施对南皮试验区和栾城试验区冬小麦和夏玉米收获时土壤容重的影响
Figure3.Effects of tillage patterns on soil bulk density at harvest of winter wheat and summer maize at Nanpi experiment site and Luancheng experiment site
DT: deep tillage; SS: subsoiling; NSS: narrow subsoiling; CK: rotary tillage.


下载: 全尺寸图片幻灯片


图4耕作方式对栾城试验区和南皮试验区冬小麦收获期根长密度的影响
Figure4.Effects of tillage patterns on root length densities of winter wheat at harvest at Luancheng experiment site and Nanpi experiment site
CK: rotary tillage; DT: deep tillage; SS: subsoiling; NSS: narrow subsoiling.


下载: 全尺寸图片幻灯片


图5旋耕和深耕处理下南皮试验区和栾城试验区不同时间土壤含水量的变化
Figure5.Changes of soil water contents (W/W) during the experiment at Nanpi experiment site and Luancheng experiment site under rotary tillage (CK) and deep tillage (DT)


下载: 全尺寸图片幻灯片

表1南皮试验区和栾城试验区土壤养分含量(2016年10月)
Table1.Soil nutrients contents in Nanpi experiment site and Luancheng experiment site in October 2016
土层深度Soil depth (cm) 南皮试验区Nanpi experiment site 栾城试验区Luancheng experiment site
有机质Organic matter (g?kg-1) 全氮Total nitrogen (g?kg-1) 速效氮Available nitrogen (mg?kg-1) 速效磷Available phosphorus (mg?kg-1) 速效钾Available potassium (mg?kg-1) 有机质Organic matter (g?kg-1) 全氮Total nitrogen (g?kg-1) 速效氮Available nitrogen (mg?kg-1) 速效磷Available phosphorus (mg?kg-1) 速效钾Available Potassium (mg?kg-1)
0~10 16.29 1.07 83.22 16.19 120.17 21.76 1.34 117.96 11.31 117.35
10~20 8.91 0.62 44.90 6.27 74.42 14.29 0.93 83.32 4.97 83.83
20~30 5.69 0.41 27.67 3.50 67.96 8.49 0.58 48.37 2.13 79.22
30~40 4.71 0.32 21.86 1.83 61.50 6.63 0.48 36.53 1.75 82.42


下载: 导出CSV
表2南皮试验区和栾城试验区冬小麦和夏玉米生育期气象因素
Table2.Weather conditions during the growing seasons of winter wheat and summer maize in Nanpi experiment site and Luancheng experiment site
气象要素Meteorological factor 南皮试验区Nanpi experiment site 栾城试验区Luancheng experiment site
冬小麦Winter wheat 夏玉米Summer maize 冬小麦Winter wheat 夏玉米Summer maize
降雨量Rainfall (mm) 81.6 401.0 78.0 185.5
≥10 ℃积温Accumulate temperature ≥ 10 ℃ (℃) 1 719.4 2 911.0 1 690.1 2 904.8
日均温Daily mean temperature (℃) 9.17 31.16 8.54 25.93
日照时数Sunshine hours (h) 1 446.3 681.7 1 205.6 629.4


下载: 导出CSV
表3不同耕作方式对南皮试验区和栾城试验区冬小麦和夏玉米水分利用效率的影响
Table3.Effects of tillage patterns on water use efficiency of winter wheat and summer maize at Nanpi experiment site and Luancheng experiment site
kg ?m-3
处理Treatment 南皮试验区Nanpi experiment site 栾城试验区Luancheng experiment site
冬小麦Winter wheat 夏玉米Summer maize 周年Whole year 冬小麦Winter wheat 夏玉米Summer maize 周年Whole year
深耕Deep tillage 1.93±0.03a 2.26±0.08a 2.09±0.05a 1.82±0.05a 2.64±0.06a 2.21±0.05a
深松Subsoiling 1.87±0.04a 2.21±0.07a 2.04±0.06a 1.84±0.06a 2.43±0.07a 2.11±0.04a
窄深松Narrow subsoiling 1.90±0.03a 2.35±0.10a 2.13±0.05a 1.96±0.06a 2.63±0.05a 2.30±0.05a
旋耕Rotary tillage (CK) 1.51±0.05b 1.98±0.11b 1.74±0.07b 1.90±0004a 2.48±0.05a 2.17±0.04a
????同列不同小写字母表示不同处理间在P < 0.05水平差异显著。Different lowercase letters in the same column mean significant differences among treatments at 0.05 level.


下载: 导出CSV
表4不同耕作处理对冬小麦和夏玉米产量及产量构成的影响
Table4.Grain yield and yield components of winter wheat, summer maize and whole year under different soil tillage treatments
试验区Experiment site 处理Treatment 冬小麦Winter wheat 夏玉米Summer maize 周年产量Annual yield (t?hm-2)
产量Grain yield (t?hm-2) 穗数Spike number (?m-2) 穗粒数Grains per spike 千粒重1000-grain weight (g) 产量Grain yield (t?hm-2) 穗数
Spike number (?m-2)
穗粒数Grains
per ear
千粒重1000-grain weight (g)
南皮Nanpi CK 6.42±0.52b 535.8±35.74b 34.4±1.01a 38.0±0.74c 7.63±0.36b 5.10±0.15b 517.2±9.55a 367.8±4.43a 14.05±0.39b
DT 7.48±0.73a 672.9±95.16a 34.1±1.79a 39.2±2.14bc 8.95±0.49a 5.51±0.62b 477.2±32.08b 370.2±8.77a 16.43±0.37a
SS 7.66±0.51a 535.4±53.72b 34.0±2.69a 42.3±1.88a 8.87±0.87a 5.41±0.81b 496.9±28.71ab 367.0±11.10a 16.53±1.03a
NSS 7.26±1.00a 577.1±35.74b 30.4±2.93b 40.8±1.59ab 9.29±0.76a 6.21±0.81a 479.8±34.52b 375.8±14.31a 16.56±1.17a
栾城Luancheng CK 6.74±0.19ab 757.5±41.49a 28.0±2.84b 40.1±0.39a 8.90±0.95a 5.58±0.26b 512.2±19.66a 338.7±9.71a 15.64±1.07a
DT 6.51±0.38b 631.7±75.30ab 30.3±3.16b 37.3±1.22b 9.46±0.23a 6.58±0.38a 508.1±14.53a 327.3±18.35ab 15.96±0.51a
SS 6.52±0.27b 578.3±107.990b 32.8±1.87a 40.6±0.62a 8.68±0.32a 5.80±0.35b 482.5±20.67ab 316.8±12.00b 15.20±0.59a
NSS 7.26±0.32a 706.7±74.04ab 30.0±2.79b 40.2±0.66a 8.75±0.57a 6.39±0.43a 458.3±26.20b 326.4±3.20ab 16.01±0.88a
????CK:常规旋耕; DT:深耕; SS:深松; NSS:窄深松。同列同一试验区不同小写字母表示P < 0.05水平差异显著。CK: rotary tillage; DT: deep tillage; SS: subsoiling; NSS: narrow subsoiling. Different lowercase letters in the same column for the same experiment site mean significant differences among treatments at 0.05 level.


下载: 导出CSV

参考文献(28)
[1]杜章留, 高伟达, 陈素英, 等.保护性耕作对太行山前平原土壤质量的影响[J].中国生态农业学报, 2011, 19(5):1134-1142 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201105025
DU Z L, GAO W D, CHEN S Y, et al. Effect of conservation tillage on soil quality in the piedmont plain of Mount Taihang[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5):1134-1142 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201105025
[2]BECERRA A T, BOTTA G F, BRAVO X L, et al. Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería Espa a[J]. Soil and Tillage Research, 2010, 107(1):49-56 doi: 10.1016/j.still.2010.02.001
[3]BENGOUGH A G, MCKENZIE B M, HALLETT P D, et al. Root elongation, water stress, and mechanical impedance:a review of limiting stresses and beneficial root tip traits[J]. Journal of Experimental Botany, 2011, 62(1):59-68 doi: 10.1093/jxb/erq350
[4]LIPIEC J, HATANO R. Quantification of compaction effects on soil physical properties and crop growth[J]. Geoderma, 2003, 116(1/2):107-136 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=956cec8e4b40036fa80b27148381eca8
[5]李潮海, 李胜利, 王群, 等.下层土壤容重对玉米根系生长及吸收活力的影响[J].中国农业科学, 2005, 38(8):1706-1711 doi: 10.3321/j.issn:0578-1752.2005.08.030
LI C H, LI S L, WANG Q, et al. A study on corn root growth and activities at different soil layers with special bulk density[J]. Scientia Agricultura Sinica, 2005, 38(8):1706-1711 doi: 10.3321/j.issn:0578-1752.2005.08.030
[6]VAN DEN AKKER J J H, ARVIDSSON J, HORN R. Introduction to the special issue on experiences with the impact and prevention of subsoil compaction in the European Union[J]. Soil and Tillage Research, 2003, 73(1/2):1-8 http://cn.bing.com/academic/profile?id=fbe0fca08b18019fe680a24c2db1d7e4&encoded=0&v=paper_preview&mkt=zh-cn
[7]POWERS R F, ANDREW SCOTT D, SANCHEZ F G, et al. The North American long-term soil productivity experiment:Findings from the first decade of research[J]. Forest Ecology and Management, 2005, 220(1/2/3):31-50 http://cn.bing.com/academic/profile?id=d96df60997fba3ec7c1b9f0310076b47&encoded=0&v=paper_preview&mkt=zh-cn
[8]谢迎新, 靳海洋, 孟庆阳, 等.深耕改善砂姜黑土理化性状提高小麦产量[J].农业工程学报, 2015, 31(10):167-173 doi: 10.11975/j.issn.1002-6819.2015.10.022
XIE Y X, JIN H Y, MENG Q Y, et al. Deep tillage improving physical and chemical properties of soil and increasing grain yield of winter wheat in lime concretion black soil farmland[J]. Transactions of the CSAE, 2015, 31(10):167-173 doi: 10.11975/j.issn.1002-6819.2015.10.022
[9]赵亚丽, 刘卫玲, 程思贤, 等.深松(耕)方式对砂姜黑土耕层特性、作物产量和水分利用效率的影响[J].中国农业科学, 2018, 51(13):2489-2503 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201813005
ZHAO Y L, LIU W L, CHENG S X, et al. Effects of pattern of deep tillage on topsoil features, yield and water use efficiency in lime concretion black soil[J]. Scientia Agricultura Sinica, 2018, 51(13):2489-2503 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201813005
[10]李霞.小麦-玉米周年生产体系中播前耕作对夏玉米产量及生理特性的影响[D].泰安: 山东农业大学, 2014
LI X. Effect of pre-planting tillage of winter wheat and summer maize on yield and physiological characteristics of summer maize[D]. Tai'an: Shandong Agricultural University, 2014
[11]孔晓民, 韩成卫, 曾苏明, 等.不同耕作方式对土壤物理性状及玉米产量的影响[J].玉米科学, 2014, 22(1):108-113 doi: 10.3969/j.issn.1005-0906.2014.01.019
KONG X M, HAN C W, ZENG S M, et al. Effects of different tillage managements on soil physical properties and maize yield[J]. Journal of Maize Sciences, 2014, 22(1):108-113 doi: 10.3969/j.issn.1005-0906.2014.01.019
[12]杨永辉, 武继承, 张洁梅, 等.耕作方式对土壤水分入渗、有机碳含量及土壤结构的影响[J].中国生态农业学报, 2017, 25(2):258-266 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201702013
YANG Y H, WU J C, ZHANG J M, et al. Effect of tillage method on soil water infiltration, organic carbon content and structure[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2):258-266 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201702013
[13]刘卫玲, 程思贤, 周金龙, 等.深松(耕)时机与方式对土壤物理性状和玉米产量的影响[J].河南农业科学, 2018, 47(3):7-13 http://d.old.wanfangdata.com.cn/Periodical/hnnykx201803002
LIU W L, CHENG S X, ZHOU J L, et al. Effects of time and pattern of deep tillage (subsoiling) on soil physical properties and maize yield[J]. Journal of Henan Agricultural Sciences, 2018, 47(3):7-13 http://d.old.wanfangdata.com.cn/Periodical/hnnykx201803002
[14]于淑婷, 赵亚丽, 王育红, 等.轮耕模式对黄淮海冬小麦-夏玉米两熟区农田土壤改良效应[J].中国农业科学, 2017, 50(11):2150-2165 doi: 10.3864/j.issn.0578-1752.2017.11.020
YU S T, ZHAO Y L, WANG Y H, et al. Improvement effects of rotational tillage patterns on soil in the winter wheat-summer maize double cropping area of Huang-Huai-Hai region[J]. Scientia Agricultura Sinica, 2017, 50(11):2150-2165 doi: 10.3864/j.issn.0578-1752.2017.11.020
[15]谢迎新, 靳海洋, 孟庆阳, 等.深耕改善砂姜黑土理化性状提高小麦产量[J].农业工程学报, 2015, 31(10):167-173 doi: 10.11975/j.issn.1002-6819.2015.10.022
XIE Y X, JIN H Y, MENG Q Y, et al. Deep tillage improving physical and chemical properties of soil and increasing grain yield of winter wheat in lime concretion black soil farmland[J]. Transactions of the CSAE, 2015, 31(10):167-173 doi: 10.11975/j.issn.1002-6819.2015.10.022
[16]赵俊靖, 李洪奎, 李华春, 等.深耕对小麦病虫害的防治效果[J].植物医生, 2017, 30(11):51-53 http://d.old.wanfangdata.com.cn/Periodical/zwys201711033
ZHAO J J, LI H K, LI H C, et al. Effects of deep tillage on wheat diseases and insect pests[J]. Plant Doctor, 2017, 30(11):51-53 http://d.old.wanfangdata.com.cn/Periodical/zwys201711033
[17]雷友, 曹国鑫, 牛新胜, 等.土壤深耕对冬小麦根系在土壤剖面分布的影响[J].现代农业科技, 2011(8):272-273 doi: 10.3969/j.issn.1007-5739.2011.08.177
LEI Y, CAO G X, NIU X S, et al. Influence of deep tillage on distribution of wheat root system in soil profile[J]. Modern Agricultural Sciences and Technology, 2011(8):272-273 doi: 10.3969/j.issn.1007-5739.2011.08.177
[18]宫秀杰, 钱春荣, 于洋, 等.深松免耕技术对土壤物理性状及玉米产量的影响[J].玉米科学, 2009, 17(5):134-137 http://d.old.wanfangdata.com.cn/Periodical/ymkx200905032
GONG X J, QIAN C R, YU Y, et al. Effects of subsoiling and No-tillage on soil physical characters and corn yield[J]. Journal of Maize Sciences, 2009, 17(5):134-137 http://d.old.wanfangdata.com.cn/Periodical/ymkx200905032
[19]CAI H G, MA W, ZHANG X Z, et al. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize[J]. The Crop Journal, 2014, 2(5):297-307 doi: 10.1016/j.cj.2014.04.006
[20]ZHANG Y C, SHEN Y J, SUN H Y, et al. Evapotranspiration and its partitioning in an irrigated winter wheat field:A combined isotopic and micrometeorologic approach[J]. Journal of Hydrology, 2011, 408(3/4):203-211 http://cn.bing.com/academic/profile?id=79cb6e71c68bcf50ace070f2bdb3e5f2&encoded=0&v=paper_preview&mkt=zh-cn
[21]LIU X W, FEIKE T, CHEN S Y, et al. Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China[J]. Journal of Integrative Agriculture, 2016, 15(12):2886-2898 doi: 10.1016/S2095-3119(15)61328-4
[22]吕梦宇, 王仕琴, 齐永青, 等.华北低平原区降水与坑塘蓄水响应关系研究——以河北省南皮县为例[J].自然资源学报, 2018, 33(10):1796-1805 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201810011
LYU M Y, WANG S Q, QI Y Q, et al. Study on the relationship between precipitation and pond water storage in lowland area of North China Plain-A case study in Nanpi County, Hebei Province[J]. Journal of Natural Resources, 2018, 33(10):1796-1805 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201810011
[23]孙宏勇, 刘小京, 张喜英.盐碱地水盐调控研究[J].中国生态农业学报, 2018, 26(10):1528-1536 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201414013
SUN H Y, LIU X J, ZHANG X Y. Regulations of salt and water of saline-alkali soil:A review[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10):1528-1536 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201414013
[24]ZHANG X Y, CHEN S Y, SUN H Y, et al. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades[J]. Agricultural Water Management, 2011, 98(6):1097-1104 doi: 10.1016/j.agwat.2011.02.003
[25]王群, 王建, 张学林, 等.不同耕作模式下小麦玉米周年生产及土壤养分变化特征[J].河南农业大学学报, 2015, 49(4):429-437 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hennannydxxb201504001
WANG Q, WANG J, ZHANG X L, et al. Change characteristics of wheat and maize anniversary production and soil nutrient content under different rotation tillage patterns[J]. Journal of Henan Agricultural University, 2015, 49(4):429-437 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hennannydxxb201504001
[26]TOLIVER D K, LARSON J A, ROBERTS R K, et al. Effects of no-till on yields as influenced by crop and environmental factors[J]. Agronomy Journal, 2012, 104(2):530 doi: 10.2134/agronj2011.0291
[27]李永平, 王孟本, 史向远, 等.不同耕作方式对土壤理化性状及玉米产量的影响[J].山西农业科学, 2012, 40(7):723-727 doi: 10.3969/j.issn.1002-2481.2012.07.07
LI Y P, WANG M B, SHI X Y, et al. Influence of different tillage methods on soil physical and chemical properties and maize yield[J]. Journal of Shanxi Agricultural Sciences, 2012, 40(7):723-727 doi: 10.3969/j.issn.1002-2481.2012.07.07
[28]梁金凤, 齐庆振, 贾小红, 等.不同耕作方式对土壤性质与玉米生长的影响研究[J].生态环境学报, 2010, 19(4):945-950 doi: 10.3969/j.issn.1674-5906.2010.04.036
LIANG J F, QI Q Z, JIA X H, et al. Effects of different tillage managements on soil properties and corn growth[J]. Ecology and Environmental Sciences, 2010, 19(4):945-950 doi: 10.3969/j.issn.1674-5906.2010.04.036

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴闇夐柨婵嗙墛椤忕姷绱掗埀顒佺節閸屾鏂€闂佺粯蓱瑜板啴鍩€椤掆偓椤曨厾妲愰幘鎰佹僵閺夊牄鍔岄弸鎴︽⒑閸濆嫬鏆欓柣妤€瀚伴崺鈧い鎴f硶缁愭梻鈧鍠曠划娆撱€佸鈧幃娆撴嚑閸ㄦ稑浜鹃柛顭戝枓閺€浠嬫煥濞戞ê顏╁ù鐘欏懐纾兼い鏇炴噹閻忥妇鈧鍣崑濠囧箖閳哄啰纾兼俊顖炴敱鐎氬ジ姊婚崒娆戣窗闁稿妫濆畷鎴濃槈閵忊€虫濡炪倖鐗楃粙鎺戔枍閻樼粯鐓欑紓浣靛灩閺嬬喖鏌i幘璺烘灈闁哄瞼鍠栧畷褰掝敊閸忓吋顔勫┑鐐茬摠缁秵绔熼崱娑樼劦妞ゆ帒鍠氬ḿ鎰箾閸欏澧柡鍛板煐閹棃濡搁妷褜鍞归梻浣告啞濞诧箓宕滃顓熷弿婵犲﹤鐗婇悡娑橆熆鐠轰警鍎忔い鏇熺矒閺岋絾鎯旈姀鐘灆濠殿喖锕ら…宄扮暦閹烘垟鏋庨柟瀵稿Х瀹曟煡姊绘笟鈧埀顒傚仜閼活垱鏅舵导瀛樼厱閻庯綆鍋嗗ú鎾煙瀹曞洤鏋涙い銏$☉閳藉鈻庨幇顔煎▏婵犵數鍋涢顓㈠储瑜旈幃娲Ω閳哄倸浜楅梺鍝勬储閸ㄦ椽鎮¢悢闀愮箚妞ゆ牗绻傞崥褰掓煕濞嗗苯浜鹃梻鍌欑閹诧繝鎮烽妷褉鍋撳鐓庢珝闁糕斁鍋撳銈嗗笒閸犳艾岣块幇顓犵闁圭粯甯炵粻鑽も偓瑙勬礀缂嶅﹪骞婇悙鍝勎ㄩ柕鍫濇川閻i箖姊绘担绋款棌闁稿鎳庣叅闁哄稁鍘介崐宄扳攽閻樺弶澶勯柣鎾崇箰閳规垿鎮欓懠顑胯檸闂佸憡姊瑰ḿ娆撴箒闂佺ǹ绻愰崥瀣矆鐎n偅鍙忓┑鐘插暞閵囨繈鏌熺粵鍦瘈濠碘€崇埣瀹曘劑顢欓柨顖氫壕濡わ絽鍟埛鎴︽煠婵劕鈧洟寮搁崒鐐寸厱閹兼番鍨归埢鏇㈡煕閳规儳浜炬俊鐐€栫敮濠勭矆娓氣偓瀹曠敻顢楅崟顒傚幈濠电偛妫楃换鎰板汲濞嗘劑浜滈柡鍥朵簽缁夘喗顨ラ悙鏌ュ弰闁圭ǹ锕ュ鍕箛椤掍焦姣嗛梻鍌氬€风欢姘缚瑜旂瘬闁逞屽墮閳规垿鍨鹃搹顐㈡灎閻庤娲忛崹浠嬪蓟閸℃鍚嬮柛鈥崇箲鐎氬ジ鏌i悢鍝ョ煂濠⒀勵殘閺侇噣骞掗幘棰濇锤婵炲鍘ч悺銊╂偂閺囥垺鐓欓柟顖嗗苯娈堕梺鐟板暱濞差參寮婚弴銏犲耿婵°倐鍋撻柡鍡樼懇閺屽秶鎷犻弻銉ュ及濡ょ姷鍋涢澶愬箖閳哄啫鏋堝璺鸿嫰缁ㄣ儵姊婚崒姘偓椋庣矆娓氣偓楠炲鏁撻悩鍐蹭画闂佹寧娲栭崐褰掑疾椤忓牊鐓熼幖娣€ゅḿ鎰版煙閸濄儑纭呯亱濠电偞鍨崹褰掓倿閸偁浜滈柟鐑樺灥閺嬨倖绻涢崗鐓庡缂佺粯鐩獮鎾诲箳閺冨偆鍟嬮柣搴ゎ潐濞叉ḿ鎹㈤崼銉у祦閻庯綆鍠楅弲婵嬫煃瑜滈崜鐔奉嚕閸涘﹦鐟归柍褜鍓熷濠氭偄閻撳海顦悷婊冪箳閺侇喖鈽夐姀锛勫幐闂佸憡渚楅崰妤呭磹閹扮増鐓涢悘鐐额嚙婵倿鏌熼鍝勨偓婵嗙暦閹烘垟妲堟慨妤€妫旂槐锟�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛濠傛健閺屻劑寮崼鐔告闂佺ǹ顑嗛幐鍓у垝椤撶偐妲堟俊顖濐嚙濞呇囨⒑濞茶骞楅柣鐔叉櫊瀵鎮㈤崨濠勭Ф婵°倧绲介崯顖烆敁瀹ュ鈷戠紒瀣仢椤掋垽鏌$仦璇插闁糕晝鍋ら獮瀣晝閳ь剛澹曢崗鍏煎弿婵妫楅獮鏍煛閸℃澧︽慨濠呮缁瑥鈻庨幆褍澹嬮梻浣告憸婵敻宕濆Δ鍛闁靛繒濮Σ鍫ユ煏韫囨洖啸妞ゆ挸鎼埞鎴︽倷閸欏妫炵紓浣虹帛鐢绮嬮幒妤佸殐闁冲搫鍟伴敍婊呯磽閸屾瑩妾烽柛銊ョ秺閻涱噣骞囬悧鍫㈠幈闁诲函缍嗛崑鍛暦鐏炵偓鍙忓┑鐘叉噺椤忕娀鏌熸搴♀枅鐎殿喖顭锋俊鐑筋敊閻熼澹曞┑掳鍊撻懗鍓佸姬閳ь剟姊洪柅鐐茶嫰婢ь垱绻涢悡搴g濠碘剝鎮傞弫鍐焵椤掆偓椤曪綁宕稿Δ浣哄幗闁瑰吋鐣崝宥呪槈瑜旈弻鐔兼嚍閵壯呯厑缂備礁顑呴ˇ顖烆敇婵傜ǹ骞㈤柟閭︿簽閻╁酣姊绘担鍛婃儓缂佸绶氬畷鎴﹀礋椤掑偆娴勯梺鎸庢礀閸婂綊鎮¢悢鍏肩厵闁诡垎鍛喖缂備讲鍋撻柛鎰典簽绾捐偐绱撴担璐細婵炴彃顕埀顒冾潐濞叉牕鐣烽鍐航闂備礁鎲$换鍌溾偓姘槻宀e潡寮撮悙鈺傛杸闂佺粯锕╅崑鍛垔娴煎瓨鍊堕柣鎰煐椤ュ銇勯顐$敖缂佽鲸鎸婚幏鍛存惞閻熸壆顐肩紓鍌欐祰椤曆囨偋閹惧磭鏆︽繛宸簻閻掑灚銇勯幒宥夋濞存粍绮撻弻鐔兼倻濡櫣浠村銈呯箚閺呮繄妲愰幒妤佸亹妞ゆ梻鍘ф慨鏇㈡⒑闂堟稒鎼愰悗姘緲椤曪綁顢氶埀顒勫春閳ь剚銇勯幒鎴濐仼缁炬儳娼¢弻娑㈠箛椤栨氨姣㈤梺鍝勬4缁犳捇寮婚弴鐔风窞闁割偅绻傛慨澶愭⒑鐞涒€充壕婵炲濮撮鍡涙偂閻斿吋鐓欓梺顓ㄧ畱婢ь喚绱掗悪娆忓娴滄粓鏌曟竟顖氬暕濡叉劙姊虹拠鈥虫灆缂侇喗鐟╅妴浣糕槈濡嘲鐗氶梺鍛婂壃閸曞灚缍楀┑鐘垫暩婵兘銆傛禒瀣劦妞ゆ巻鍋撶痪缁㈠弮瀹曟椽鏁愰崱鎰盎闂侀潧绻嗛崜婵堢矆鐎n喗鐓涘ù锝嚽归埀顒€娼¢獮鍐礈瑜屽▽顏堟煢濡警妲烘い鏂挎喘濮婂宕掑顑藉亾閻戣姤鍤勯柤鍝ユ暩娴犳岸姊绘担鍛婃儓闁绘绮撳畷婊冣槈濮橆剙鐏婂┑鐐叉閹稿摜绮绘繝姘仯闁搞儺浜滈惃娲煟閵堝懏鍠樻慨濠呮閸栨牠寮撮悙娴嬫嫟闂備浇宕甸崳锔剧不閹惧磭鏆﹂柟杈剧畱閸愨偓闂侀潧臎閸滀礁鏅梻鍌欒兌绾爼宕滃┑濠冩噷闂佽绻愮换瀣础閹惰棄钃熼柨婵嗩槸缁犲鎮楀☉娆嬬細妞わ负鍔嶇换娑㈡晲閸涱喗鎮欓梺鎸庢处娴滎亪濡存担绯曟婵☆垶鏀遍悗濠氭⒑閸︻厼鍔嬬紒璇插€规穱濠囧箮閼恒儮鎷绘繛杈剧到閹虫瑩宕烽娑樹壕婵炴垶甯楀▍濠勨偓瑙勬礀缂嶅﹤鐣烽悜绛嬫晣闁绘洑鐒︾紞妤呮⒒娴g瓔娼愮€规洘锕㈤、姘愁槾濠㈣娲熷畷妤呭礂閻撳骸浼庢繝纰樻閸ㄤ即骞栭锕€绠栭柟瀛樻儕閺冨牆绫嶉柛顐ゅ暱閹风粯绻涢幘鏉戠劰闁稿鎹囬弻宥堫檨闁告挻鐩畷鎴濃槈閵忊€虫濡炪倖鐗楃粙鎺戔枍閻樼粯鍊垫繛鎴炵憽缂傛氨绱掗悩鍐插姢闂囧鏌ㄥ┑鍡樺櫣闁哄棝浜堕弻娑橆潩椤掔⒈浜崺銉﹀緞婵炪垻鍠栭弻銊р偓锝呯仛缂嶅矂姊婚崒娆戠獢婵炰匠鍛床闁糕剝绋戦悞鍨亜閹哄棗浜鹃梺鍛娚戦悧鐘茬暦濞嗘挻鍤嶉柕澹懐妲囬梻浣圭湽閸ㄨ棄岣胯閻☆參姊绘担鐟邦嚋婵炴彃绻樺畷鎰攽鐎n亞鐣洪悷婊冩捣閹广垹鈹戠€n亞鍊為悷婊冪箻瀵槒顦叉い顏勫暣婵″爼宕卞Δ鍐噯闂佽瀛╅崙褰掑矗閸愵喖绠栭柨鐔哄Т鍞梺鍐叉惈閸婂宕㈡禒瀣拺闁告繂瀚婵嬫煕鐎n偆娲撮柛鈹惧亾濡炪倖宸婚崑鎾寸節閳ь剟鏌嗗鍛姦濡炪倖甯婇懗鍫曞疮閺屻儲鐓欓柛鎴欏€栫€氾拷
相关话题/土壤 作物 图片 科学 试验区