陈素英1,,,
邵立威1,
张玉铭1,
张喜英1,
路杨1, 2,
闫宗正1, 2
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
基金项目: 国家重点研发计划专项2016YFD0300808
国家重点研发计划专项2016YFC0401403
国家自然科学基金项目31371578
详细信息
作者简介:关劼兮, 主要从事农田节水机理与技术研究。E-mail:gjx391214674@qq.com
通讯作者:陈素英, 主要从事农田节水和保护性耕作技术研究。E-mail:csy@sjziam.ac.cn
中图分类号:S342计量
文章访问数:615
HTML全文浏览量:33
PDF下载量:393
被引次数:0
出版历程
收稿日期:2019-04-02
录用日期:2019-06-04
刊出日期:2019-11-01
Soil tillage practices affecting the soil characteristics and yield of winter wheat and summer maize in North China
GUAN Jiexi1, 2,,CHEN Suying1,,,
SHAO Liwei1,
ZHANG Yuming1,
ZHANG Xiying1,
LU Yang1, 2,
YAN Zongzheng1, 2
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Agricultural Water-saving, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: National Key R & D Program of China2016YFD0300808
National Key R & D Program of China2016YFC0401403
National Natural Science Foundation of China31371578
More Information
Corresponding author:Corresponding author. E-mail:csy@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:华北平原是我国重要的小麦玉米种植区,长期土壤旋耕免耕和秸秆全量还田带来耕层变浅、犁底层变厚和上移、土壤养分表聚等现象,通过耕作方式改变,解决上述问题对维持区域粮食生产有重要意义。试验以冬小麦-夏玉米轮作系统为研究对象,分别在代表华北平原高产区的栾城试验区和代表中低产区的南皮试验区进行,设置冬小麦播种前进行土壤深耕、深松、窄深松3种处理,以生产上常用的旋耕为对照。所有处理夏玉米季均采用土壤免耕播种,测定项目包括土壤容重、作物根系、作物产量和水分利用效率。结果表明,不同耕作方式对土壤特性和作物产量的影响具有区域差异。南皮试验区土壤深耕(松)显著地(P < 0.05)提高了作物产量,深耕、深松和窄深松处理的冬小麦产量比旋耕分别增加16.5%、19.3%和13.1%,夏玉米产量分别增加17.3%、16.2%和21.9%,周年产量分别增加16.9%、17.6%和17.8%;深耕、深松和窄深松处理间作物产量差异不显著。栾城试验区冬小麦、夏玉米产量和周年产量各处理之间差异不显著。土壤深耕、深松、窄深松和旋耕均能降低0~20 cm土层土壤紧实度和土壤容重。冬小麦播种后,与土壤耕作前比较,土壤深耕、深松和旋耕处理土壤紧实度南皮试验区分别平均降低71.6%和68.2%,栾城试验区分别降低88.8%和-7.7%,常用的旋耕模式在栾城试区没有降低土壤紧实度。小麦收获时不同耕作方式0~40 cm土层的土壤容重均低于土壤耕作前的土壤容重,至夏玉米收获时不同耕作处理的土壤容重与耕作前基本一致,不同耕作处理对土壤容重的影响差异不显著。在南皮试验区,3种耕作方式与旋耕相比,均显著提高了冬小麦和夏玉米水分利用效率;在栾城试验区,各处理冬小麦和夏玉米水分利用效率差异不显著。本研究结果显示在华北平原高产区连续实施土壤旋耕模式没有影响作物产量,而在中低产区实施土壤深耕或者深松模式更利于作物产量提高。
Abstract:The North China Plain (NCP) is one of the most intensively farmed agricultural regions in China, with approximately 70% of the total cultivated land being used for an annual double-cropping system of winter wheat and summer maize. Owing to the long-term rotary and no tillage practices accompanying with the whole straw of winter wheat and summer maize return to field for several years, soil physical characteristics are gradually changing in terms of the increased soil pan depth, bulk density and content of soil nutrients in the surface soil layer. Improving soil quality by changing the tillage practices might help to maintain crop productivity in this region. An experiment was conducted for the winter wheat-summer maize rotation system in Luancheng County, which represented a high yield region, and in Nanpi County, which represented a medium and low yield region, in the NCP. Four treatments-soil deep tillage (DT), subsoiling (SS), narrow subsoiling (NSS), and rotary tillage (control, CK)-before winter wheat sowing and no tillage before summer maize sowing to all treatments were simultaneously conducted at the two areas. Soil bulk density, crop root growth, soil water use, yield and water use efficiency (WUE) were monitored throughout. Results showed that the effects of different tillage practices on soil and crop were different in the two regions. At Nanpi, deep tillage and subsoiling significantly increased crop yield. Compared with traditional rotary tillage, winter wheat yield was improved by 16.5% under DT, 19.3% under SS, and 13.1% under NSS. Yield of summer maize was increased by 17.3%, 16.2%, and 21.9%, respectively, with annual yield increases of 16.9%, 17.6% and 17.8%, respectively. Yield differences were not observed among the DT, SS, and NSS treatments. However, no significant difference in crop yield among the four treatments was found at Luancheng. Furthermore, four tillage practices reduced soil penetration resistance and bulk density for the 0-20-cm soil layer in both Luancheng and Nanpi. At Nanpi, after sowing winter wheat, the soil penetration resistance of the 0-20-cm soil layer under DT, SS, NSS and CK decreased by 69.7%, 72.7%, 72.5% and 68.2%, respectively. At Luancheng, soil penetration resistance of the 0-20-cm soil layer was reduced by 88.8% averagely under treatments of deep tillage and subsoiling, and slightly increased by 7.7% under CK. Soil bulk density of the 0-40-cm soil layer under the four tillage treatments were all lower at wheat harvest compared with that before tillage. Until the summer maize harvest, soil bulk density under different tillage treatments was essentially similar to that before tillage, and there was no significant difference among the four tillage treatments. At Nanpi, WUE of winter wheat and summer maize was significantly increased under DT, SS, and NSS compared with that under CK. At Luancheng, the WUE of winter wheat and summer maize was similar among the four treatments. These results indicated that different tillage practices in the low yield regions benefited crop production and water productivity. However, in the high yield regions, the three tillage practices did not enhance crop performance compared with traditional tillage practice. Therefore, it is suggested that the model of soil rotary tillage can be continuously implemented in the high yield regions of the NCP, whereas DT can be beneficially implemented in the medium and low yield regions.
HTML全文
图1南皮试验区(南皮)和栾城试验区(栾城)逐月日照时数和温度日较差(2016年10月至2017年9月)
Figure1.Monthly average sunshine hours and daily temperature range of Nanpi experiment site (NP) and Luancheng experiment site (LC) from October 2016 to September 2017
下载: 全尺寸图片幻灯片
图2不同耕作措施对南皮试验区(a)和栾城试验区(b)小麦苗期土壤紧实度的影响(2016年11月)
Figure2.Effects of tillage patterns on soil penetration resistance at seedling stage of winter wheat at Nanpi experiment site (a) and Luancheng experiment site (b)
CK: rotary tillage; DT: deep tillage; SS: subsoiling; NSS: narrow subsoiling.
下载: 全尺寸图片幻灯片
图3不同耕作措施对南皮试验区和栾城试验区冬小麦和夏玉米收获时土壤容重的影响
Figure3.Effects of tillage patterns on soil bulk density at harvest of winter wheat and summer maize at Nanpi experiment site and Luancheng experiment site
DT: deep tillage; SS: subsoiling; NSS: narrow subsoiling; CK: rotary tillage.
下载: 全尺寸图片幻灯片
图4耕作方式对栾城试验区和南皮试验区冬小麦收获期根长密度的影响
Figure4.Effects of tillage patterns on root length densities of winter wheat at harvest at Luancheng experiment site and Nanpi experiment site
CK: rotary tillage; DT: deep tillage; SS: subsoiling; NSS: narrow subsoiling.
下载: 全尺寸图片幻灯片
图5旋耕和深耕处理下南皮试验区和栾城试验区不同时间土壤含水量的变化
Figure5.Changes of soil water contents (W/W) during the experiment at Nanpi experiment site and Luancheng experiment site under rotary tillage (CK) and deep tillage (DT)
下载: 全尺寸图片幻灯片
表1南皮试验区和栾城试验区土壤养分含量(2016年10月)
Table1.Soil nutrients contents in Nanpi experiment site and Luancheng experiment site in October 2016
土层深度Soil depth (cm) | 南皮试验区Nanpi experiment site | 栾城试验区Luancheng experiment site | |||||||||
有机质Organic matter (g?kg-1) | 全氮Total nitrogen (g?kg-1) | 速效氮Available nitrogen (mg?kg-1) | 速效磷Available phosphorus (mg?kg-1) | 速效钾Available potassium (mg?kg-1) | 有机质Organic matter (g?kg-1) | 全氮Total nitrogen (g?kg-1) | 速效氮Available nitrogen (mg?kg-1) | 速效磷Available phosphorus (mg?kg-1) | 速效钾Available Potassium (mg?kg-1) | ||
0~10 | 16.29 | 1.07 | 83.22 | 16.19 | 120.17 | 21.76 | 1.34 | 117.96 | 11.31 | 117.35 | |
10~20 | 8.91 | 0.62 | 44.90 | 6.27 | 74.42 | 14.29 | 0.93 | 83.32 | 4.97 | 83.83 | |
20~30 | 5.69 | 0.41 | 27.67 | 3.50 | 67.96 | 8.49 | 0.58 | 48.37 | 2.13 | 79.22 | |
30~40 | 4.71 | 0.32 | 21.86 | 1.83 | 61.50 | 6.63 | 0.48 | 36.53 | 1.75 | 82.42 |
下载: 导出CSV
表2南皮试验区和栾城试验区冬小麦和夏玉米生育期气象因素
Table2.Weather conditions during the growing seasons of winter wheat and summer maize in Nanpi experiment site and Luancheng experiment site
气象要素Meteorological factor | 南皮试验区Nanpi experiment site | 栾城试验区Luancheng experiment site | |||
冬小麦Winter wheat | 夏玉米Summer maize | 冬小麦Winter wheat | 夏玉米Summer maize | ||
降雨量Rainfall (mm) | 81.6 | 401.0 | 78.0 | 185.5 | |
≥10 ℃积温Accumulate temperature ≥ 10 ℃ (℃) | 1 719.4 | 2 911.0 | 1 690.1 | 2 904.8 | |
日均温Daily mean temperature (℃) | 9.17 | 31.16 | 8.54 | 25.93 | |
日照时数Sunshine hours (h) | 1 446.3 | 681.7 | 1 205.6 | 629.4 |
下载: 导出CSV
表3不同耕作方式对南皮试验区和栾城试验区冬小麦和夏玉米水分利用效率的影响
Table3.Effects of tillage patterns on water use efficiency of winter wheat and summer maize at Nanpi experiment site and Luancheng experiment site
kg ?m-3 | |||||||
处理Treatment | 南皮试验区Nanpi experiment site | 栾城试验区Luancheng experiment site | |||||
冬小麦Winter wheat | 夏玉米Summer maize | 周年Whole year | 冬小麦Winter wheat | 夏玉米Summer maize | 周年Whole year | ||
深耕Deep tillage | 1.93±0.03a | 2.26±0.08a | 2.09±0.05a | 1.82±0.05a | 2.64±0.06a | 2.21±0.05a | |
深松Subsoiling | 1.87±0.04a | 2.21±0.07a | 2.04±0.06a | 1.84±0.06a | 2.43±0.07a | 2.11±0.04a | |
窄深松Narrow subsoiling | 1.90±0.03a | 2.35±0.10a | 2.13±0.05a | 1.96±0.06a | 2.63±0.05a | 2.30±0.05a | |
旋耕Rotary tillage (CK) | 1.51±0.05b | 1.98±0.11b | 1.74±0.07b | 1.90±0004a | 2.48±0.05a | 2.17±0.04a | |
????同列不同小写字母表示不同处理间在P < 0.05水平差异显著。Different lowercase letters in the same column mean significant differences among treatments at 0.05 level. |
下载: 导出CSV
表4不同耕作处理对冬小麦和夏玉米产量及产量构成的影响
Table4.Grain yield and yield components of winter wheat, summer maize and whole year under different soil tillage treatments
试验区Experiment site | 处理Treatment | 冬小麦Winter wheat | 夏玉米Summer maize | 周年产量Annual yield (t?hm-2) | |||||||
产量Grain yield (t?hm-2) | 穗数Spike number (?m-2) | 穗粒数Grains per spike | 千粒重1000-grain weight (g) | 产量Grain yield (t?hm-2) | 穗数 Spike number (?m-2) | 穗粒数Grains per ear | 千粒重1000-grain weight (g) | ||||
南皮Nanpi | CK | 6.42±0.52b | 535.8±35.74b | 34.4±1.01a | 38.0±0.74c | 7.63±0.36b | 5.10±0.15b | 517.2±9.55a | 367.8±4.43a | 14.05±0.39b | |
DT | 7.48±0.73a | 672.9±95.16a | 34.1±1.79a | 39.2±2.14bc | 8.95±0.49a | 5.51±0.62b | 477.2±32.08b | 370.2±8.77a | 16.43±0.37a | ||
SS | 7.66±0.51a | 535.4±53.72b | 34.0±2.69a | 42.3±1.88a | 8.87±0.87a | 5.41±0.81b | 496.9±28.71ab | 367.0±11.10a | 16.53±1.03a | ||
NSS | 7.26±1.00a | 577.1±35.74b | 30.4±2.93b | 40.8±1.59ab | 9.29±0.76a | 6.21±0.81a | 479.8±34.52b | 375.8±14.31a | 16.56±1.17a | ||
栾城Luancheng | CK | 6.74±0.19ab | 757.5±41.49a | 28.0±2.84b | 40.1±0.39a | 8.90±0.95a | 5.58±0.26b | 512.2±19.66a | 338.7±9.71a | 15.64±1.07a | |
DT | 6.51±0.38b | 631.7±75.30ab | 30.3±3.16b | 37.3±1.22b | 9.46±0.23a | 6.58±0.38a | 508.1±14.53a | 327.3±18.35ab | 15.96±0.51a | ||
SS | 6.52±0.27b | 578.3±107.990b | 32.8±1.87a | 40.6±0.62a | 8.68±0.32a | 5.80±0.35b | 482.5±20.67ab | 316.8±12.00b | 15.20±0.59a | ||
NSS | 7.26±0.32a | 706.7±74.04ab | 30.0±2.79b | 40.2±0.66a | 8.75±0.57a | 6.39±0.43a | 458.3±26.20b | 326.4±3.20ab | 16.01±0.88a | ||
????CK:常规旋耕; DT:深耕; SS:深松; NSS:窄深松。同列同一试验区不同小写字母表示P < 0.05水平差异显著。CK: rotary tillage; DT: deep tillage; SS: subsoiling; NSS: narrow subsoiling. Different lowercase letters in the same column for the same experiment site mean significant differences among treatments at 0.05 level. |
下载: 导出CSV
参考文献
[1] | 杜章留, 高伟达, 陈素英, 等.保护性耕作对太行山前平原土壤质量的影响[J].中国生态农业学报, 2011, 19(5):1134-1142 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201105025 DU Z L, GAO W D, CHEN S Y, et al. Effect of conservation tillage on soil quality in the piedmont plain of Mount Taihang[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5):1134-1142 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201105025 |
[2] | BECERRA A T, BOTTA G F, BRAVO X L, et al. Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería Espa a[J]. Soil and Tillage Research, 2010, 107(1):49-56 doi: 10.1016/j.still.2010.02.001 |
[3] | BENGOUGH A G, MCKENZIE B M, HALLETT P D, et al. Root elongation, water stress, and mechanical impedance:a review of limiting stresses and beneficial root tip traits[J]. Journal of Experimental Botany, 2011, 62(1):59-68 doi: 10.1093/jxb/erq350 |
[4] | LIPIEC J, HATANO R. Quantification of compaction effects on soil physical properties and crop growth[J]. Geoderma, 2003, 116(1/2):107-136 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=956cec8e4b40036fa80b27148381eca8 |
[5] | 李潮海, 李胜利, 王群, 等.下层土壤容重对玉米根系生长及吸收活力的影响[J].中国农业科学, 2005, 38(8):1706-1711 doi: 10.3321/j.issn:0578-1752.2005.08.030 LI C H, LI S L, WANG Q, et al. A study on corn root growth and activities at different soil layers with special bulk density[J]. Scientia Agricultura Sinica, 2005, 38(8):1706-1711 doi: 10.3321/j.issn:0578-1752.2005.08.030 |
[6] | VAN DEN AKKER J J H, ARVIDSSON J, HORN R. Introduction to the special issue on experiences with the impact and prevention of subsoil compaction in the European Union[J]. Soil and Tillage Research, 2003, 73(1/2):1-8 http://cn.bing.com/academic/profile?id=fbe0fca08b18019fe680a24c2db1d7e4&encoded=0&v=paper_preview&mkt=zh-cn |
[7] | POWERS R F, ANDREW SCOTT D, SANCHEZ F G, et al. The North American long-term soil productivity experiment:Findings from the first decade of research[J]. Forest Ecology and Management, 2005, 220(1/2/3):31-50 http://cn.bing.com/academic/profile?id=d96df60997fba3ec7c1b9f0310076b47&encoded=0&v=paper_preview&mkt=zh-cn |
[8] | 谢迎新, 靳海洋, 孟庆阳, 等.深耕改善砂姜黑土理化性状提高小麦产量[J].农业工程学报, 2015, 31(10):167-173 doi: 10.11975/j.issn.1002-6819.2015.10.022 XIE Y X, JIN H Y, MENG Q Y, et al. Deep tillage improving physical and chemical properties of soil and increasing grain yield of winter wheat in lime concretion black soil farmland[J]. Transactions of the CSAE, 2015, 31(10):167-173 doi: 10.11975/j.issn.1002-6819.2015.10.022 |
[9] | 赵亚丽, 刘卫玲, 程思贤, 等.深松(耕)方式对砂姜黑土耕层特性、作物产量和水分利用效率的影响[J].中国农业科学, 2018, 51(13):2489-2503 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201813005 ZHAO Y L, LIU W L, CHENG S X, et al. Effects of pattern of deep tillage on topsoil features, yield and water use efficiency in lime concretion black soil[J]. Scientia Agricultura Sinica, 2018, 51(13):2489-2503 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201813005 |
[10] | 李霞.小麦-玉米周年生产体系中播前耕作对夏玉米产量及生理特性的影响[D].泰安: 山东农业大学, 2014 LI X. Effect of pre-planting tillage of winter wheat and summer maize on yield and physiological characteristics of summer maize[D]. Tai'an: Shandong Agricultural University, 2014 |
[11] | 孔晓民, 韩成卫, 曾苏明, 等.不同耕作方式对土壤物理性状及玉米产量的影响[J].玉米科学, 2014, 22(1):108-113 doi: 10.3969/j.issn.1005-0906.2014.01.019 KONG X M, HAN C W, ZENG S M, et al. Effects of different tillage managements on soil physical properties and maize yield[J]. Journal of Maize Sciences, 2014, 22(1):108-113 doi: 10.3969/j.issn.1005-0906.2014.01.019 |
[12] | 杨永辉, 武继承, 张洁梅, 等.耕作方式对土壤水分入渗、有机碳含量及土壤结构的影响[J].中国生态农业学报, 2017, 25(2):258-266 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201702013 YANG Y H, WU J C, ZHANG J M, et al. Effect of tillage method on soil water infiltration, organic carbon content and structure[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2):258-266 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201702013 |
[13] | 刘卫玲, 程思贤, 周金龙, 等.深松(耕)时机与方式对土壤物理性状和玉米产量的影响[J].河南农业科学, 2018, 47(3):7-13 http://d.old.wanfangdata.com.cn/Periodical/hnnykx201803002 LIU W L, CHENG S X, ZHOU J L, et al. Effects of time and pattern of deep tillage (subsoiling) on soil physical properties and maize yield[J]. Journal of Henan Agricultural Sciences, 2018, 47(3):7-13 http://d.old.wanfangdata.com.cn/Periodical/hnnykx201803002 |
[14] | 于淑婷, 赵亚丽, 王育红, 等.轮耕模式对黄淮海冬小麦-夏玉米两熟区农田土壤改良效应[J].中国农业科学, 2017, 50(11):2150-2165 doi: 10.3864/j.issn.0578-1752.2017.11.020 YU S T, ZHAO Y L, WANG Y H, et al. Improvement effects of rotational tillage patterns on soil in the winter wheat-summer maize double cropping area of Huang-Huai-Hai region[J]. Scientia Agricultura Sinica, 2017, 50(11):2150-2165 doi: 10.3864/j.issn.0578-1752.2017.11.020 |
[15] | 谢迎新, 靳海洋, 孟庆阳, 等.深耕改善砂姜黑土理化性状提高小麦产量[J].农业工程学报, 2015, 31(10):167-173 doi: 10.11975/j.issn.1002-6819.2015.10.022 XIE Y X, JIN H Y, MENG Q Y, et al. Deep tillage improving physical and chemical properties of soil and increasing grain yield of winter wheat in lime concretion black soil farmland[J]. Transactions of the CSAE, 2015, 31(10):167-173 doi: 10.11975/j.issn.1002-6819.2015.10.022 |
[16] | 赵俊靖, 李洪奎, 李华春, 等.深耕对小麦病虫害的防治效果[J].植物医生, 2017, 30(11):51-53 http://d.old.wanfangdata.com.cn/Periodical/zwys201711033 ZHAO J J, LI H K, LI H C, et al. Effects of deep tillage on wheat diseases and insect pests[J]. Plant Doctor, 2017, 30(11):51-53 http://d.old.wanfangdata.com.cn/Periodical/zwys201711033 |
[17] | 雷友, 曹国鑫, 牛新胜, 等.土壤深耕对冬小麦根系在土壤剖面分布的影响[J].现代农业科技, 2011(8):272-273 doi: 10.3969/j.issn.1007-5739.2011.08.177 LEI Y, CAO G X, NIU X S, et al. Influence of deep tillage on distribution of wheat root system in soil profile[J]. Modern Agricultural Sciences and Technology, 2011(8):272-273 doi: 10.3969/j.issn.1007-5739.2011.08.177 |
[18] | 宫秀杰, 钱春荣, 于洋, 等.深松免耕技术对土壤物理性状及玉米产量的影响[J].玉米科学, 2009, 17(5):134-137 http://d.old.wanfangdata.com.cn/Periodical/ymkx200905032 GONG X J, QIAN C R, YU Y, et al. Effects of subsoiling and No-tillage on soil physical characters and corn yield[J]. Journal of Maize Sciences, 2009, 17(5):134-137 http://d.old.wanfangdata.com.cn/Periodical/ymkx200905032 |
[19] | CAI H G, MA W, ZHANG X Z, et al. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize[J]. The Crop Journal, 2014, 2(5):297-307 doi: 10.1016/j.cj.2014.04.006 |
[20] | ZHANG Y C, SHEN Y J, SUN H Y, et al. Evapotranspiration and its partitioning in an irrigated winter wheat field:A combined isotopic and micrometeorologic approach[J]. Journal of Hydrology, 2011, 408(3/4):203-211 http://cn.bing.com/academic/profile?id=79cb6e71c68bcf50ace070f2bdb3e5f2&encoded=0&v=paper_preview&mkt=zh-cn |
[21] | LIU X W, FEIKE T, CHEN S Y, et al. Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China[J]. Journal of Integrative Agriculture, 2016, 15(12):2886-2898 doi: 10.1016/S2095-3119(15)61328-4 |
[22] | 吕梦宇, 王仕琴, 齐永青, 等.华北低平原区降水与坑塘蓄水响应关系研究——以河北省南皮县为例[J].自然资源学报, 2018, 33(10):1796-1805 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201810011 LYU M Y, WANG S Q, QI Y Q, et al. Study on the relationship between precipitation and pond water storage in lowland area of North China Plain-A case study in Nanpi County, Hebei Province[J]. Journal of Natural Resources, 2018, 33(10):1796-1805 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201810011 |
[23] | 孙宏勇, 刘小京, 张喜英.盐碱地水盐调控研究[J].中国生态农业学报, 2018, 26(10):1528-1536 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201414013 SUN H Y, LIU X J, ZHANG X Y. Regulations of salt and water of saline-alkali soil:A review[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10):1528-1536 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201414013 |
[24] | ZHANG X Y, CHEN S Y, SUN H Y, et al. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades[J]. Agricultural Water Management, 2011, 98(6):1097-1104 doi: 10.1016/j.agwat.2011.02.003 |
[25] | 王群, 王建, 张学林, 等.不同耕作模式下小麦玉米周年生产及土壤养分变化特征[J].河南农业大学学报, 2015, 49(4):429-437 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hennannydxxb201504001 WANG Q, WANG J, ZHANG X L, et al. Change characteristics of wheat and maize anniversary production and soil nutrient content under different rotation tillage patterns[J]. Journal of Henan Agricultural University, 2015, 49(4):429-437 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hennannydxxb201504001 |
[26] | TOLIVER D K, LARSON J A, ROBERTS R K, et al. Effects of no-till on yields as influenced by crop and environmental factors[J]. Agronomy Journal, 2012, 104(2):530 doi: 10.2134/agronj2011.0291 |
[27] | 李永平, 王孟本, 史向远, 等.不同耕作方式对土壤理化性状及玉米产量的影响[J].山西农业科学, 2012, 40(7):723-727 doi: 10.3969/j.issn.1002-2481.2012.07.07 LI Y P, WANG M B, SHI X Y, et al. Influence of different tillage methods on soil physical and chemical properties and maize yield[J]. Journal of Shanxi Agricultural Sciences, 2012, 40(7):723-727 doi: 10.3969/j.issn.1002-2481.2012.07.07 |
[28] | 梁金凤, 齐庆振, 贾小红, 等.不同耕作方式对土壤性质与玉米生长的影响研究[J].生态环境学报, 2010, 19(4):945-950 doi: 10.3969/j.issn.1674-5906.2010.04.036 LIANG J F, QI Q Z, JIA X H, et al. Effects of different tillage managements on soil properties and corn growth[J]. Ecology and Environmental Sciences, 2010, 19(4):945-950 doi: 10.3969/j.issn.1674-5906.2010.04.036 |