孔艳艳,
罗坤,
李媛,
赵惠燕,
西北农林科技大学植物保护学院 杨凌 712100
基金项目: 国家自然科学基金项目39970112
国家自然科学基金项目20470268
高校博士点基金20130204110004
陕西省科技厅国际合作项目2012
详细信息
作者简介:舒启豪, 主要从事农业昆虫与害虫防治研究。E-mail:2424861687@qq.com
通讯作者:赵惠燕, 主要研究方向为昆虫生态与害虫综合治理。E-mail:zhaohy@nwsuaf.edu.cn
中图分类号:S435.122.2计量
文章访问数:428
HTML全文浏览量:5
PDF下载量:277
被引次数:0
出版历程
收稿日期:2019-04-26
录用日期:2019-07-24
刊出日期:2019-11-01
Cadmium transfer in the ecosystem of soil-wheat-aphid under dual stress of cadmium and drought
SHU Qihao,KONG Yanyan,
LUO Kun,
LI Yuan,
ZHAO Huiyan,
College of Plant Protection, Northwest A & F University, Yangling 712100, China
Funds: National Natural Science Foundation of China39970112
National Natural Science Foundation of China20470268
Doctoral Foundation of Colleges and Universities of China20130204110004
International Cooperation Project of Shaanxi Science and Technology Department2012
More Information
Corresponding author:Corresponding author. E-mail:zhaohy@nwsuaf.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探究干旱和重金属双重胁迫对土壤-小麦-蚜虫系统内Cd转移规律的影响,为小麦蚜虫的生态调节提供理论依据,本研究以麦长管蚜[Sitobion avenae(Fabricius)]为研究对象,用原子吸收分光光度法分别测定不同土壤Cd含量(100 mg·kg-1、200 mg·kg-1)及不同程度干旱胁迫(无胁迫、中度胁迫、重度胁迫)处理下小麦根茎叶及蚜虫体内的Cd含量。结果表明:土壤Cd含量及干旱单一胁迫均对小麦及蚜虫体内的Cd含量造成了显著影响(P < 0.05)。两者交互作用对小麦根部及叶部的Cd含量影响显著,而对小麦茎部及蚜虫体内Cd含量影响不显著。在相同胁迫条件下,Cd在小麦中的积累分布为根>茎>叶。随着干旱胁迫程度增大,小麦根部Cd含量及土壤-根转移系数降低,茎部Cd含量及根-茎转移系数升高,麦长管蚜Cd含量在土壤Cd含量100 mg·kg-1下高于土壤Cd含量200 mg·kg-1;中度干旱胁迫增加了麦长管蚜体内Cd累积量,而重度干旱胁迫则降低了其体内Cd累积量。叶-蚜虫的Cd转移系数明显大于土壤-根、根-茎和茎-叶转移系数且大于1,说明Cd在麦长管蚜体内产生了生物富集作用。综上所述,干旱胁迫促进了Cd从土壤向小麦茎部转移和根部Cd累积,但抑制了Cd从根部到茎部转移和茎部Cd累积;中度干旱胁迫促进了麦长管蚜体内Cd的积累,而重度干旱胁迫抑制了麦长管蚜体内Cd的积累。
关键词:干旱/
Cd污染/
双重胁迫/
小麦/
麦长管蚜/
土壤-小麦-蚜虫系统
Abstract:There have been several reports regarding the effects of both drought and heavy metals on aphids. However, although aphids often experience dual stresses and even multiple stresses, such as a combination of heavy metals, drought, and other stress factors, in the natural environment, there have been few reports on dual or multiple stresses. To explore the effects of dual stresses from drought and heavy metal on the Cd transfer in the soil-wheat-aphid system, this study took Sitobion avenae (Fabricius) as the research object and used an atomic absorption spectrophotometer to measure the Cd contents of S. avenae and of the roots and leaves of wheat following treatment with different soil contents of heavy metals (100 and 200 mg·kg-1) and exposure to different degrees of drought stress (well-watered, moderate drought stress and severe drought stress). The results revealed that both soil Cd content and drought stress had significant effects on the Cd contents of both wheat and aphids (P < 0.05). The interactive effect of soil Cd content and drought stress was significant (P < 0.05) on Cd content of wheat roots and leaves, but it was not significant (P > 0.05) on Cd content of wheat stems and aphids. Cd accumulation in wheat was in the order of root > stem > leaves, under the same stress conditions. As drought stress increased, the Cd content of wheat roots and the Cd transfer coefficient from soil to roots gradually decreased, and the stem Cd content and transfer coefficient from roots to stems gradually increased. In S. avenae, the Cd content under 100 mg·kg-1 soil Cd content was higher than that under 200 mg·kg-1. Moderate drought stress increased Cd accumulation in the bodies of the aphids, whereas severe drought stress reduced the Cd accumulation. The Cd transfer coefficient from leaf to aphid was >1, and significantly larger than that from soil to root and that from root to stem and stem to leaf, indicating biomagnification of Cd in the aphids. In summary, drought stress promotes the transfer of Cd from soil to stems of wheat and its accumulation in roots, but it inhibits the transfer of Cd from root to stem and its accumulation in stem. Moderate drought stress promotes Cd accumulation in S. avenae, whereas severe drought stress inhibits Cd accumulation in aphid.
Key words:Drought stress/
Cd pollution/
Dual stress/
Wheat/
Sitobion avenae (Fabricius)/
Soil-wheat-aphid ecosystem
HTML全文
图1Cd与干旱双重胁迫下小麦根(A)、茎(B)、叶(C)及蚜虫体内(D)Cd含量
不同小写字母和大写字母分别表示土壤Cd含量为100 mgkg−1和200 mgkg−1时不同干旱胁迫处理间差异显著(P < 0.05)。**表示同一干旱胁迫处理下不同土壤Cd含量处理间差异显著(P < 0.05)。
Figure1.Cd contents in root (A), stem (B), leaf (C) of wheat and aphid (D) under the dual stress of Cd and drought
Different lowercase letters and capital letters indicate significant differences among different drought stress treatments in the 100 mgkg−1 and 200 mgkg−1 soil Cd contents, respectively (P < 0.05). ** indicate significant difference between two Cd concentrations under the same drought stress (P < 0.05).
下载: 全尺寸图片幻灯片
表1干旱与Cd双重胁迫下Cd在土壤-根-茎-叶-蚜虫系统上的转移系数
Table1.Transfer coefficients of Cd between the soil-root-stem-leaf-aphid system under the dual stress of Cd and drought
土壤Cd含量Soil Cd content (mgkg?1) | 干旱胁迫程度Drought stress level | 土壤-根Soil-root | 根-茎Root-stem | 茎-叶Stem-leaf | 叶-蚜虫Leaf-aphid |
100 | 正常Well-watered | 0.28 | 0.27 | 0.43 | 11.65 |
中度Moderate | 0.22 | 0.32 | 0.34 | 16.47 | |
重度Severe | 0.16 | 0.69 | 0.26 | 10.40 | |
200 | 正常Well-watered | 0.27 | 0.38 | 0.32 | 4.14 |
中度Moderate | 0.25 | 0.47 | 0.07 | 17.48 | |
重度Severe | 0.17 | 0.91 | 0.12 | 4.66 |
下载: 导出CSV
表2干旱与Cd双重胁迫下小麦根茎叶及蚜虫体内Cd含量主体间效应检验
Table2.Tests of between-subjects effect on the Cd contents of root, stem, leaf of wheat and aphid under the dual stress of Cd and drought stress
因变量Dependent variable | 源Source | 偏差平方和Sum of squared deviation | 自由度df | F | P |
根Root | 土壤Cd含量Soil Cd content (Cd) | 2 477.560 | 1 | 13.745 | 0.000 |
干旱胁迫Drought stress (D) | 864.789 | 2 | 28.856 | 0.000 | |
Cd x D | 97.240 | 2 | 13.865 | 0.009 | |
误差Error | 80.261 | 12 | 1 152.942 | ||
总计Total | 24 305.839 | 18 | 74.316 | ||
茎Stem | 土壤Cd含量Soil Cd content (Cd) | 1 152.942 | 1 | 15.165 | 0.000 |
干旱胁迫Drought stress (D) | 148.633 | 2 | 3.958 | 0.000 | |
Cd x D | 30.330 | 2 | 291.276 | 0.052 | |
误差Error | 47.499 | 12 | 18.775 | ||
总计Total | 6 411.245 | 18 | 3.831 | ||
叶Leaf | 土壤Cd含量Soil Cd content (Cd) | 5.974 | 1 | 13.745 | 0.003 |
干旱胁迫Drought stress (D) | 25.083 | 2 | 28.856 | 0.000 | |
Cd x D | 12.052 | 2 | 13.865 | 0.001 | |
误差Error | 5.215 | 12 | |||
总计Total | 264.754 | 18 | |||
蚜虫Aphid | 土壤Cd含量Soil Cd content (Cd) | 631.450 | 1 | 18.628 | 0.001 |
干旱胁迫Drought stress (D) | 414.492 | 2 | 6.114 | 0.015 | |
Cd x D | 0.768 | 2 | 0.011 | 0.989 | |
误差Error | 406.772 | 12 | |||
总计Total | 18 206.704 | 18 |
下载: 导出CSV
参考文献
[1] | 张丽, 宋亚茜, 高欢欢, 等.重金属Zn2+胁迫下麦长管蚜的取食行为[J].生态学报, 2016, 36(9):2537-2543 http://d.old.wanfangdata.com.cn/Periodical/stxb201609011 ZHANG L, SONG Y X, GAO H H, et al. The effects of long-time exposure of Zn2+ on the feeding behavior of English green aphid[J]. Acta Ecologica Sinica, 2016, 36(9):2537-2543 http://d.old.wanfangdata.com.cn/Periodical/stxb201609011 |
[2] | 王秀丽, 徐建民, 姚槐应, 等.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响[J].环境科学学报, 2003, 23(1):22-27 doi: 10.3321/j.issn:0253-2468.2003.01.005 WANG X L, XU J M, YAO H Y, et al. Effects of Cu, Zn, Cd and Pb compound contamination on soil microbial community[J]. Acta Scientiae Circumstantiae, 2003, 23(1):22-27 doi: 10.3321/j.issn:0253-2468.2003.01.005 |
[3] | T PPERWIEN S, XUE H, BEHRA R, et al. Cadmium accumulation in Scenedesmus vacuolatus under freshwater conditions[J]. Environmental Science and Technology, 2007, 41(15):5383-5388 doi: 10.1021/es070657l |
[4] | 王宏镔, 束文圣, 蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报, 2005, 25(3):596-605 doi: 10.3321/j.issn:1000-0933.2005.03.029 WANG H B, SHU W S, LAN C Y. Ecology for heavy metal pollution:recent advances and future prospects[J]. Acta Ecologica Sinica, 2005, 25(3):596-605 doi: 10.3321/j.issn:1000-0933.2005.03.029 |
[5] | SHAHID M, DUMAT C, KHALID S, et al. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system[M]//Reviews of Environmental Contamination and Toxicology. Cham:Springer International Publishing, 2016:73-137 |
[6] | WANG X M, ZHANG C, QIU B L, et al. Biotransfer of Cd along a soil-plant-mealybug-ladybird food chain:A comparison with host plants[J]. Chemosphere, 2017, 168:699-706 doi: 10.1016/j.chemosphere.2016.11.005 |
[7] | ZHUANG P, ZOU H L, SHU W S. Biotransfer of heavy metals along a soil-plant-insect-chicken food chain:Field study[J]. Journal of Environmental Sciences, 2009, 21(6):849-853 doi: 10.1016/S1001-0742(08)62351-7 |
[8] | RAN X F, LIU R, XU S, et al. Assessment of growth rate, chlorophyll a fluorescence, lipid peroxidation and antioxidant enzyme activity in Aphanizomenon flos-aquae, Pediastrum simplex and Synedra acus exposed to cadmium[J]. Ecotoxicology, 2015, 24(2):468-477 doi: 10.1007/s10646-014-1395-3 |
[9] | 燕江伟, 李昌晓, 崔振, 等.干旱胁迫下镉处理对互叶醉鱼草幼苗生长、镉积累及光合生理的影响[J].生态学报, 2017, 37(21):7242-7250 http://d.old.wanfangdata.com.cn/Periodical/stxb201721021 YAN J W, LI C X, CUI Z, et al. Effects of cadmium on growth, cadmium accumulation, and photosynthetic physiology of Buddleja alternifolia Maxim. seedlings under drought stress[J]. Acta Ecologica Sinica, 2017, 37(21):7242-7250 http://d.old.wanfangdata.com.cn/Periodical/stxb201721021 |
[10] | DEGRYSE F, BUEKERS J, SMOLDERS E. Radio-labile cadmium and zinc in soils as affected by pH and source of contamination[J]. European Journal of Soil Science, 2004, 55(1):113-122 |
[11] | BARAN? KOV G, MADAMS M, RYB R O. Crop contamination by selected trace elements[J]. Journal of Soils and Sediments, 2004, 4(1):37-42 doi: 10.1007/BF02990827 |
[12] | MENON M, HERMLE S, ABBASPOUR K C, et al. Water regime of metal-contaminated soil under juvenile forest vegetation[J]. Plant and Soil, 2005, 271(1/2):227-241 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aaca1e56bb43de27617ebd7690d91a73 |
[13] | GUSIATIN Z M, KLIMIUK E. Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin[J]. Chemosphere, 2012, 86(4):383-391 doi: 10.1016/j.chemosphere.2011.10.027 |
[14] | JALLOH M A, CHEN J H, ZHEN F R, et al. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress[J]. Journal of Hazardous Materials, 2009, 162(2/3):1081-1085 doi: 10.1016/j.jhazmat.2008.05.146 |
[15] | HONG K, TOKUNAGA S, KAJIUCHI T. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils[J]. Chemosphere, 2002, 49(4):379-387 doi: 10.1016/S0045-6535(02)00321-1 |
[16] | DAI A G. Drought under global warming:a review[J]. Wiley Interdisciplinary Reviews:Climate Change, 2011, 2(1):45-65 doi: 10.1002/wcc.81 |
[17] | MISHRA A K, SINGH V P. A review of drought concepts[J]. Journal of Hydrology, 2010, 391(1/2):202-216 doi: 10.1016-j.jhydrol.2010.07.012/ |
[18] | HSIAO T C. Plant responses to water stress[J]. Annual Review of Plant Physiology, 1973, 24(1):519-570 doi: 10.1146/annurev.pp.24.060173.002511 |
[19] | FIEBIG M, POEHLING H M, BORGEMEISTER C. Barley yellow dwarf virus, wheat, and Sitobion avenae:a case of trilateral interactions[J]. Entomologia Experimentalis et Applicata, 2004, 110(1):11-21 doi: 10.1111/j.0013-8703.2004.00115.x |
[20] | GALLEY D J. Aphids on the world's crops:An identification and information guide[J]. Crop Protection, 1985, 4(3):403 doi: 10.1080/00305316.2001.10417292 |
[21] | GAO H H, ZHAO H Y, DU C, et al. Life table evaluation of survival and reproduction of the aphid, Sitobion avenae, exposed to cadmium[J]. Journal of Insect Science, 2012, 12(44):1-9 doi: 10.1673/031.012.4401 |
[22] | 武晶晶, 高欢欢, 白小惠, 等.镉胁迫对麦长管蚜取食行为的影响[J].西北农业学报, 2012, 21(12):198-201 doi: 10.7606/j.issn.1004-1389.2012.12.039 WU J J, GAO H H, BAI X H, et al. Effect of Cd2+ stress on feeding behavior of the aphid Sitobion avenae (Fabricius)[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(12):198-201 doi: 10.7606/j.issn.1004-1389.2012.12.039 |
[23] | DAR M I, GREEN I D, NAIKOO M I, et al. Assessment of biotransfer and bioaccumulation of cadmium, lead and zinc from fly ash amended soil in mustard-aphid-beetle food chain[J]. Science of the Total Environment, 2017, 584/585:1221-1229 doi: 10.1016/j.scitotenv.2017.01.186 |
[24] | NISHIZONO H, ICHIKAWA H, SUZIKI S, et al. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense[J]. Plant and Soil, 1987, 101(1):15-20 doi: 10.1007/BF02371025 |
[25] | AHMAD P, NABI G, ASHRAF M. Cadmium-induced oxidative damage in mustard[Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid[J]. South African Journal of Botany, 2011, 77(1):36-44 doi: 10.1016/j.sajb.2010.05.003 |
[26] | 张丙春, 王磊, 孟立红, 等.镉胁迫下春小麦中镉的分布、富集及转移规律[J].生态学杂志, 2010, 29(12):2521-2524 http://d.old.wanfangdata.com.cn/Periodical/stxzz201012033 ZHANG B C, WANG L, MENG L H, et al. Distribution, enrichment, and transfer of cadmium in spring wheat under cadmium stress[J]. Chinese Journal of Ecology, 2010, 29(12):2521-2524 http://d.old.wanfangdata.com.cn/Periodical/stxzz201012033 |
[27] | 李江遐, 张军, 马友华, 等.不同水稻品种对镉的吸收转运及其非蛋白巯基含量的变化[J].生态环境学报, 2017, 26(12):2140-2145 http://d.old.wanfangdata.com.cn/Periodical/tryhj201712019 LI J X, ZHANG J, MA Y H, et al. Uptake and translocation of cadmium and content of non-protein thiols in different rice cultivars[J]. Ecology and Environmental Sciences, 2017, 26(12):2140-2145 http://d.old.wanfangdata.com.cn/Periodical/tryhj201712019 |
[28] | 何勇强, 陶勤南, 小畑仁, 等.镉胁迫下大豆中镉的分布状况及其籽粒品质[J].环境科学学报, 2000, 20(4):510-512 doi: 10.3321/j.issn:0253-2468.2000.04.026 HE Y Q, TAO Q N, OBATA H, et al. Distribution of cadmium in soybean and quality of soybean seed under cadmium stress[J]. Acta Scientiae Circumstantiae, 2000, 20(4):510-512 doi: 10.3321/j.issn:0253-2468.2000.04.026 |
[29] | LIU X Q, PENG K J, WANG A G, et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration[J]. Chemosphere, 2010, 78(9):1136-1141 doi: 10.1016/j.chemosphere.2009.12.030 |
[30] | SHI G R, XIA S L, YE J, et al. PEG-simulated drought stress decreases cadmium accumulation in Castor bean by altering root morphology[J]. Environmental and Experimental Botany, 2015, 111:127-134 doi: 10.1016/j.envexpbot.2014.11.008 |
[31] | HALE B K, BALE J S, PRITCHARD J, et al. Effects of host plant drought stress on the performance of the bird cherry-oat aphid, Rhopalosiphum padi (L.):a mechanistic analysis[J]. Ecological Entomology, 2003, 28(6):666-677 doi: 10.1111/j.1365-2311.2003.00563.x |
[32] | ISAACS R, BYRNE D N, HENDRIX D L. Feeding rates and carbohydrate metabolism by Bemisia tabaci (Homoptera:Aleyrodidae) on different quality phloem saps[J]. Physiological Entomology, 1998, 23(3):241-248 doi: 10.1046/j.1365-3032.1998.233080.x |
[33] | AN NGUYEN T T, MICHAUD D, CLOUTIER C. Proteomic profiling of aphid Macrosiphum euphorbiae responses to host-plant-mediated stress induced by defoliation and water deficit[J]. Journal of Insect Physiology, 2007, 53(6):601-611 doi: 10.1016/j.jinsphys.2007.02.018 |
[34] | 戴鹏.不同干旱地区麦长管蚜对缺水胁迫的响应及其遗传基础[D].杨凌: 西北农林科技大学, 2016: 41-42 DAI P. Responses of Sitobion avenae (Fabricius) to water-deficit stress and the underlying genetic basis[D]. Yangling: Northwest A & F University, 2016: 41-42 |
[35] | 宋亚茜. Cd与Zn长期共同胁迫对麦长管蚜种群生态系统影响的研究[D].杨凌: 西北农林科技大学, 2016 SONG Y X. The effect of long-term combined stress of cadmium and zinc on the population ecosystem of Sitobion avenae (Hemiptera: Aphididae)[D]. Yangling: Northwest A & F University, 2016 |
[36] | CRAWFORD L A, HODKINSON I D, LEPP N W. The effects of elevated host-plant cadmium and copper on the performance of the aphid Aphis fabae (Homoptera:Aphididae)[J]. The Journal of Applied Ecology, 1995, 32(3):528 doi: 10.2307/2404650 |