牛文全2, 3,,,
郭丽丽2,
王愉乐4,
王京伟5
1.宁夏水利科学研究院 银川 750021
2.西北农林科技大学水利与建筑工程学院 杨凌 712100
3.中国科学院水利部水土保持研究所 杨凌 712100
4.武汉大学水利水电学院 武汉 430072
5.山西财经大学资源环境学院 太原 030000
基金项目:宁夏旱作节水高效农业工程技术研究中心人才奖励资金项目资助
详细信息
作者简介:梁博惠, 主要从事灌溉理论与节水新技术研究。E-mail:liangbh229@163.com
通讯作者:牛文全, 主要从事灌溉节水理论与节水技术研究。E-mail:nwq@nwsuaf.edu.cn
中图分类号:S275.6计量
文章访问数:431
HTML全文浏览量:9
PDF下载量:228
被引次数:0
出版历程
收稿日期:2019-07-18
录用日期:2019-10-28
刊出日期:2020-02-01
Effects of drip irrigation uniformity and amount on soil moisture and tomato yield in solar greenhouse
LIANG Bohui1, 2,,NIU Wenquan2, 3,,,
GUO Lili2,
WANG Yule4,
WANG Jingwei5
1. Ningxia Institute of Water Resources Research, Yinchuan 750021, China
2. College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling 712100, China
3. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources of the People's Republic of China, Yangling 712100, China
4. School of Water Resource and Hydropower Engineering, Wuhan University, Wuhan 430072, China
5. College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan 030000, China
Funds:The study was supported by the Talent Reward Fund of Ningxia Dry Farming and Water Saving and High Efficiency Agricultural Engineering Technology Research Center
More Information
Corresponding author:NIU Wenquan, E-mail:nwq@nwsuaf.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探索灌水均匀系数与灌水量对温室番茄产量和土壤水分变化的影响,确定合理的滴灌灌水均匀系数,本研究设置65%、75%和85% 3个灌水均匀度水平,190 mm、220 mm和250 mm 3个灌水量水平,测量番茄生育期内土壤含水率及番茄产量,计算土壤含水率均匀系数和番茄灌溉水利用效率。结果表明,当灌水均匀系数为65%~85%时,土壤水分均匀系数均值(82.57%~93.76%)接近或高于设置的滴灌灌水均匀系数的最大值(85%)。滴灌灌水均匀系数对土壤含水率均匀系数影响权重最大,灌水量、灌水均匀系数、土壤初始含水率均值3个影响因素与土壤含水率均匀系数均值之间呈线性关系(P < 0.05),决定系数为0.918。当土壤初始含水率占田间持水量比重60%,灌水量低于15 mm时,灌水均匀系数与灌水量二者的交互作用与土壤含水率均匀系数为显著线性关系(P < 0.05),其他情况下均无显著性关系。灌水量对产量为显著影响(P < 0.05),灌水均匀系数及二者的交互作用对番茄产量无显著影响,考虑产量及灌溉水分利用效率,灌水量220 mm、灌水均匀系数75%组合为最优组合。因此在西北地区,综合考虑经济性和系统的可靠性,建议下调现行滴灌灌水均匀系数标准。
关键词:滴灌/
灌水均匀系数/
灌水量/
土壤含水率均匀系数/
番茄
Abstract:Drip irrigation is an important factor associated with the water and fertilizer integration technology. The uniformity of drip irrigation is an important performance index to measure its quality. Therefore, choosing the appropriate drip uniformity can achieve the dual targets of cost effectiveness as well as high crop yield. A field experiment was carried out from October 2016 to April 2017 in the Yangling Agricultural Hi-tech Industries Demonstration Zone, Shaanxi Province, China. Experimental treatments applied in the split plot design included:three irrigation quantities in Zone A (190 mm, 220 mm, and 250 mm), and three drip irrigation uniformities in Zone B (65%, 75%, and 85%). In the early stages of planting test, no crop experiment was set up in the same area with only the drip irrigation belt laid, and the experimental treatments were also applied in a split plot divided into main treatment (Zone 1) and sub-treatment (Zone 2). The Zone 1 was treated with three irrigation quantities-5 mm, 10 mm, and 15 mm; and in Zone 2, the same there drip irrigation uniformities to Zone B were set. The results showed that when the irrigation uniformity was between 65% and 85%, the mean soil moisture uniformity during entire growth period was higher than the highest drip irrigation uniformity (85%) approximately. The influence of drip irrigation uniformity on the uniformity coefficient of soil moisture was enormous. There was a significantly linear relationship (P < 0.05) with determination coefficient of 0.918 between the mean soil moisture uniformity and the three factors i.e., irrigation quantity, irrigation uniformity, and initial soil water content. When the initial soil moisture was approximately 60% of the field capacity, and the irrigation amount was less than 15 mm, the interaction between the drip irrigation uniformity and the irrigation amount was linear (P < 0.05) and significantly related to the soil moisture uniformity. In other cases, there was no significant association. The irrigation amount had significant effect on tomoto, the irrigation uniformity and their interaction had no significant effect on tomato yield. Taking into account the yield and use efficiency of irrigation, the combination of irrigation amount of 220 mm and drip irrigation uniformity of 75% was the optimal one. Considering the economics and reliability of the system, the method involving small amount of multiple irrigation should be chosen. This was also suggested for the reduction in the standard of drip irrigation uniformity in the Northwest China.
Key words:Drip irrigation/
Drip uniformity coefficient/
Irrigation amount/
Soil moisture uniformity coefficient/
Tomato
HTML全文
图1试验小区滴灌带和采样点布置图
Figure1.Experiment plots arrangement plans of the drip irrigation tape and sampling plots
下载: 全尺寸图片幻灯片
图2不同灌水均匀系数和灌水量下番茄全生育期土壤含水率均值分布等值线图
C1、C2和C3表示滴灌灌水均匀系数分别为65%、75%和85%; I1、I2和I3分别表示灌水量为190 mm、220 mm和250 mm。
Figure2.Contour maps of mean soil water contents during tomato growth period under different treatments of irrigation uniformity coefficient and irrigation amount
C1, C2 and C3 indicate irrigation uniformity coefficients of 65%, 75% and 85%. I1, I2 and I3 indicate irrigation amounts of 190 mm, 220 mm and 250 mm.
下载: 全尺寸图片幻灯片
表1不同灌水量处理下番茄不同生育阶段的灌水量
Table1.Irrigation amounts of tomato at different growth stages under different irrigation amount treatments mm
处理 Treatment | 苗期 Seeding stage | 开花坐果期 Blooming and setting stage | 结果盛期 Fruiting period | 结果后期 Last fruiting period | 灌水总量 Total irrigation amount | ||||||||||
灌水日期(月-日) Irrigation date (month-day) | 10-25 | 11-10 | 12-05 | 12-16 | 12-22 | 01-01 | 01-12 | 01-27 | 02-14 | 10-01—03-01 | |||||
I1 | 15 | 20 | 50 | 30 | 50 | 35 | 25 | 15 | 15 | 190 | |||||
I2 | 15 | 20 | 40 | 30 | 40 | 25 | 20 | 15 | 15 | 220 | |||||
I3 | 15 | 20 | 30 | 30 | 30 | 20 | 15 | 15 | 15 | 250 |
下载: 导出CSV
表2灌水均匀系数和灌水量对番茄生育期内平均土壤含水率均匀系数的影响
Table2.Effects of irrigation uniformity coefficient and irrigation amount on averages of soil moisture uniformity coefficients during tomato growth period
处理Treatment | 土层深度Soil depth (cm) | ||||
0~20 | 20~30 | 30~40 | 40~50 | 50~60 | |
C1I1 | 82.57 | 84.34 | 87.63 | 84.63 | 87.02 |
C2I1 | 84.14 | 86.79 | 87.65 | 87.13 | 87.00 |
C3I1 | 85.81 | 88.17 | 89.94 | 89.38 | 92.75 |
C1I2 | 85.35 | 88.16 | 87.72 | 88.79 | 91.57 |
C2I2 | 86.08 | 87.71 | 88.96 | 89.45 | 91.68 |
C3I2 | 87.01 | 93.17 | 92.31 | 93.37 | 93.76 |
C1I3 | 85.40 | 88.71 | 89.62 | 89.83 | 90.21 |
C2I3 | 85.84 | 89.77 | 90.07 | 90.60 | 92.57 |
C3I3 | 89.80 | 92.59 | 91.92 | 91.38 | 91.92 |
方差分析ANOVA | |||||
灌水量 Irrigation amount (I) | NS | * | NS | NS | ** |
灌水均匀系数 Irrigation uniformity coefficient(Cu) | NS | * | NS | NS | NS |
I × Cu | NS | NS | NS | NS | NS |
C1、C2和C3表示滴灌灌水均匀系数分别为65%、75%和85%; I1、I2和I3分别表示灌水量为190 mm、220 mm和250 mm。NS表示不同处理在P > 0.05水平差异不显著, *和**分别表示不同处理在P < 0.05和P < 0.01水平上差异显著。C1, C2 and C3 indicate irrigation uniformity coefficients of 65%, 75% and 85%. I1, I2 and I3 indicate irrigation amounts of 190 mm, 220 mm and 250 mm. NS means no significant difference at 0.05 level among different treatments. * and ** mean significant differences at 0.05 and 0.01 levels, respectively, among different treatments. |
下载: 导出CSV
表3番茄生育期内土壤含水率均匀系数均值与影响因素的通径分析结果
Table3.Path analysis result of mean soil moisture uniformity coefficient and influencing factors during tomato growth period
变量 Variable | 相关系数 Correlation coefficient (ri) | 影响权重 Effect weight (λi) | 直接通径系数 Direct path coefficient (pi) | 间接通径系数 Indirect path coefficient | |||
r1 × p1 | r2 × p2 | r3 × p3 | 合计Total | ||||
灌水量 Irrigation amount (I, X1) | 0.614 | 0.641 | 0.642 | — | 0.438 | 0.015 | 0.453 |
灌水均匀系数 Irrigation uniformity coefficient (Cu, X2) | 0.712* | 0.727 | 0.713 | 0.457 | — | 0.017 | 0.472 |
初始含水量 Initial soil water content (θ0, X3) | -0.037 | 0.039 | 0.024 | -0.024 | -0.001 | — | -0.025 |
*表示在P < 0.05水平上影响显著。* means significant effect at 0.05 level. |
下载: 导出CSV
表4灌水均匀系数和灌水量对不同深度土壤含水率均匀系数影响的方差分析结果
Table4.ANOVA of soil moisture uniformity coefficients at different soil depths for irrigation uniformity coefficient and irrigation amount
土层深度 Soil depth (cm) | 灌水量 Irrigation amount (I) | 灌水均匀系数 Irrigation uniformity coefficient (Cu) | I × Cu |
0~20 | NS | NS | * |
20~30 | NS | NS | ** |
NS表示无显著性差异, *和**分别表示在P < 0.05和P < 0.01水平上影响显著。NS means no significant effect at 0.05 level. * and ** mean significant effects at 0.05 and 0.01 levels, respectively. |
下载: 导出CSV
表5不同土壤初始含水率下灌水均匀系数和灌水量对土壤含水率均匀系数影响的方差分析结果
Table5.ANOVA of soil moisture uniformity coefficients at differents soil depths for irrigation uniformity coefficient and irrigation amount under different initial soil water moistures
土层深度 Soil depth (cm) | 土壤初始含水率 Initial soil moisture (FC%) | 方差来源 Resources of variance | 克里斯琴森法 Christiansen method |
0~20 | 50.93 | 灌水量Irrigation amount (I) | NS |
灌水均匀系数Irrigation uniformity coefficient (Cu) | NS | ||
I × Cu | NS | ||
20~30 | 55.07 | 灌水量Irrigation amount (I) | ** |
灌水均匀系数Irrigation uniformity coefficient (Cu) | NS | ||
I × Cu | NS | ||
30~40 | 58.60 | 灌水量Irrigation amount (I) | ** |
灌水均匀系数Irrigation uniformity coefficient (Cu) | NS | ||
I × Cu | NS | ||
40~50 | 60.52 | 灌水量Irrigation amount (I) | ** |
灌水均匀系数Irrigation uniformity coefficient (Cu) | NS | ||
I × Cu | NS | ||
50~60 | 65.59 | 灌水量Irrigation amount (I) | * |
灌水均匀系数Irrigation uniformity coefficient (Cu) | NS | ||
I × Cu | NS | ||
FC%为占田间持水量比重。NS表示在P > 0.05水平上影响不显著, *和**分别表示在P < 0.05和P < 0.01水平上影响显著。FC% is the proportion of field moisture capacity. NS means no significant effect at 0.05 level. * and ** mean significant effects at 0.05 and 0.01 levels, respectively. |
下载: 导出CSV
表6灌水均匀系数和灌水量对番茄产量及灌溉水分利用效率的影响
Table6.Effects of irrigation uniformity coefficient and irrigation amount on yield and irrigation water use efficiency of tomato
处理 Treatment | 总灌水量 Total water irrigation (mm) | 总产量 Total yield (t·hm-2) | 灌溉水分利用效率 Irrigation water use efficiency (kg·m-3) |
C1I1 | 190 | 74.63±3.96b | 39.28±2.08abc |
C2I1 | 190 | 78.15±6.88ab | 41.13±3.62a |
C3I1 | 190 | 76.83±1.50ab | 40.44±0.79ab |
C1I2 | 220 | 74.82±3.15b | 34.01±1.43d |
C2I2 | 220 | 86.90±8.31a | 39.50±3.78abc |
C3I2 | 220 | 77.80±7.44ab | 35.36±3.38bcd |
C1I3 | 250 | 87.39±11.69a | 34.96±4.67cd |
C2I3 | 250 | 81.28±0.95ab | 32.51±0.38d |
C3I3 | 250 | 86.60±2.64ab | 34.64±1.06cd |
F值F value | |||
I | 4.378* | 11.735** | |
Cu | 0.590NS | 0.785NS | |
I × Cu | 0.814NS | 1.725NS | |
C1、C2和C3表示滴灌灌水均匀系数分别为65%、75%和85%; I1、I2和I3分别表示灌水量为190 mm、220 mm和250 mm。NS表示不同处理在P > 0.05水平上差异不显著, *和**分别表示不同处理在P < 0.05和P < 0.01水平上差异显著。C1, C2 and C3 indicate irrigation uniformity coefficients of 65%, 75% and 85%. I1, I2 and I3 indicate irrigation amounts of 190 mm, 220 mm and 250 mm. NS means no significant difference at 0.05 level among different treatments. * and ** mean significant differences at 0.05 and 0.01 levels, respectively, among different treatments. |
下载: 导出CSV
参考文献
[1] | 李久生, 张建君, 薛克宗.滴灌施肥灌溉原理与应用[G].北京: 北京农业出版社, 2003 LI J S, ZHANG J J, XUE K Z. Principles and Applications of Fertigation through Drip Irrigation Systems[G]. Beijing: China Agricultural Science and Technology Press, 2003 |
[2] | 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. GB/T 50485—2009微灌工程技术规范[S].北京: 中国计划出版社, 2009 Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 50485-2009, Technical Code for Microirrigation Engineering[S]. Beijing: China Planning Press, 2009 |
[3] | ASAE Standards EP405.1. Design and Installation of Microirrigation Systems[S]. St Joseph, Mich: ASAE, 2003 |
[4] | 朱德兰, 吴普特, 王剑.滴头制造偏差对灌水均匀度及毛管造价的影响[J].排灌机械工程学报, 2011(2):175-179 doi: 10.3969/j.issn.1674-8530.2011.02.017 ZHU D L, WU P T, WANG J. Effect of emitters manufacturing variation of micro-irrigation on uniformity and lateral cost[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011(2):175-179 doi: 10.3969/j.issn.1674-8530.2011.02.017 |
[5] | 陈渠昌, 郑耀泉.微灌工程设计灌水均匀度的选定[J].农业工程学报, 1995, 11(2):128-132 doi: 10.3321/j.issn:1002-6819.1995.02.025 CHEN Q C, ZHENG Y Q. Optimizing determination of irrigation uniformity in the design of micro-irrigation system[J]. Transactions of the CSAE, 1995, 11(2):128-132 doi: 10.3321/j.issn:1002-6819.1995.02.025 |
[6] | WU I P, BARRAGAN J. Design criteria for Microirrigation systems[J]. Transactions of the ASAE, 2000, 43(5):1145-1154 doi: 10.13031/2013.3007 |
[7] | WARRICK A W, GARDNER W R. Crop yield as affected by spatial variations of soil and irrigation[J]. Water Resources Research, 1983, 19(1):181-186 doi: 10.1029/WR019i001p00181 |
[8] | 宰松梅, 仵峰, 温季, 等.大田地下滴灌土壤水分分布均匀度评价方法[J].农业工程学报, 2009, 25(12):51-57 doi: 10.3969/j.issn.1002-6819.2009.12.009 ZAI S M, WU F, WEN J, et al. Evaluation method of soil water distribution uniformity under conditions of field subsurface drip irrigation[J]. Transactions of the CSAE, 2009, 25(12):51-57 doi: 10.3969/j.issn.1002-6819.2009.12.009 |
[9] | MONTAZAR A, SADEGHI M. Effects of applied water and sprinkler irrigation uniformity on alfalfa growth and hay yield[J]. Agricultural Water Management, 2008, 95(11):1279-1287 doi: 10.1016/j.agwat.2008.05.005 |
[10] | WILDE C, JOHNSON J, BORDOVSKY J P. Economic analysis of subsurface drip irrigation system uniformity[J]. Applied Engineering in Agriculture, 2009, 25(3):357-361 doi: 10.13031/2013.26886 |
[11] | 李久生, 尹剑锋, 张航, 等.滴灌均匀系数和施氮量对白菜生长及产量和品质的影响[J].农业工程学报, 2011, 27(1):36-43 doi: 10.3969/j.issn.1002-6819.2011.01.006 LI J S, YIN J F, ZHANG H, et al. Effects of drip fertigation uniformity and nitrogen application level on growth, yield and quality of Chinese cabbage[J]. Transactions of the CSAE, 2011, 27(1):36-43 doi: 10.3969/j.issn.1002-6819.2011.01.006 |
[12] | 张航.滴灌均匀系数对华北平原土壤水氮分布和春玉米生长的影响[D].北京: 中国水利水电科学研究院, 2012 http://cdmd.cnki.com.cn/Article/CDMD-82301-1015730500.htm ZHANG H. The distributions of water and nitrogen in soil and the growth of spring maize as affected by drip irrigation uniformity in North China Plain[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2012 http://cdmd.cnki.com.cn/Article/CDMD-82301-1015730500.htm |
[13] | BORDOVSKY J P, PORTER D O. Effect of subsurface drip irrigation system uniformity on cotton production in the Texas High Plains[J]. Applied Engineering in Agriculture, 2008, 24(4):465-472 doi: 10.13031/2013.25147 |
[14] | 李久生, 尹剑锋, 张航, 等.滴灌均匀系数对土壤水分和氮素分布的影响[J].农业工程学报, 2010, 26(12):27-33 doi: 10.3969/j.issn.1002-6819.2010.12.005 LI J S, YIN J F, ZHANG H, et al. Field evaluation of drip fertigation uniformity effects on distributions of water and nitrogen in soil[J]. Transactions of the CSAE, 2010, 26(12):27-33 doi: 10.3969/j.issn.1002-6819.2010.12.005 |
[15] | 李久生.灌水均匀度与深层渗漏量关系的研究[J].农田水利与小水电, 1993, (1):1-4 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004027049 LI J S. Study on the relationship of water application uniformity and deep percolation[J]. Irrigation and Drainage and Small Hydro-power Station, 1993, (1):1-4 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004027049 |
[16] | GUAN H J, LI J S, LI Y F. Effects of drip system uniformity and irrigation amount on cotton yield and quality under arid conditions[J]. Agricultural Water Management, 2013, 124:37-51 doi: 10.1016/j.agwat.2013.03.020 |
[17] | 王剑.滴灌均匀度合理取值及系统优化设计[D].杨凌: 西北农林科技大学, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10712-1016161112.htm WANG J. Optimal value of drip irrigation uniformity and system design[D]. Yangling: Northwest A & F University, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10712-1016161112.htm |
[18] | 金畅.蒙特卡洛方法中随机数发生器和随机抽样方法的研究[D].大连: 大连理工大学, 2006 http://cdmd.cnki.com.cn/Article/CDMD-10141-2006021981.htm JIN C. Study on random number generator and random sampling in Monte Carlo Method[D]. Dalian: Dalian University of Technology, 2006 http://cdmd.cnki.com.cn/Article/CDMD-10141-2006021981.htm |
[19] | CHRISTIAN J E. Hydraulics of sprinkling systems of irrigation[J]. Transaction of the ASCE, 1942, 107:221-239 http://cn.bing.com/academic/profile?id=8627b81dc17fc892e8ede601b75a1d84&encoded=0&v=paper_preview&mkt=zh-cn |
[20] | BURT C M. Rapid field evaluation of drip and microspray distribution uniformity[J]. Irrigation and Drainage Systems, 2004, 18(4):275-297 doi: 10.1007/s10795-004-2751-x |
[21] | KANG S Z, SHI P, PAN Y H, et al. Soil water distribution, uniformity and water-use efficiency under alternate furrow irrigation in arid areas[J]. Irrigation Science, 2000, 19(4):181-190 doi: 10.1007/s002710000019 |
[22] | 张若婵, 牛文全, 段晓辉, 等.考虑滴头堵塞位置的灌水均匀系数模型优化[J].农业工程学报, 2017, 33(3):113-120 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201703015 ZHANG R C, NIU W Q, DUAN X H, et al. Optimization of drip irrigation uniformity model considering location of clogged emitters[J]. Transactions of the CSAE, 2017, 33(3):113-120 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201703015 |
[23] | 雷志栋, 胡和平, 杨诗秀.土壤水研究进展与评述[J].水科学进展, 1999, 10(3):311-318 doi: 10.3321/j.issn:1001-6791.1999.03.015 Lei Z D, Hu H P, Yang S X. A review of soil water research[J]. Advances in Water Science, 1999, 10(3):311-318 doi: 10.3321/j.issn:1001-6791.1999.03.015 |
[24] | 张俊, 牛文全, 张琳琳, 等.初始含水率对微润灌溉线源入渗特征的影响[J].排灌机械工程学报, 2014, 32(1):72-79 http://d.old.wanfangdata.com.cn/Periodical/pgjx201401014 ZHANG J, NIU W Q, ZHANG L L, et al. Effects of soil initial water content on line-source infiltration characteristic in moistube irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(1):72-79 http://d.old.wanfangdata.com.cn/Periodical/pgjx201401014 |
[25] | 张博闻, 邵明安.初始含水率对土壤中原油入渗的影响[J].农业工程学报, 2010, 26(3):9-13 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201003002 ZHANG B W, SHAO M A. Effect of initial soil water content on crude oil infiltration into soils[J]. Transactions of the CSAE, 2010, 26(3):9-13 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201003002 |
[26] | 吴忠东, 王全九.微咸水连续灌溉对冬小麦产量和土壤理化性质的影响[J].农业机械学报, 2010, 41(9):36-43 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201009008 WU Z D, WANG Q J. Effect of saline water continuous irrigation on winter wheat yield and soil physicochemical property[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(9):36-43 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201009008 |
[27] | HAWKE R M, PRICE A G, BRYAN R B. The effect of initial soil water content and rainfall intensity on near-surface soil hydrologic conductivity:A laboratory investigation[J]. Catena, 2006, 65(3):237-246 doi: 10.1016/j.catena.2005.11.013 |
[28] | LIU H, LEI T W, ZHAO J, et al. Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method[J]. Journal of Hydrology, 2011, 396(1/2):24-32 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ba5aa03c80211cae4361ee9b417ad872 |
[29] | 张航, 李久生.华北平原春玉米滴灌均匀系数对土壤水氮时空分布的影响[J].中国农业科学, 2012, 45(19):4004-4013 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201219012 ZHANG H, LI J S. The effects of drip irrigation uniformity on spatial and temporal distributions of water and nitrogen in soil for spring maize in North China Plain[J]. Scientia Agricultura Sinica, 2012, 45(19):4004-4013 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201219012 |
[30] | 关红杰, 李久生, 栗岩峰.干旱区棉花水分胁迫指数对滴灌均匀系数和灌水量的响应[J].干旱地区农业研究, 2014, 32(1):52-59 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201401009 GUAN H J, LI J S, LI Y F. Response of crop water stress index to drip system uniformity and irrigation amount in arid regions[J]. Agricultural Research in the Arid Areas, 2014, 32(1):52-59 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201401009 |