秦海龙,
卢瑛,,
李博,
唐贤,
王超,
阳洋,
欧锦琼
华南农业大学资源环境学院/农业农村部华南耕地保育重点实验室/广东省土地利用与整治重点实验室 广州 510642
基金项目: 国家自然科学基金项目U1901601
国家自然科学基金项目41271233
国家科技基础性工作专项重点项目2014FY110200
详细信息
作者简介:黄伟濠, 主要从事土壤肥力研究。E-mail:389456502@qq.com
通讯作者:卢瑛, 主要研究方向为土壤发生演变与系统分类、耕地保育与质量提升、重金属污染土壤的生态环境效应与修复。E-mail:luying@scau.edu.cn
中图分类号:S156计量
文章访问数:823
HTML全文浏览量:8
PDF下载量:207
被引次数:0
出版历程
收稿日期:2019-09-25
录用日期:2019-12-25
刊出日期:2020-03-01
Effects of banana stem and its biochar application on soil aggregate characteristics in the Pearl River Delta
HUANG Weihao,QIN Hailong,
LU Ying,,
LI Bo,
TANG Xian,
WANG Chao,
YANG Yang,
OU Jinqiong
College of Natural Resources and Environment, South China Agricultural University/Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture and Rural Affairs, P. R. China/Guangdong Province Key Laboratory of Land Use and Consolidation, Guangzhou 510642, China
Funds: the National Natural Science Foundation of ChinaU1901601
the National Natural Science Foundation of China41271233
the Special Project of National Science and Technology Basic Research of China2014FY110200
More Information
Corresponding author:LU Ying, E-mail: luying@scau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为了探究施用香蕉茎秆(蕉秆)及其制备的生物炭对珠江三角洲农田土壤肥力的影响,本文通过土壤培养和盆栽试验,研究了施用0.5%、1.0%和2.0%蕉秆和水稻秸秆(稻秆)及其生物炭后,土壤中不同粒级水稳性团聚体的组成,并采用团聚体平均重量直径(MWD)、几何平均直径(GMD)、分形维数(D)和平均重量比表面积(MWSSA)等评价团聚体的稳定性。结果表明:1)珠江三角洲农田土壤水稳定性团聚体以 < 0.25 mm微团聚体为主,占团聚体比例29.80%~52.52%;1~0.5 mm团聚体次之,占18.19%~20.08%。2)施用1.0%、2.0%蕉秆和2.0%稻秆显著增加>0.25 mm土壤团聚体总量,并显著提高土壤团聚体水稳定性;与不施用有机物料对照相比,团聚体MWD分别增加45.60%、62.37%和65.50%,GMD分别增加43.45%、55.34%和60.66%,D分别降低2.23%、2.32%和2.78%,MWSSA分别降低18.14%、20.09%和23.01%。3)MWD、GMD与> 5mm、5~2 mm和2~1 mm团聚体所占比例呈极显著或显著正相关,与 < 0.25 mm微团聚体所占比例呈极显著负相关;D、MWSSA与 < 0.25 mm微团聚体所占比例呈极显著正相关,与>5 mm、5~2 mm和2~1 mm团聚体所占比例呈极显著或显著负相关。4)综合主成分和差异显著性分析结果表明,施用2.0%和1.0%蕉秆提高土壤团聚体稳定性效果佳,均与施用2.0%稻秆没有显著差异,而施用蕉秆生物炭和稻秆生物炭短期内不能提高土壤团聚体稳定性。研究结果可为蕉秆废弃物资源化利用、提高土壤肥力提供参考依据。
关键词:农田土壤/
土壤团聚体稳定性/
香蕉茎秆/
生物炭/
珠江三角洲
Abstract:Here, to investigate the effects of banana stem and its biochar application on soil fertility in the Pearl River Delta, the effects of applying 0.5%, 1.0%, and 2.0% banana stem, rice straw, and their biochar on the composition of soil water-stable aggregates were evaluated in soil culture and pot experiments. The mean weight diameter (MWD), geometric mean diameter (GMD), fractal dimension (D), and mean weight specific surface area (MWSSA) were used to evaluate soil aggregate stability. The results revealed the following:1) Water-stable aggregates in the studied soil was dominated by < 0.25-mm micro-aggregates, followed by 1-0.5-mm aggregates, accounting for 29.80%-47.55% and 18.19%-20.08% of the aggregates, respectively. 2) Applying 1.0% and 2.0% banana stem and 2% rice straw significantly increased >0.25 mm macro-aggregate content and soil aggregate stability. Compared with the control treatment, the soil aggregate MWD increased by 45.60%, 62.37%, and 65.50%, respectively; GMD increased by 43.45%, 55.34%, and 60.66% respectively; D decreased by 2.23%, 2.32%, and 2.78% respectively; and MWSSA decreased by 18.14%, 20.09%, and 23.01% respectively. 3) The MWD and GMD significantly positively correlated with >5 mm, 5-2 mm, and 2-1 mm soil aggregate percentages, and significantly negatively correlated with < 0.25-mm soil micro-aggregate percentage. The D value and MWSSA significantly positively correlated with < 0.25-mm soil micro-aggregate percentage, and significantly negatively correlated with >5 mm, 5-2 mm, and 2-1 mm soil aggregate percentages. 4) The results of principal component analysis and difference significance test indicated that applying 2.0% and 1.0% banana stem had a better effect in improving soil aggregate stability, and this effect was not significantly different from that of 2.0% rice straw application; however, the application of biochar did not increase the stability of aggregates in the short term. This study provides a reference for effectively utilizing banana stem waste and improving soil fertility.
Key words:Farmland soil/
Soil aggregate stability/
Banana stem/
Biochar/
the Pearl River Delta
HTML全文
图1添加不同有机物料处理下土壤团聚体平均重量直径(A)和几何平均直径(B)
CK:对照; DC:稻秆; JG:蕉秆; BDC:稻秆生物炭; BJG:蕉秆生物炭。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure1.Mean weight diameter (A) and geometric mean diameter (B) of soil aggregates under different organic materials application treatments
CK: control treatment; DC: rice straw; JG: banana stem; BDC: rice straw biochar; BJG: banana stem biochar. Different lowercase letters indicate significant differences among different treatments at 0.05 level.
下载: 全尺寸图片幻灯片
图2添加不同有机物料处理下土壤团聚体分形维数(A)和平均重量比表面积(B)
CK:对照处理; DC:稻秆; JG:蕉秆; BDC:稻秆生物炭; BJG:蕉秆生物炭。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure2.Fractal dimension (A) and mean weight of specific surface area (B) of soil aggregates under different organic materials application treatments
CK: control treatment; DC: rice straw; JG: banana stem; BDC: rice straw biochar; BJG: banana stem biochar. Different lowercase letters indicate significant differences among different treatments at 0.05 level.
下载: 全尺寸图片幻灯片
表1供试蕉秆和稻秆及其生物炭的基本性质
Table1.Basic properties of banana stem, rice straw and their biochars used in the experiment
有机物料类型Organic material type | 有机碳Organic carbon (g·kg–1) | 全氮Total N (g·kg–1) | 全磷Total P (g·kg–1) | 全钾Total K (g·kg–1) | pH (H2O) |
稻秆Rice straw | 523.2 | 9.56 | 1.10 | 12.83 | 7.02 |
蕉秆Banana stem | 471.0 | 16.07 | 2.63 | 60.37 | 4.24 |
稻秆生物炭Rice straw biochar | 522.9 | 13.01 | 3.12 | 34.07 | 9.80 |
蕉秆生物炭Banana stem biochar | 554.7 | 9.53 | 3.09 | 60.14 | 10.37 |
下载: 导出CSV
表2添加不同有机物料处理的土壤团聚体组成
Table2.Composition of soil aggregates under different organic materials application treatments ?
有机物料类型 Organic material type | 施用量 Application rate (%) | 土壤团聚体粒径Soil aggregate size (mm) | ||||||
≥5 | 5~2 | 2~1 | 1~0.5 | 0.5~0.25 | < 0.25 | ∑ > 0.25 | ||
对照Control | 0 | 10.08de | 6.91bcd | 9.15abcd | 18.53a | 13.57a | 41.76cd | 58.24cd |
稻秆 Rice straw | 0.5 | 12.51cd | 6.42bcd | 8.35abcd | 18.54a | 13.05a | 41.13cd | 58.87cd |
1.0 | 11.98cd | 6.00cd | 8.08bcd | 18.91a | 13.53a | 41.50cd | 58.5cd | |
2.0 | 18.76a | 8.85abcd | 10.37a | 18.68a | 13.54a | 29.80f | 70.2a | |
蕉秆 Banana stalk | 0.5 | 11.26cd | 8.39abcd | 10.20a | 20.08a | 13.35a | 36.72de | 63.28bc |
1.0 | 14.52bc | 10.67a | 10.24a | 18.76a | 13.55a | 32.26ef | 67.74ab | |
2.0 | 18.12ab | 9.50ab | 9.66abc | 18.19a | 12.92a | 31.61ef | 68.39ab | |
稻秆生物炭 Rice straw biochar | 0.5 | 4.86f | 7.48bcd | 9.67abc | 18.56a | 13.54a | 45.89bc | 54.11de |
1.0 | 6.83ef | 5.96cd | 7.76cd | 18.44a | 13.46a | 47.55ab | 52.45ef | |
2.0 | 4.44f | 7.11bcd | 9.13abcd | 19.37a | 13.74a | 46.21bc | 53.79de | |
蕉秆生物炭 Banana stalk biochar | 0.5 | 4.72f | 8.99abc | 9.90ab | 19.46a | 14.12a | 42.81bc | 57.19de |
1.0 | 2.94f | 5.68d | 7.48d | 18.16a | 13.22a | 52.52a | 47.48f | |
2.0 | 4.04f | 6.62bc | 7.82bcd | 18.84a | 15.32a | 47.36ab | 52.64df | |
同列不同小写字母表示处理间差异显著(P < 0.05)。Different lowercase letters in the same column indicate significant differences among different treatments at 0.05 level. |
下载: 导出CSV
表3各级土壤团聚体所占比例与稳定性评价指标的相关系数
Table3.Correlation coefficient between percentages of soil aggregates and stability evaluation index
团聚体稳定性指标 Evaluation index of soil aggregate stability | 土壤团聚体粒径Soil aggregate size (mm) | ||||||
≥5 | 5~2 | 2~1 | 1~0.5 | 0.5~0.25 | < 0.25 | ||
平均重量直径Mean weight diameter | 0.988** | 0.658* | 0.596* | -0.068 | -0.442 | -0.967** | |
几何平均直径Geometric mean diameter | 0.960** | 0.742** | 0.672* | -0.041 | -0.384 | -0.982** | |
分形维数Fraction dimension | -0.909** | -0.830** | -0.786** | -0.091 | 0.342 | 0.993** | |
平均重量比表面积Mean weight of specific surface area | -0.939** | -0.783** | -0.745** | -0.081 | 0.341 | 0.999** | |
*和**表示在0.05和0.01水平(双侧)显著相关。* and ** mean significant correlations at 0.05 and 0.01 levels (2-tailed), respectively. |
下载: 导出CSV
表4主成分分析的得分系数、特征值和方差贡献率
Table4.Calculation coefficient, eigenvalues and contribution rate of principal component analysis
主成分 Principal component | X1 | X2 | X3 | X4 | X5 | 特征值 Eigenvalues | 方差贡献率 Contribution rate (%) | 累计贡献率 Cumulative contribution (%) |
F | 0.984 | 0.995 | –0.992 | –0.998 | 0.995 | 4.928 | 98.56 | 98.56 |
X1:平均重量直径; X2:几何平均直径; X3:分形维数; X4:平均重量比表面积; X5: > 0.25 mm团聚体总量的百分比。X1: mean weight diameter; X2: geometric mean diameter; X3: fraction dimension; X4: mean weight of specific surface area; X5: percentage of > 0.25 mm aggregates. |
下载: 导出CSV
表5不同有机物料处理综合效果分析
Table5.Comprehensive effect analysis of different organic materials application treatments
有机物料类型 Organic material type | 施用量 Application rate (%) | 综合得分 Composite score | 综合得分排名 Rank of composite scores |
对照Control | 0 | -0.77 | 7 |
稻秆 Rice straw | 0.5 | 0.54 | 5 |
1.0 | -0.03 | 6 | |
2.0 | 8.41 | 1 | |
蕉秆 Banana stem | 0.5 | 2.81 | 4 |
1.0 | 6.35 | 3 | |
2.0 | 7.40 | 2 | |
稻秆生物炭 Rice straw biochar | 0.5 | -3.25 | 9 |
1.0 | -4.08 | 11 | |
2.0 | -3.78 | 10 | |
蕉秆生物炭 Banana stem biochar | 0.5 | -1.86 | 8 |
1.0 | -7.07 | 13 | |
2.0 | -4.67 | 12 |
下载: 导出CSV
参考文献
[1] | 刘中良, 宇万太.土壤团聚体中有机碳研究进展[J].中国生态农业学报, 2011, 19(2):447-455 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110237&flag=1 LIU Z L, YU W T. Review of researches on soil aggregate and soil organic carbon[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2):447-455 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110237&flag=1 |
[2] | 王笃超, 吴景贵.不同有机物料对连作大豆土壤养分及团聚体组成的影响[J].土壤学报, 2018, 55(4):825-834 http://d.old.wanfangdata.com.cn/Periodical/trxb201804005 WANG D C, WU J G. Effects of organic manure on soil nutrients and aggregate composition in soil under mono-cropping of soybean[J]. Acta Pedologica Sinica, 2018, 55(4):825-834 http://d.old.wanfangdata.com.cn/Periodical/trxb201804005 |
[3] | 俞巧钢, 杨艳, 邹平, 等.有机物料对稻田土壤团聚体及有机碳分布的影响[J].水土保持学报, 2017, 36(6):170-175 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201706028 YU Q G, YANG Y, ZOU P, et al. Effect of organic materials application on soil aggregate and soil organic carbon in rice fields[J]. Journal of Soil and Water Conservation, 2017, 31(6):170-175 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201706028 |
[4] | 徐英德, 汪景宽, 王思引, 等.玉米残体分解对不同肥力棕壤团聚体组成及有机碳分布的影响[J].中国生态农业学报, 2018, 26(7):1029-1037 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0710&flag=1 XU Y D, WANG J K, WANG S Y, et al. Effects of maize residue decomposition on aggregate composition and organic carbon distribution of different fertilities Brown soils[J]. Chinese Journal of Eco-Agriculture, 2018, 26(7):1029-1037 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0710&flag=1 |
[5] | 刘哲, 韩霁昌, 孙增慧, 等.外源新碳对红壤团聚体及有机碳分布和稳定性的影响[J].环境科学学报, 2017, 37(6):2351-2359 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201706041 LIU Z, HAN Q C, SUN Z H, et al. Effects of fresh carbon on distribution and stability of aggregates and organic carbon in red soil[J]. Acta Scientiae Circumstantiae, 2017, 37(6):2351-2359 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201706041 |
[6] | 姜灿烂, 何园球, 刘晓利, 等.长期施用有机肥对旱地红壤团聚体结构与稳定性的影响[J].土壤学报, 2010, 47(4):715-722 http://d.old.wanfangdata.com.cn/Periodical/trxb201004018 JIANG C L, HE Y Q, LIU X L, et al. Effect of long-term application of organic manure on structure and stability of aggregate in upland red soil[J]. Acta Pedologica Sinica, 2010, 47(4):715-722 http://d.old.wanfangdata.com.cn/Periodical/trxb201004018 |
[7] | 孟祥天, 蒋瑀霁, 王晓玥, 等.生物质炭和秸秆长期还田对红壤团聚体和有机碳的影响[J].土壤, 2018, 50(2):326-332 http://d.old.wanfangdata.com.cn/Periodical/tr201802015 MENG X T, JIANG Y J, WANG X Y, et al. Effects of long-term application of biochar and straws on red soil aggregate composition and organic carbon distribution[J]. Soils, 2018, 50(2):326-332 http://d.old.wanfangdata.com.cn/Periodical/tr201802015 |
[8] | 潘艳斌, 朱巧红, 彭新华.有机物料对红壤团聚体稳定性的影响[J].水土保持学报, 2017, 31(2):209-214 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201702035 PAN Y B, ZHU Q H, PENG X H. Effects of organic materials on soil aggregate stability in red soil[J]. Journal of Soil and Water Conservation, 2017, 31(2):209-214 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201702035 |
[9] | 吴鹏豹, 解钰, 漆智平, 等.生物炭对花岗岩砖红壤团聚体稳定性及其总碳分布特征的影响[J].草地学报, 2012, 20(4):643-649 http://d.old.wanfangdata.com.cn/Periodical/cdxb201204008 WU P B, XIE Y, QI Z P, et al. Effects of biochar on stability and total carbon distribution of aggregates in granitic laterite[J]. Acta Agrestia Sinica, 2012, 20(4):643-649 http://d.old.wanfangdata.com.cn/Periodical/cdxb201204008 |
[10] | 王艳玲, 蒋发辉, 徐江兵, 等.长期配施有机肥对旱地红壤微团聚体中有机碳含量的影响[J].土壤通报, 2018, 49(2):377-384 http://d.old.wanfangdata.com.cn/Periodical/trtb201802017 WANG Y L, JIANG F H, XU J B, et al. Micro-aggregate associated organic carbon in red soil as affected by long-term application of combined organic-inorganic fertilizers[J]. Chinese Journal of Soil Science, 2018, 49(2):377-384 http://d.old.wanfangdata.com.cn/Periodical/trtb201802017 |
[11] | 刘希玉, 王忠强, 张心昱, 等.施肥对红壤水稻土团聚体分布及其碳氮含量的影响[J].生态学报, 2013, 33(16):4949-4955 http://d.old.wanfangdata.com.cn/Periodical/stxb201316014 LIU X Y, WANG Z Q, ZHANG X Y, et al. Effects of long-term fertilization on aggregate dynamics and organic carbon and total nitrogen contents in a reddish paddy soil[J]. Acta Ecologica Sinica, 2013, 33(16):4949-4955 http://d.old.wanfangdata.com.cn/Periodical/stxb201316014 |
[12] | 广东农村统计年鉴编辑委员会.广东农村统计年鉴-2017[M].北京:中国统计出版社, 2018 Editorial Committee of Guangdong Rural Statistical Yearbook. Agricultural Statistical Yearbook of Guangdong[M]. Beijing:China Statistics Press, 2018 |
[13] | 张学娟, 王冲, 李宝深, 等.我国香蕉茎叶残体利用现状与展望[J].热带农业科学, 2015, 35(10):69-74 doi: 10.3969/j.issn.1009-2196.2015.10.013 ZHANG X J, WANG C, LI B S, et al. Utilization status and outlook of banana stalk and leaves residues in China[J]. Chinese Journal of Tropical Agriculture, 2015, 35(10):69-74 doi: 10.3969/j.issn.1009-2196.2015.10.013 |
[14] | 郑丽丽, 韩冰莹, 盛占武, 等.香蕉茎秆废弃物综合利用研究现状与分析[J].热带农业科学, 2013, 33(7):63-67 doi: 10.3969/j.issn.1009-2196.2013.07.014 ZHENG L L, HAN B Y, SHENG Z W, et al. Recent achievements and analysis of comprehensive utilization of banana stalk wastes[J]. Chinese Journal of Tropical Agriculture, 2013, 33(7):63-67 doi: 10.3969/j.issn.1009-2196.2013.07.014 |
[15] | 邓小垦, 董存明, 辛侃, 等.香蕉茎秆、桉树皮和猪粪不同配比堆肥研究[J].生态与农村环境学报, 2014, 30(5):658-663 http://d.old.wanfangdata.com.cn/Periodical/ncsthj201405018 DENG X K, DONG C M, XIN K, et al. Comparative study on effects of composting of banana stem, eucalyptus bark and swine manure relative to ratio of ingredients[J]. Journal of Ecology and Rural Environment, 2014, 30(5):658-663 http://d.old.wanfangdata.com.cn/Periodical/ncsthj201405018 |
[16] | 丁哲利, 韩丽娜, 曾会才, 等.香蕉茎秆有机肥对大白菜生长的影响[J].中国农学通报, 2016, 32(10):73-78 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201610013 DING Z L, HAN L N, ZENG H C, et al. Effect of banana stalk organic fertilizer on Chinese cabbage growth[J]. Chinese Agricultural Science Bulletin, 2016, 32(10):73-78 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201610013 |
[17] | 刘红宜, 陈冲, 卢瑛, 等.珠江三角洲平原农田土壤有机碳组分及剖面分布特征[J].土壤通报, 2017, 48(2):399-405 http://d.old.wanfangdata.com.cn/Periodical/trtb201702021 LIU H Y, CHEN C, LU Y, et al. Characteristics of organic carbon fractions and its distribution in soil profiles of cultivated land in Pearl River Delta Plain[J]. Chinese Journal of Soil Science, 2017, 48(2):399-405 http://d.old.wanfangdata.com.cn/Periodical/trtb201702021 |
[18] | 张甘霖, 龚子同.土壤调查实验室分析方法[M].北京:科学出版社, 2012 ZHANG G L, GONG Z T. Soil Survey Laboratory Methods[M]. Beijing:Science Press, 2012 |
[19] | 何瑞成, 吴景贵, 李建明.不同有机物料对原生盐碱地水稳性团聚体特征的影响[J].水土保持学报, 2017, 31(3):310-316 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201703051 HE R C, WU J G, LI J M. Effects of different organic materials on the characteristics of water stable aggregates in a primary saline alkali soil[J]. Journal of Soil and Water Conservation, 2017, 31(3):310-316 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201703051 |
[20] | SPACCINI R, PICCOLO A. Effects of field managements for soil organic matter stabilization on water-stable aggregate distribution and aggregate stability in three agricultural soils[J]. Journal of Geochemical Exploration, 2013, 129:45-51 doi: 10.1016/j.gexplo.2012.10.004 |
[21] | ZHANG M, CHENG G, FENG H, et al. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China[J]. Environmental Science and Pollution Research, 2017, 24(11):10108-10120 doi: 10.1007/s11356-017-8505-8 |
[22] | LIU Z X, CHEN X M, JING Y, et al. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil[J]. CATENA, 2014, 123:45-51 doi: 10.1016/j.catena.2014.07.005 |
[23] | 庄硕, 陈鸿洋, 张明, 等.生物质炭施加对新成水稻土碳组分及其分解的影响[J].生态与农村环境学报, 2018, 34(11):1010-1018 doi: 10.11934/j.issn.1673-4831.2018.11.008 ZHUANG S, CHEN H Y, ZHANG M, et al. Effects of biochar amendment on soil carbon fractions and their decomposition in a north-subtropical paddy field[J]. Journal of Ecology and Rural Environment, 2018, 34(11):1010-1018 doi: 10.11934/j.issn.1673-4831.2018.11.008 |
[24] | SODHI G P S, BERI V, BENBI D K. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice-wheat system[J]. Soil and Tillage Research, 2009, 103(2):412-418 doi: 10.1016/j.still.2008.12.005 |
[25] | KUZYAKOV Y, BOGOMOLOVA I, GLASER B. Biochar stability in soil:Decomposition during eight years and transformation as assessed by compound-specific 14C analysis[J]. Soil Biology and Biochemistry, 2014, 70:229-236 doi: 10.1016/j.soilbio.2013.12.021 |
[26] | LIU X H, HAN F P, ZHANG X C. Effect of biochar on soil aggregates in the Loess Plateau:Results from incubation experiments[J]. International Journal of Agriculture and Biology, 2012, 14(6):975-979 http://www.cabdirect.org/abstracts/20123416677.html?gitCommit=4.13.20-5-ga6ad01a |
[27] | AWAD Y M, BLAGODATSKAYA E, OK Y S, et al. Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labelled maize residues and on their stabilization in soil aggregates[J]. European Journal of Soil Science, 2013, 64(4):488-499 doi: 10.1111/ejss.12034 |
[28] | SOINNE H, HOVI J, TAMMEORG P, et al. Effect of biochar on phosphorus sorption and clay soil aggregate stability[J]. Geoderma, 2014, 219/220:162-167 doi: 10.1016/j.geoderma.2013.12.022 |
[29] | 邸佳颖, 刘小粉, 杜章留, 等.长期施肥对红壤性水稻土团聚体稳定性及固碳特征的影响[J].中国生态农业学报, 2014, 22(10):1129-1138 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20141001&flag=1 DI J Y, LIU X F, DU Z L, et al. Influences of long-term organic and chemical fertilization on soil aggregation and associated organic carbon fractions in a red paddy soil[J]. Chinese Journal of Eco-Agriculture, 2014, 22(10):1129-1138 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20141001&flag=1 |
[30] | 邓晓, 侯宪文, 李光义, 等.不同C/N比香蕉秆堆肥化过程中微生物种群的动态变化[J].热带作物学报, 2009, 30(5):651-656 doi: 10.3969/j.issn.1000-2561.2009.05.017 DENG X, HOU X W, LI G Y, et al. Dynamic changes of microbial populations during the composting process of banana pseudostems at different ratios of carbon to nitrogen[J]. Chinese Journal of Tropical Crops, 2009, 30(5):651-656 doi: 10.3969/j.issn.1000-2561.2009.05.017 |