删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

典型喀斯特洼地植被恢复过程中土壤碳氮储量动态及其对极端内涝灾害的响应

本站小编 Free考研考试/2022-01-01

伍方骥1, 2, 3,,
刘娜4,
胡培雷1, 2,
王克林1, 2,
张伟1, 2,
邹冬生3,,
1.湖南农业大学 长沙 410128
2.中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室 长沙 410125
3.中国科学院环江喀斯特生态系统观测研究站 环江 547100
4.河北地质大学商学院 石家庄 050031
基金项目: 河北省科技计划项目5457631D
国家重点研发计划项目2016YFC0502400
国家自然科学基金项目31670529

详细信息
作者简介:伍方骥, 主要从事区域生态学和恢复生态学研究。E-mail:547920964@qq.com
通讯作者:邹冬生, 主要研究方向为农业生态学研究。E-mail:zds@hunan.edu.cn
中图分类号:S15

计量

文章访问数:458
HTML全文浏览量:5
PDF下载量:520
被引次数:0
出版历程

收稿日期:2019-10-06
录用日期:2019-11-12
刊出日期:2020-03-01

Soil carbon and nitrogen dynamics during vegetation restoration and their responses to extreme water-logging disasters in a typical karst depression

WU Fangji1, 2, 3,,
LIU Na4,
HU Peilei1, 2,
WANG Kelin1, 2,
ZHANG Wei1, 2,
ZOU Dongsheng3,,
1. Hunan Agriculture University, Changsha 410128, China
2. Key Laboratory of Agro-ecological Progresses in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
3. Huanjiang Observation and Research Station of Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
4. Business School of Hebei GEO University, Shijiazhuang 050031, China
Funds: the Science and Technology Project of Hebei Province5457631D
the National Key Research and Development Project of China2016YFC0502400
the National Natural Science Foundation of China31670529

More Information
Corresponding author:ZOU Dongsheng, E-mail: zds@hunan.edu.cn


摘要
HTML全文
(2)(4)
参考文献(58)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:西南喀斯特地区是我国主要的生态脆弱区之一,石漠化严重,旱涝灾害频发。植被恢复是提升脆弱生态系统土壤碳氮固持的有效方式,但该区不同植被恢复方式土壤碳氮动态监测的研究还很缺乏。本研究以典型喀斯特峰丛洼地为对象,选取人工林、牧草地、人工林+牧草地、撂荒地自然恢复4种最主要的植被恢复方式为研究对象,以耕地作为对照,对比分析退耕前(2004年)、退耕10年(2014年)和13年后(2017年)土壤碳氮储量动态变化特征。其中2004-2014年研究区未发生极端内涝灾害,2014-2017年连续发生2次极端内涝灾害事件。研究结果表明,退耕10年后,4种恢复方式下土壤有机碳(SOC)储量均显著增加,但退耕13年后,除撂荒地SOC持续增加外,其他3种恢复方式下SOC表现出下降趋势。植被恢复后土壤全氮(TN)储量提升相对缓慢,退耕10年仅牧草地显著增加,退耕13年后人工林+牧草和撂荒地TN增加,且撂荒地在退耕后呈持续增加趋势。相关性分析结果表明,土壤交换性Ca2+与SOC、TN均呈显著正相关关系,且与2014年相比,2017年不同植物恢复方式下土壤交换性Ca2+均显著下降,这可能与研究区2015年和2016年连续内涝灾害有关。以上结果说明,不同恢复方式均能显著提升喀斯特地区土壤碳氮固持,并以自然恢复最佳,其生态系统能有效抵御极端气候灾害带来的负面影响。
关键词:喀斯特生态系统/
植被恢复方式/
植被恢复年限/
土壤有机碳/
土壤全氮/
内涝灾害
Abstract:The karst region in Southwest China is one of the most ecologically fragile areas characterized with severe rocky desertification, and increased and frequent flood events. Vegetation restoration has been recognized as an effective strategy for soil carbon and nitrogen accumulation in degraded ecosystems. However, soil carbon and nitrogen dynamics following vegetation restoration have not been evaluated with a long-term, fixed-point research approach in the karst areas. Thus, we compared the effects of vegetation restoration types on soil carbon and nitrogen stocks before (in 2004) and after 10 (in 2014) and 13 years (in 2017) of cropland abandonment. Four restoration strategies were implemented in the present study, namely, restoration with plantation forest, grassland, a combination of plantation forest and grassland, and spontaneous regeneration to a natural grassland. Cropland under maize-soybean rotation (CR) was used as the control. From 2004 to 2014, there were no extreme water-logging disasters, whereas from 2014 to 2017, two extreme water-logging disasters occurred in the study region. The results revealed that soil organic carbon (SOC) stocks in all the four restored vegetation types significantly increased after 10 years of cropland abandonment, whereas after 13 years, the plantation forest, grassland, and the combination of plantation forest and grassland, except the natural grassland, showed a decreasing trend. The increase in the total nitrogen (TN) content of soil in response to vegetation restoration was less than that of SOC; the TN content significantly increased only in the grassland after 10 years of cropland abandonment. The TN content in the combination of plantation forest and grassland and natural grassland increased after 13 years of cropland abandonment, and that in the natural grassland continuously increased after cropland abandonment. The correlation analysis showed that soil exchangeable Ca2+ was positively correlated with SOC and TN (P < 0.05). However, the content of soil exchangeable Ca2+ significantly decreased in 2017 than in 2014. The reduction in soil exchangeable Ca2+ can be attributed to the continuous flood event in the study area in 2015 and 2016. Vegetation restoration can significantly improve soil carbon and nitrogen sequestration in karst areas. Furthermore, when compared with other vegetation restoration types, natural vegetation restoration was more beneficial to soil carbon and nitrogen sequestration, which can resist the negative effects of extreme climate disasters effectively.
Key words:Karst ecosystem/
Vegetation restoration measure/
Vegetation restoration years/
Soil organic carbon/
Soil total nitrogen/
Water-logging disaster

HTML全文


图1不同植被恢复方式不同恢复年限下土壤有机碳(SOC)和全氮(TN)储量变化特征
*和**分别表示两个时间段的变化值在P < 0.05水平和P < 0.01水平差异显著; 不同小写和大写字母表示不同植物恢复方式变化值2004—2014年和2014—2017年差异显著(P < 0.05)。
Figure1.Changes in soil organic carbon (SOC) and total nitrogen (TN) stocks under different vegetation restoration types for different restoration years
* and ** indicate significant differences between two periods at P < 0.05 and P < 0.01 levels, respectively. Different lowercase letters indicate significant differences among different vegetation restoration types from 2004 to 2014 at P < 0.05; different capital letters indicate significant differences among different vegetation restoration types from 2014 to 2017, respectively, at P < 0.05.


下载: 全尺寸图片幻灯片


图2不同植被恢复方式不同恢复年限下土壤碳氮比变化特征
不同大写字母表示相同恢复年限不同植物恢复方式间P < 0.05水平差异显著, 不同小写字母表示同一植被恢复方式不同恢复年限间在P < 0.05水平差异显著。
Figure2.Soil ratio of carbon to nitrogen under different vegetation restoration types for different restoration years
Different capital letters indicate significant differences (P < 0.05) among different vegetation restoration types in the same restoration year. Different lowercase letters indicate significant differences (P < 0.05) among different restoration years of the same vegetation restoration type.


下载: 全尺寸图片幻灯片

表1研究区不同植被恢复模式及样地特征
Table1.Vegetation types and characteristics of plots of different vegetation restoration patterns surveyed in the study
对照(耕地)
Control (cropland)
人工恢复Artificial restoration自然恢复(撂荒地)
Natural restoration
(natural grassland)
人工林
Plantation forest
牧草地
Grassland
人工林+牧草
Combination of plantation forest and grassland
优势种
Dominant species
玉米
Zea mays
任豆树
Zenia insignis
桂牧1号
Pennisetum purpureum cv, Guimu-1
任豆树、桂牧1号
Zenia insignis, Pennisetum purpureum cv, Guimu-1
类芦、五节芒、白茅
Neyraudia reynaudiana, Silver grass, Imperata cylindrica
人为措施
Artificial measures
每年翻耕1~2次, 施用无机肥料、农家肥和草木灰
Plowing 1-2 times per year; applied inorganic fertilizers, farm manure, and plant ash
种植当年翻耕和施肥
Ploughed and fertilized in the planting year
种植当年翻耕, 每年施用无机肥和农家肥, 牧草每年刈割3~4次
Ploughed in the planting year; applied inorganic fertilizers and farm manure, and mowed 3-4 times every year
种植当年翻耕, 每年施用无机肥和农家肥, 牧草每年刈割3~4次
Ploughed in the planting year; applied inorganic fertilizers and farm manure; and mowed 3-4 times every year
无耕作和施肥活动
No tillage and fertilization activities
干扰历史
Historical disturbances
连续100年以上耕种历史
Continuous farming for more than 100 years
100年以上耕作历史, 2004年退耕种植经济林
Continuous farming for more than 100 years, converting into economic forest in 2004
100年以上耕作历史, 2004年退耕种植牧草
Continuous farming for more than 100 years, converting into forage grassland in 2004
100年以上耕作历史, 2004年退耕混合种植人工林和牧草
Continuous farming for more than 100 years, converting to mixed plantation and grassland in 2004
100年以上耕作历史, 2004年撂荒自然恢复为草地
Continuous farming for more than 100 years, abandoning in 2004


下载: 导出CSV
表2植被恢复过程中凋落物特征与土壤有机碳(SOC)和全氮(TN)储量的相关性分析
Table2.Correlation analyses between litter properties and soil organic carbon (SOC) and total nitrogen (TN) stocks during vegetation restoration
凋落物量
Litter fall
凋落物C
Litter C
凋落物N
Litter N
SOC储量SOC stock-0.1910.203-0.202
TN储量TN stock-0.1530.389-0.236


下载: 导出CSV
表3不同植被恢复年限土壤交换性钙(Ca2+)与土壤有机碳(SOC)和全氮(TN)储量相关性分析
Table3.Correlation analyses among exchangeable calcium (Ca2+) and soil organic carbon (SOC) and total nitrogen (TN) stocks in different vegetation restoration years
年份YearSOCTNCa2+
2014SOC1.0000.498*0.453*
TN1.0000.070
Ca2+1.000
2017SOC1.0000.814**0.578**
TN1.0000.659**
Ca2+1.000
*和**分别表示P < 0.05和P < 0.01水平显著相关。* and ** indicate significant correlation at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV
表4不同植物恢复10年(2014年)和13年(2017年)土壤交换性钙(Ca2+)含量
Table4.Contents of soil exchangeable calcium under different vegetation types in 2014 (restoration for 10 years) and 2017 (restoration for 13 yeas)
植物恢复方式
Vegetation restoration type
20142017
耕地Cropland3.28±0.142.46±0.39
人工林Plantation forest3.30±0.16A2.32±0.15B
牧草地Grassland3.60±0.482.60±0.18
人工林+牧草
Combination of plantation forest
and grassland
3.82±0.502.67±0.24
撂荒地Natural grassland3.80±0.38A2.52±0.16B
同一行不同大写字母2014年与2017年间差异显著(P < 0.05)。Different capital letters in the same line indicate significant differences (P < 0.05) between 2014 and 2017.


下载: 导出CSV

参考文献(58)
[1]STOCKMANN U, ADAMS M A, CRAWFORD J W, et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon[J]. Agriculture, Ecosystems & Environment, 2013, 164:80-99 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c3c403894258dfc090a9a7b888bb1181
[2]DENG L, LOU G B, SHANGGUAN Z P. Land-use conversion and changing soil carbon stocks in China's 'Grain-for-Green' program:A synthesis[J]. Global Change Biology, 2014, 20(11):3544-3556 doi: 10.1111/gcb.12508
[3]LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677):1623-1627 doi: 10.1126/science.1097396
[4]MUELLER K E, HOBBIE S E, TILMAN D, et al. Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment[J]. Global Change Biology, 2013, 19(4):1249-1261 doi: 10.1111/gcb.12096
[5]刘兴华, 公彦庆, 陈为峰, 等.黄河三角洲自然保护区植被与土壤C、N、P化学计量特征[J].中国生态农业学报, 2018, 26(11):1720-1729 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1113&flag=1
LIU X H, GONG Y Q, CHEN W F, et al. C, N and P stoichiometry of typical plants and soils in the Yellow River Delta Natural Reserve[J]. Chinese Journal of Eco-Agriculture, 2018, 26(11):1720-1729 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1113&flag=1
[6]MUDGE P L, SCHIPPER L A, BAISDEN W T, et al. Changes in soil C, N and δ15N along three forest-pasture chronosequences in New Zealand[J]. Soil Research, 2014, 52(1):27-37 doi: 10.1071/SR13183
[7]ALBALADEJO J, ORTIZ R, GARCIA-FRANCO N, et al. Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain[J]. Journal of Soils and Sediments, 2013, 13(2):265-277 doi: 10.1007/s11368-012-0617-7
[8]LI D J, NIU S L, LUO Y Q. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation:A meta-analysis[J]. New Phytologist, 2012, 195(1):172-181 doi: 10.1111/j.1469-8137.2012.04150.x
[9]FENG W T, LIANG J Y, HALE L E, et al. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming[J]. Global Change Biology, 2017, 23(11):4765-4776 doi: 10.1111/gcb.13755
[10]LUO Y Q, SU B, CURRIE W S, et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide[J]. BioScience, 2004, 54(8):731-739 doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2
[11]LI D J, WEN L, ZHANG W, et al. Afforestation effects on soil organic carbon and nitrogen pools modulated by lithology[J]. Forest Ecology and Management, 2017, 400:85-92 doi: 10.1016/j.foreco.2017.05.050
[12]KAISER M, ELLERBROCK R H, WULF M, et al. The influence of mineral characteristics on organic matter content, composition, and stability of topsoils under long-term arable and forest land use[J]. Journal of Geophysical Research:Biogeosciences, 2012, 117(G2):G02018, doi: 10.1029/2011JG001712
[13]DENG L, SHANGGUAN Z P. Afforestation drives soil carbon and nitrogen changes in China[J]. Land Degradation & Development, 2017, 28(1):151-165
[14]王志齐, 杜兰兰, 赵慢, 等.黄土区不同退耕方式下土壤碳氮的差异及其影响因素[J].应用生态学报, 2016, 27(3):716-722 http://d.old.wanfangdata.com.cn/Periodical/yystxb201603007
WANG Z Q, DU L L, ZHAO M, et al. Differences in soil organic carbon and total nitrogen and their impact factors under different restoration patterns in the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2016, 27(3):716-722 http://d.old.wanfangdata.com.cn/Periodical/yystxb201603007
[15]辜翔, 张仕吉, 刘兆丹, 等.中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J].植物生态学报, 2018, 42(5):595-608 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201805008
GU X, ZHANG S J, LIU Z D, et al. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China[J]. Chinese Journal of Plant Ecology, 2018, 42(5):595-608 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201805008
[16]PACHAURI R K, ALLEN M R, BARROS V R, et al. Climate Change[R]. Synthesis Report. IPCC, 2014
[17]蒋忠诚, 罗为群, 邓艳, 等.岩溶峰丛洼地水土漏失及防治研究[J].地球学报, 2014, 35(5):535-542 http://d.old.wanfangdata.com.cn/Periodical/dqxb201405002
JIANG Z C, LUO W Q, DENG Y, et al. The leakage of water and soil in the Karst peak cluster depression and its prevention and treatment[J]. Acta Geoscientica Sinica, 2014, 35(5):535-542 http://d.old.wanfangdata.com.cn/Periodical/dqxb201405002
[18]王克林, 岳跃民, 马祖陆, 等.喀斯特峰丛洼地石漠化治理与生态服务提升技术研究[J].生态学报, 2016, 36(22):7098-7102 http://d.old.wanfangdata.com.cn/Periodical/stxb201622016
WANG K L, YUE Y M, MA Z L, et al. Research and demonstration on technologies for rocky desertification treatment and ecosystem services enhancement in Karst peak-cluster depression regions[J]. Acta Ecologica Sinica, 2016, 36(22):7098-7102 http://d.old.wanfangdata.com.cn/Periodical/stxb201622016
[19]傅伯杰, 田汉勤, 陶福禄, 等.全球变化对生态系统服务的影响[J].中国基础科学, 2017, 19(6):14-18 doi: 10.3969/j.issn.1009-2412.2017.06.003
FU B J, TIAN H Q, TAO F L, et al. The impact of global change on ecosystem services[J]. China Basic Science, 2017, 19(6):14-18 doi: 10.3969/j.issn.1009-2412.2017.06.003
[20]王世杰, 刘再华, 倪健, 等.中国南方喀斯特地区碳循环研究进展[J].地球与环境, 2017, 45(1):2-9 http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201701002
WANG S J, LIU Z H, NI J, et al. A review of research progress and future prospective of carbon cycle in Karst area of south China[J]. Earth and Environment, 2017, 45(1):2-9 http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201701002
[21]WEN L, LI D J, YANG L Q, et al. Rapid recuperation of soil nitrogen following agricultural abandonment in a Karst area, southwest China[J]. Biogeochemistry, 2016, 129(3):341-354 doi: 10.1007/s10533-016-0235-3
[22]YANG L Q, LUO P, WEN L, et al. Soil organic carbon accumulation during post-agricultural succession in a Karst area, southwest China[J]. Scientific Reports, 2016, 6:37118 doi: 10.1038/srep37118
[23]HU P L, LIU S J, YE Y Y, et al. Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration[J]. Land Degradation & Development, 2018, 29(3):387-397 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201423019
[24]张耀华, 王勇, 张荣飞, 等.喀斯特地区不同退耕类型对土壤碳氮的影响[J].西南大学学报:自然科学版, 2017, 39(4):95-100 http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201704015
ZHANG Y H, WANG Y, ZHANG R F, et al. Effects of different types of reforestation on characteristics of SOC and TN in Karst areas[J]. Journal of Southwest University:Natural Science Edition, 2017, 39(4):95-100 http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201704015
[25]LIU M X, XU X L, SUN A Y, et al. Is southwestern China experiencing more frequent precipitation extremes?[J]. Environmental Research Letters, 2014, 9(6):064002 doi: 10.1088/1748-9326/9/6/064002
[26]PE?UELAS J, SARDANS J, RIVAS-UBACH A, et al. The human-induced imbalance between C, N and P in earth's life system[J]. Global Change Biology, 2012, 18(1):3-6 http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Global%20Change%20Biology&atitle=The%20human-induced%20imbalance%20between%20C%2C%20N%20and%20P%20in%20Earth%27s%20life%20system
[27]刘光崧, 蒋能慧, 张连第.土壤理化分析与剖面描述[M].北京:中国标准出版社, 1996
LIU G S, JIANG N H, ZHANG L D. Soil Physical and Chemical Analysis & Description of Soil Profiles[M]. Beijing:Standards Press of China, 1996
[28]BREMNER J M. Nitrogen-Total[M]//PAGE A L, MILLER R H, KEENEY D R. Methods of Soil Analysis Part 3-Chemical Methods. Madison: Soil Science Society of America, American Society of Agronomy, 1996: 1085-1121
[29]WEN L, LI D J, YANG L Q, et al. Rapid recuperation of soil nitrogen following agricultural abandonment in a karst area, southwest China[J]. Biogeochemistry, 2016, 129(3):341-354 doi: 10.1007/s10533-016-0235-3
[30]HU P L, ZHANG W, XIAO L M, et al. Moss-dominated biological soil crusts modulate soil nitrogen following vegetation restoration in a subtropical karst region[J]. Geoderma, 2019, 352:70-79 doi: 10.1016/j.geoderma.2019.05.047
[31]ISO. ISO11272: 1998 Soil Quality-determination of Dry Bulk Density[S]. Zagreb: Croatian Standards Institute, 1998
[32]袁道先.我国西南岩溶石山的环境地质问题[J].世界科技研究与发展, 1997, 19(5):41-43 doi: 10.1111-j.1748-3743.2009.00179.x/
YUAN D X. On the environmental and geologic problems of Karst mountains and rocks in the South-West China[J]. World Sci-Tech R & D, 1997, 19(5):41-43 doi: 10.1111-j.1748-3743.2009.00179.x/
[33]张伟, 陈洪松, 苏以荣, 等.不同作物和施肥方式对新垦石灰土土壤肥力的影响[J].土壤通报, 2013, 44(4):925-930 http://d.old.wanfangdata.com.cn/Periodical/trtb201304026
ZHANG W, CHEN H S, SU Y R, et al. Effects of reclamation and fertilization on calcareous soil fertility in the initial period of cultivation[J]. Chinese Journal of Soil Science, 2013, 44(4):925-930 http://d.old.wanfangdata.com.cn/Periodical/trtb201304026
[34]叶莹莹, 肖霜霜, 王克林, 等.耕作干扰下喀斯特土壤有机碳损失主要途径及其影响因素[J].农业现代化研究, 2019, 40(2):325-332 http://d.old.wanfangdata.com.cn/Periodical/nyxdhyj201902017
YE Y Y, XIAO S S, WANG K L, et al. Pathways and influencing factors of soil organic carbon loss under tillage disturbance in karst area, China[J]. Research of Agricultural Modernization, 2019, 40(2):325-332 http://d.old.wanfangdata.com.cn/Periodical/nyxdhyj201902017
[35]常恩福, 李娅, 李品荣, 等.岩溶山地不同植被恢复模式和年限土壤养分的变化[J].西南林业大学学报, 2018, 38(2):76-82 http://d.old.wanfangdata.com.cn/Periodical/xnlxyxb201802012
CHANG E F, LI Y, LI P R, et al. Changes of soil nutrients under different vegetation restoration patterns and age limit in Karst mountain[J]. Journal of Southwest Forestry University, 2018, 38(2):76-82 http://d.old.wanfangdata.com.cn/Periodical/xnlxyxb201802012
[36]段亚峰, 王克林, 冯达, 等.典型喀斯特小流域土壤有机碳和全氮空间格局变化及其对退耕还林还草的响应[J].生态学报, 2018, 38(5):1560-1568 http://d.old.wanfangdata.com.cn/Periodical/stxb201805005
DUAN Y F, WANG K L, FENG D, et al. Response of the spatial pattern of soil organic carbon and total nitrogen to vegetation restoration in a typical small karst catchment[J]. Acta Ecologica Sinica, 2018, 38(5):1560-1568 http://d.old.wanfangdata.com.cn/Periodical/stxb201805005
[37]郭二辉, 孙然好, 陈利顶, 等.河岸带不同植被类型对土壤有机碳和全氮分布特征的影响——以北京地区温榆河为例[J].中国生态农业学报, 2012, 20(10):1315-1321 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20121009&flag=1
GUO E H, SUN R H, CHEN L D, et al. Effects of riparian vegetation on soil organic carbon and total nitrogen distribution -A case study of Wenyu River, Beijing[J]. Chinese Journal of Eco-Agriculture, 2012, 20(10):1315-1321 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20121009&flag=1
[38]贾松伟, 贺秀斌, 陈云明.黄土丘陵区退耕撂荒对土壤有机碳的积累及其活性的影响[J].水土保持学报, 2004, 18(3):78-80 doi: 10.3321/j.issn:1009-2242.2004.03.020
JIA S W, HE X B, CHEN Y M. Effect of land abandonment on soil organic carbon sequestration in loess hilly areas[J]. Journal of Soil and Water Conservation, 2004, 18(3):78-80 doi: 10.3321/j.issn:1009-2242.2004.03.020
[39]张俊华, 常庆瑞, 贾科利, 等.黄土高原植被恢复对土壤肥力质量的影响研究[J].水土保持学报, 2003, 17(4):38-41 doi: 10.3321/j.issn:1009-2242.2003.04.010
ZHANG J H, CHANG Q R, JIA K L, et al. Effect of plant restoration to soil fertility quality on loess plateau[J]. Journal of Soil and Water Conservation, 2003, 17(4):38-41 doi: 10.3321/j.issn:1009-2242.2003.04.010
[40]安文明, 韩晓阳, 李宗善, 等.黄土高原不同植被恢复方式对土壤水分坡面变化的影响[J].生态学报, 2018, 38(13):4852-4860 http://d.old.wanfangdata.com.cn/Periodical/stxb201813030
AN W M, HAN X Y, LI Z S, et al. Effects of different vegetation restoration types on the slope difference of soil water content in the Loess Plateau, China[J]. Acta Ecologica Sinica, 2018, 38(13):4852-4860 http://d.old.wanfangdata.com.cn/Periodical/stxb201813030
[41]HU P L, LIU S J, YE Y Y, et al. Soil carbon and nitrogen accumulation following agricultural abandonment in a subtropical Karst region[J]. Applied Soil Ecology, 2018, 132:169-178 doi: 10.1016/j.apsoil.2018.09.003
[42]ZHANG W, ZHAO J, PAN F J, et al. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China[J]. Plant and Soil, 2015, 391(1/2):77-91 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=25b82733034a3bf94fff7692b4849fff
[43]XU X, LI D J, CHENG X L, et al. Carbon:Nitrogen stoichiometry following afforestation:A global synthesis[J]. Scientific Reports, 2016, 6:19117 doi: 10.1038/srep19117
[44]左巍, 贺康宁, 田赟, 等.青海高寒区不同林分类型凋落物养分状况及化学计量特征[J].生态学杂志, 2016, 35(9):2271-2278 http://d.old.wanfangdata.com.cn/Periodical/stxzz201609001
ZUO W, HE K N, TIAN Y, et al. Surface litter stoichiometry for five forest types in alpine region, Qinghai, China[J]. Chinese Journal of Ecology, 2016, 35(9):2271-2278 http://d.old.wanfangdata.com.cn/Periodical/stxzz201609001
[45]高志红, 张万里, 张庆费.森林凋落物生态功能研究概况及展望[J].东北林业大学学报, 2004, 32(6):79-80 doi: 10.3969/j.issn.1000-5382.2004.06.025
GAO Z H, ZHANG W L, ZHANG Q F. General situation and prospect for the research on ecological functions of forest litter[J]. Journal of Northeast Forestry University, 2004, 32(6):79-80 doi: 10.3969/j.issn.1000-5382.2004.06.025
[46]靳振江, 程亚平, 李强, 等.会仙喀斯特溶洞湿地、稻田和旱田土壤有机碳含量及其与养分的关系[J].湿地科学, 2014, 12(4):485-490 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201404012
JIN Z J, CHENG Y P, LI Q, et al. Content of soil organic carbon and its relationship with nutrients in Karst cave wetlands, paddy fields and dry farmlands in Huixian[J]. Wetland Science, 2014, 12(4):485-490 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201404012
[47]曹建华, 袁道先, 潘根兴.岩溶生态系统中的土壤[J].地球科学进展, 2003, 18(1):37-44 doi: 10.3321/j.issn:1001-8166.2003.01.006
CAO J H, YUAN D X, PAN G X. Some soil features in Karst ecosystem[J]. Advances in Earth Science, 2003, 18(1):37-44 doi: 10.3321/j.issn:1001-8166.2003.01.006
[48]张甘霖, 龚子同.淹水条件下土壤中元素迁移的地球化学特征[J].土壤学报, 1993, 30(4):355-365 doi: 10.3321/j.issn:0564-3929.1993.04.013
ZHANG G L, GONG Z T. Geochemical characteristics of elemental migration in soils under submerged condition[J]. Acta Pedologica Sinica, 1993, 30(4):355-365 doi: 10.3321/j.issn:0564-3929.1993.04.013
[49]殷超, 周忠发, 田衷珲, 等.岩溶地区主量元素地球化学特征及其迁移规律——以贵州双河洞为例[J].水土保持学报, 2018, 32(1):303-311 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201801048
YIN C, ZHOU Z F, TIAN Z H, et al. The geochemical characteristics and migration of major elements in Karst area-Taking Shuanghe Cave in Guizhou as an example[J]. Journal of Soil and Water Conservation, 2018, 32(1):303-311 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201801048
[50]高儒学, 戴全厚, 甘艺贤, 等.不同雨强下喀斯特坡耕地养分流失特征研究[J].土壤学报, 2019, 56(5):1072-1084 http://d.old.wanfangdata.com.cn/Periodical/trxb201905005
GAO R X, DAI Q H, GAN Y X, et al. Characteristics of nutrient loss from sloping farmland in Karst region as a function of rainfall intensity[J]. Acta Pedologica Sinica, 2019, 56(5):1072-1084 http://d.old.wanfangdata.com.cn/Periodical/trxb201905005
[51]LAGANIèRE J, ANGERS D A, PARé D. Carbon accumulation in agricultural soils after afforestation:A meta-analysis[J]. Global Change Biology, 2010, 16(1):439-453 doi: 10.1111/j.1365-2486.2009.01930.x
[52]SOLLY E F, SCH?NING I, BOCH S, et al. Factors controlling decomposition rates of fine root litter in temperate forests and grasslands[J]. Plant and Soil, 2014, 382(1/2):203-218 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=336823afef5f8437e692b927df90b3bc
[53]刘玉林, 朱广宇, 邓蕾, 等.黄土高原植被自然恢复和人工造林对土壤碳氮储量的影响[J].应用生态学报, 2018, 29(7):2163-2172 http://d.old.wanfangdata.com.cn/Periodical/yystxb201807010
LIU Y L, ZHU G Y, DENG L, et al. Effects of natural vegetation restoration and afforestation on soil carbon and nitrogen storage in the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2018, 29(7):2163-2172 http://d.old.wanfangdata.com.cn/Periodical/yystxb201807010
[54]WEI X R, SHAO M G, FU X L, et al. Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China[J]. Biogeochemistry, 2009, 96(1/3):149-162 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3e97aafcfb9e383844b76b679e783e04
[55]JIN Z, DONG Y S, WANG Y Q, et al. Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China[J]. Science of the Total Environment, 2014, 485/486:615-623 doi: 10.1016/j.scitotenv.2014.03.105
[56]ECLESIA R P, JOBBAGY E G, JACKSON R B, et al. Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions[J]. Plant and Soil, 2016, 409(1/2):99-116 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224427686/
[57]WAGNER D, EISENHAUER N, CESARZ S. Plant species richness does not attenuate responses of soil microbial and nematode communities to a flood event[J]. Soil Biology and Biochemistry, 2015, 89:135-149 doi: 10.1016/j.soilbio.2015.07.001
[58]VOESENEK L, BAILEY-SERRES J. Flooding tolerance:O2 sensing and survival strategies[J]. Current Opinion in Plant Biology, 2013, 16(5):647-653 doi: 10.1016/j.pbi.2013.06.008

相关话题/土壤 生态 历史 植物 自然