删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于能值分析的蜜柚园生草模式生态经济效益评价

本站小编 Free考研考试/2022-01-01

罗旭辉1,,,
卢新坤2,
刘岑薇1,
张丽君1,
陈恩1,
GordonW. Price3,
翁伯琦4
1.福建省农业科学院农业生态研究所 福州 350013
2.福建省农业科学院果树研究所 福州 350003
3.Department of Engineering, Faculty of Agriculture, Dalhousie University, Canada B2N 5E3
4.福建省山地草业工程技术研究中心 福州 350013
基金项目: 福建省农业科学院科技创新团队项目STIT2017-3-8
亚热带特色果树种质资源共享服务平台NICGR-2019-069
公益类科研院所专项2016R1016-3


详细信息
作者简介:罗旭辉, 主要从事水土保持与农业面源污染防控技术研究。E-mail:xuhui22203@163.com
中图分类号:S7

计量

文章访问数:451
HTML全文浏览量:6
PDF下载量:386
被引次数:0
出版历程

收稿日期:2019-06-21
录用日期:2019-08-10
刊出日期:2019-12-01

Evaluation of ecological and economic benefits of pomelo orchards with different grass growing systems based on emergy analysis

LUO Xuhui1,,,
LU Xinkun2,
LIU Cenwei1,
ZHANG Lijun1,
CHEN En1,
Gordon W. Price3,
WENG Boqi4
1. Institute of Agricultural Ecology, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
2. Institute of Fruit Research, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
3. Department of Engineering, Faculty of Agriculture, Dalhousie University, B2N 5E3, Canada
4. Fujian Engineering and Technology Research Center for Hilly Prataculture, Fuzhou 350013, China
Funds: the Scientific and Technological Innovation Team Project of Fujian Academy of Agricultural SciencesSTIT2017-3-8
the Special Subtropical Fruit Genetic Resource Sharing Service Platform of ChinaNICGR-2019-069
the Nonprofit Research Institutions Project of China2016R1016-3


More Information
Corresponding author:LUO Xuhui, E-mail:xuhui22203@163.com


摘要
HTML全文
(2)(4)
参考文献(34)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:蜜柚是福建省平和县优势特色产业,目前面临发展困境。生草栽培是推动蜜柚绿色发展的重要途径,为科学评价蜜柚园生草模式的生态经济效益,本文应用能值分析法测评平和县五寨镇前岭村蜜柚园生草模式和蜜柚园清耕模式的能值自给率、能值投资率、净能值产出率、环境负载率、有效能产出率和能值反馈率。结果表明:2017-2018年蜜柚园生草模式、蜜柚园清耕模式的能值自给率均为0.003,能值投资率分别为339.291、295.763,净能值产出率均为1.003,环境负载率分别为0.348、0.321,有效能产出率为4.57E-7 J·sej-1、2.90E-7 J·sej-1,能值反馈率为0.002、0.000。与清耕模式相比,生草模式能值总投入下降9.21%,不可更新环境资源下降76.71%,购买能值比重大,显示更高的能值投资率;同时商品果能值提高1.00E+17 sej·hm-2,能量产出提高4.60E+10 J·hm-2,表现出更强的经济活力。劳动力能值投入占能值总投入70.45%~72.90%,其中采摘、日常管理、水肥施用比重大。生草模式在除草环节增加劳动力投入1.31E+16 sej·hm-2,但通过减少农药施用、水肥施用和有机肥搬运节约劳动力,同时优化日常管理,生草模式总劳动力投入降低了3.30E+16 sej·hm-2,基于能值的劳动生产率提高17.50%。生草模式使有机肥、劳动力等可更新资源购买量减少,环境负载率增加0.027。蜜柚园生草模式实现了柚树增产、柚农增收、蜜柚园增绿,为蜜柚产业供给侧结构性改革提供赋能路径。
Abstract:Honey pomelo[Citrus. grandis (L.) Osbeck. cv. Hongroumiyou] is the dominant crop in Pinghe County, Fujian Province; however, this historically fruit is facing production challenges. The practice of grass cultivation, rather than grass clearing, in the pomelo orchards is an important method to promote sustainable development in the honey pomelo industry. In order to clearly evaluate the effects of grass management pattern on the ecosystem, the economic and ecological benefits, two cultivation techniques, grass cultivation and grass clearing, were compared in orchards growing honey pomelo located in Qianlin Village, Wuzai Town, Pinghe County in 2017-2018. An emergy methodology was used to compare the two systems by calculating indices of emergy self-sufficiency ratio (ESR), emergy investment value (EIV), emergy yield ratio (EYR), environmental load ratio (ELR), efficient emergy yield ratio (EEYR), and emergy feedback rate (EFR). Results of the emergy indicators for orchards with grass cultivation or with grass clearing were:ESR, 0.003 for both; EIV, 339.291 and 295.763; EYR, 1.003 for both; ELR, 0.348 and 0.321; EEYR, 4.57 and 2.90-7E J·sej-1; and EFR, 0.002 and 0.000; respectively. Compared to grass clearing, grass cultivation had a lower total energy input of 9.21%, a smaller non-renewable natural resources input of 76.71%, and a higher EIV resulting from the rapid decrease of natural energy input and the relatively low cost of purchased emergy input. The grass cultivation pattern showed better economic vigor with an increase of the commercial emergy of 1.00+E sej·hm-2(versus 4.60+10E J·hm-2 for grass clearing). The ratio of labor emergy input to the total was 70.45%-72.90%. The main contributors to labor input were fruit picking, daily management, and water-soluble fertilizer spraying. Although labor for weeding increased under grass cultivation, with a value of 1.31+16E sej·hm-2, total labor energy input decreased by 3.30+16E sej·hm-2 and labor efficiency rose by 17.50% through improvements in daily management and labor savings on pesticide spraying, fertilizing, and organic fertilizer transport. The environmental loading ratio in the cultivated grass system rose, with a value of 0.027 because of purchasing resource savings on organic fertilizers and labor. This study demonstrated that honey pomelo production incorporating a cultivated grass regime had the potential to improve commercial fruit production, increase farmer incomes, and provide a more sustainable production system, and such a management pattern would benefit supply-side reform.

HTML全文


图1蜜柚园生草(A)、清耕(B)模式能量流动图(单位: sej·hm-2)
Figure1.Emergy flow of honey pomelo orchard systems with growing grasses (A) and clearing treatment (B) (Unit: sej·hm-2)


下载: 全尺寸图片幻灯片


图2两种栽培模式蜜柚园系统的劳动力能值投入
Figure2.Labor emergy input of honey pomelo orchard systems with two cultivation patterns


下载: 全尺寸图片幻灯片

表1两种栽培模式蜜柚园系统的能值投入(2017—2018年)
Table1.Emergy inputs of honey pomelo orchard systems with two cultivation patterns (2017-2018)
投入
Input
能值转换率
Emergy
conversion rate
原始数据
Primary data
太阳能值
Solar emergy (sej·hm-2)
生草
Growing grass
清耕
Clean tillage
生草
Growing grass
清耕
Clearing treatment
可更新环境资源(R) Renewable natural resources 9.06E+14 9.08E+14
??太阳能Solar energy 1.00 sej·J-1 4.72E+13 J·hm-2 4.72E+13 J·hm-2 4.72E+13 4.72E+13
??雨水化学能Rainfall chemical energy 1.17E+04 sej·J-1[23] 7.00E+10 J·hm-2 7.00E+10 J·hm-2 8.17E+14 8.17E+14
??电力河流势能部分Hydroelectric energy 7.81E+04 sej·J-1[24] 5.33E+8 J·hm-2 5.62E+8 J·hm-2 4.16E+13 4.38E+13
不可更新环境资源(N) Nonrenewable natural resources 7.81E+13 3.35E+14
??表层土损耗能Energy loss of surface soil 4.74E+04 sej·J-1[23] 1.17E+9 J·hm-2 6.58E+9 J·hm-2 5.54E+13 3.11E+14
??生产用水Production water 6.81E+04 sej·g-1[23] 3.34E+8 g·hm-2 3.40E+8 g·hm-2 2.27E+13 2.31E+13
工业辅助能(F) Industrial auxiliary energy 8.64E+16 8.93E+16
??电力设施投入部分Electricities 7.81E+04 sej·J-1[24] 4.78E+8 J·hm-2 5.18E+8 J·hm-2 3.73E+13 4.05E+13
??水溶肥氮素Water soluble fertilizer nitrogen 3.50E+09 sej·g-1[23] 6.22E+4 g·hm-2 6.30E+4 g·hm-2 2.18E+14 2.21E+14
??水溶肥磷素Water soluble fertilizer phosphorus 1.35E+10 sej·g-1[23] 2.49E+4 g·hm-2 2.52E+4 g·hm-2 3.36E+14 3.40E+14
??水溶肥钾素Water soluble fertilizer potassium 1.32E+09 sej·g-1[23] 5.60E+4 g·hm-2 5.67E+4 g·hm-2 7.38E+13 7.48E+13
??纸袋Kraft paper bags 7.46E+12 sej· -1[22] 4.15E+3 ·hm-2 3.33E+3 ·hm-2 3.09E+16 2.48E+16
??农药Pesticides 7.46E+12 sej· -1[22] 5.99E+3 ·hm-2 6.50E+3 ·hm-2 4.47E+16 4.85E+16
??厂房Farms 7.46E+12 sej· -1[22] 5.99E+2 ·hm-2 5.50E+2 ·hm-2 4.47E+15 4.10E+15
??水肥一体化设施Facilities of drip irrigation 7.46E+12 sej· -1[22] 6.91E+2 ·hm-2 1.00E+3 ·hm-2 5.16E+15 7.46E+15
??水源设施Facilities of water derivation 7.46E+12 sej· -1[22] 69 ·hm-2 5.00E+2 ·hm-2 5.15E+14 3.73E+15
可更新有机能(R1) Renewable organic energy 2.47E+17 2.78E+17
??劳动力Labor 7.46E+12 sej· -1 [22] 3.17 E+4 ·hm-2 3.60 E+4 ·hm-2 2.36E+17 2.69E+17
??有机肥Organic fertilizers 7.82E+04 sej·J-1[23] 1.41E+11 J·hm-2 1.22E+11 J·hm-2 1.10E+16 9.54E+15
系统反馈能(R0) Feedback energy 5.94E+14 1.35E+14
??草折算氮肥Nitrogen in grass 3.51E+09 sej·g-1[23] 7.54E+4 g·hm-2 1.71E+4 g·hm-2 2.64E+14 6.01E+13
??草折算磷肥Phosphorus in grass 1.35E+10 sej·g-1[23] 1.93E+4 g·hm-2 4.38E+3 g·hm-2 2.60E+14 5.91E+13
??草折算钾肥Potassium in grass 1.32E+09 sej·g-1[23] 5.25E+4 g·hm-2 1.19E+4 g·hm-2 6.94E+13 1.58E+13
总投入能值(T) Total emergy input 3.35E+17 3.69E+17
年太阳辐射取该区域中间值为4 723 MJ, 年降雨量为1 700 mm。表层土损耗能=园地面积×土壤侵蚀率×有机质含量×有机质能量, 有机质能量为2.26E+4 J·g-1, 蜜柚园生草和蜜柚园清耕两种模式的2017—2018年土壤侵蚀率平均为分别为1 944.5 kg·hm-2·a-1和10 936.5 kg·hm-2·a-1, 两种模式土壤有机质平均含量为26.6 g·kg-1。用水能量=用水量×5.0 J·g-1, 两种模式2017—2018年生产用水平均分别为333.8 t·hm-2、339.7 t·hm-2。电能=年用电量×(3.60E+6) J·kWh-1, 两种模式2017—2018年用电量平均为276 kW·hm-2、300 kW·hm-2。有机肥能量=有机肥用量×0.45×(2.26E+4) J·g-1, 两种模式年有机肥用量分别为13.8 t·a-1和12.0 t·a-1。2017—2018年蜜柚园生草的年干物质草产量为2 750 kg·hm-2, 蜜柚园清耕的年干物质草产量为625 kg·hm-2, 养分含量按N 2.74%, P2O5 0.70%, K2O 1.91%(紫云英标准)折算。总投入能值=(R+N+F+R1)。Annual solar irradiance is 4 723 MJ, annual rainfall is 1 700 mm. Loss energy of topsoil = cultivated area × soil erosion rate × organic matter content × organic matter energy. In 2017-2018, the average erosion rates of patterns of growing grass and clean tillage were 1 944.5 kg·km-2·a-1 and 10 936.5 kg·km-2·a-1, respectively. The average organic matter content of the two patterns is 26.6 g·kg-1, and organic matter energy is 2.26E+4 J·g-1. The water consumption power = water consumption amount × 5.0 J·g-1. The annual water consumption amounts of the two patterns are 333.8 t·hm-2 and 339.7 t·hm-2, respectively. The electricity power = annual electricity amount × (3.60E+6) J·kWh-1. Annual electricity amounts of the two patterns are 276 kWh·hm-2 and 300 kWh·hm-2, respectively. Organic fertilizer power = organic fertilizer amounts × 0.45 × (2.26E+4) J·g-1, the organic fertilizer amounts of the two patterns are 13.8 t·a-1 and 12.0 t·a-1, respectively. Annual herbage dry matter yields of growing grass and clean tillage are 2 750 kg·hm-2 and 625 kg·hm-2, respectively. Herbage nutrition content valued according to N of 2.74%, P2O5 of 0.70% and K2O of 1.91% (based on Astragalus sinicus L.) The total energy input = (R + N + F + R1).


下载: 导出CSV
表2两种栽培模式蜜柚园系统的能值投入结构(2017—2018年)
Table2.Emergy input structure of honey pomelo orchard systems with two cultivation patterns (2017-2018) ?sej·hm-2
类别
Item
生草
Growing grass
清耕
Clearing treatment
下降幅度
Decrease of growing grass compared with clearing treatment
自然资源Natural resources 9.84E+14 1.24E+15 2.59E+14
购买资源Purchasing resources 3.27E+17 3.68E+17 4.01E+16
可更新资源Renewable resources 2.48E+17 2.79E+17 3.08E+16
不可更新资源Nonrenewable resources 8.65E+16 8.96E+16 3.13E+15


下载: 导出CSV
表3两种栽培模式蜜柚园系统的劳动生产效率
Table3.Labor efficiency of honey pomelo orchard systems with two cultivation patterns
项目
Item
生草
Growing grass
清耕
Clearing treatment
产出总能值(Y) Fruit output emergy (sej·hm-2) 3.35E+17 3.69E+17
商品果能值(Y1) Commercial fruit emergy (sej·hm-2) 3.33E+17 (43.09 t·hm-2) 3.23E+17 (30.15 t·hm-2)
废弃果能值(Y2) Waste fruit emergy (sej·hm-2) 1.77E+15 (0.23 t·hm-2) 4.56E+16 (4.25 t·hm-2)
商品果能量(Y ) Commercial fruit energy (J·hm-2) 1.53E+11 1.07E+11
劳动力投入能值Labor input emergy (sej·hm-2) 2.36E+17 2.69E+17
劳动生产效率Labor efficiency 1.41 1.20
商品果能量=能量折算系数×产量, 柚子能量折算系数取3.55E+6 J?kg-1[26]。劳动生产效率=商品果能值/劳动力投入能值。Commercial fruit energy = energy rate × fruit yield; the energy rate of pomelo is 3.55E+6 J?kg-1[26]. Labor efficiency = commercial fruit emergy / labor input emergy.


下载: 导出CSV
表4两种栽培模式蜜柚园系统的能值指标
Table4.Emergy indicators of honey pomelo orchard systems with two cultivation patterns
能值指标
Emergy indicator
表达式
Expression
生草
Growing grass
清耕
Clearing treatment
能值自给率Emergy self-sufficiency ratio (R+N)/T1) 0.003 0.003
能值投资率Emergy investment ratio (F+R1)/(R+N) 339.291 295.763
净能值产出率Emergy yield ratio Y/(F+R1) 1.003 1.003
环境负载率Environmental load ratio (F+N)/(R+R1+R0) 0.348 0.321
有效能产出率Efficiency energy yield ratio (J·sej-1) Y′/T 4.57E–7 2.90E–7
能值反馈率Emergy feedback ratio R0/(F+R1) 0.002 0.000
1)不同字母的意义见表 1。1) Meanings of different letters are shown in the Table 1.


下载: 导出CSV

参考文献(34)
[1]南志标.中国农区草业与食物安全研究[M].北京:科学出版社, 2017:85-86, 115-173
NAN Z B. Study on Grass Industry Development and Food Security in China[M]. Beijing:Science Press, 2017:85-86, 115-173
[2]林燕金, 卢艳清, 林旗华, 等.福建省果业转型与创新研究——以平和县蜜柚产业为例[J].东南园艺, 2016, 4(3):57-59 doi: 10.3969/j.issn.1004-6089.2016.03.018
LIN Y J, LU Y Q, LIN Q H, et al. Transformation and upgrading of fruit industry in Fujian Province with pomelo industry in Pinghe County as an example[J]. Southeast Horticulture, 2016, 4(3):57-59 doi: 10.3969/j.issn.1004-6089.2016.03.018
[3]钱笑杰, 林晓兰, 肖靖, 等.福建果园土壤pH值、养分关系与土壤肥力质量评价研究——以福建省漳州市平和县琯溪蜜柚园地为例[J].福建热作科技, 2017, 42(1):9-15 doi: 10.3969/j.issn.1006-2327.2017.01.003
QIAN X J, LIN X L, XIAO J, et al. Relation between pH and nutrition fertility of pomelo orchard in Fujian Province Pinghe County as an example[J]. Fujian Science & Technology of Tropical Crops, 2017, 42(1):9-15 doi: 10.3969/j.issn.1006-2327.2017.01.003
[4]林瑞坤, 许修柱, 郑朝元, 等.福建省平和县蜜柚园磷肥使用现状及土壤磷素平衡研究[J].福建热作科技, 2018, 43(3):5-12 doi: 10.3969/j.issn.1006-2327.2018.03.003
LIN R K, XU X Z, ZHENG C Y, et al. Study on phosphorus utilization and balance of pomelo orchard in Fujian Province Pinghe County[J]. Fujian Science & Technology of Tropical Crops, 2018, 43(3):5-12 doi: 10.3969/j.issn.1006-2327.2018.03.003
[5]李发林, 曾瑞琴, 危天进, 等.平和县琯溪蜜柚山地果园径流氮磷含量变化[J].中国农学通报, 2017, 33(27):117-123
LI F L, ZENG R Q, WEI T J, et al. Change of runoff nitrogen and phosphorus content:mountain orchard of Guanxi pomelo in Pinghe[J]. Chinese Agricultural Science Bulletin, 2017, 33(27):117-123
[6]李发林, 谢南松, 郑域茹, 等.生草栽培方式对坡地果园氮磷流失的控制效果[J].福建农林大学学报:自然科学版, 2014, 43(3):304-311 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjnydxxb201403016
LI F L, XIE N S, ZHENG Y R, et al. Influence of sod culture with the whole orchard on controlling the nitrogen and phosphorus erosion[J]. Journal of Fujian Agricultural and Forestry University, 2014, 43(3):304-311 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjnydxxb201403016
[7]李发林, 郑域茹, 郑涛, 等.果园带状生草对果园面源污染的控制效果[J].水土保持学报, 2013, 27(3):82-89 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201303017
LI F L, ZHENG Y R, ZHENG T, et al. Influence of zonal grass on non-point source pollution control in orchard[J]. Journal of Soil and Water Conservation, 2013, 27(3):82-89 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201303017
[8]原敦.蜜柚园生草对径流土壤理化特征与GIS应用研究[D].福州: 福建农林大学, 2017
YUAN D. Study of pummelo orchards grow grass on runoff soil physical and chemical properties and GIS application[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017
[9]李祥彬.生草对蜜柚园生态环境及果树生长发育的影响[D].福州: 福建农林大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10389-1017067530.htm
LI X B. The influences of cover cropping on the eco-environments in pummelo orchard and the growth & development of fruit trees[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10389-1017067530.htm
[10]武英, 林晓兰, 曹明华, 等.蜜柚园生草及昆虫群落调查初报[J].福建热作科技, 2015, 40(1):9-11 doi: 10.3969/j.issn.1006-2327.2015.01.003
WU Y, LIN X L, CAO M H, et al. Investigation on insect communities of the pomelo-grass compound ecosystem[J]. Fujian Science & Technology of Tropical Crops, 2015, 40(1):9-11 doi: 10.3969/j.issn.1006-2327.2015.01.003
[11]卢新坤, 林燕金, 卢艳清.平和蜜柚裂果原因及防控措施[J].东南园艺, 2017, 5(6):51-53 doi: 10.3969/j.issn.2095-5774.2017.06.013
LU X K, LIN Y J, LU Y Q. Causes and control measures of pomelo fruit cracking in Pinghe County[J]. Southeast Horticulture, 2017, 5(6):51-53 doi: 10.3969/j.issn.2095-5774.2017.06.013
[12]刘兴元, 蒋成芳, 李俊成, 等.黄土高原旱塬区果-草-鸡生态循环模式及耦合效应分析[J].中国生态农业学报, 2017, 25(12):1870-1877 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171215&flag=1
LIU X Y, JIANG C F, LI J C, et al. Ecological circle way and coupling effect of fruit-grass-chicken mode in dry highlands of the Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2017, 25(12):1870-1877 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171215&flag=1
[13]韩玉, 龙攀, 陈源泉, 等.中国循环农业评价体系研究进展[J].中国生态农业学报, 2013, 21(9):1039-1048 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013901&flag=1
HAN Y, LONG P, CHEN Y Q, et al. Research progress of evaluation system for China circular agriculture development[J]. Chinese Journal of Eco-Agriculture, 2013, 21(9):1039-1048 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013901&flag=1
[14]CASTELLINI C, BOGGIA A, CORTINA C, et al. A multicriteria approach for measuring the sustainability of different poultry production systems[J]. Journal of Cleaner Production, 2012, 37:192-201 doi: 10.1016/j.jclepro.2012.07.006
[15]WILFART A, PRUDHOMME J, BLANCHETON J P, et al. LCA and emergy accounting of aquaculture systems:Towards ecological intensification[J]. Journal of Environmental Management, 2013, 121:96-109 http://cn.bing.com/academic/profile?id=af0d381aae923499ab6bbadbd13a5f4d&encoded=0&v=paper_preview&mkt=zh-cn
[16]ODUM H T. Environmental Accounting:Emergy and Environmental Decision Making[M]. New York, USA:Wiley, 1996
[17]ODUM H T. An energy hierarchy law for biogeochemial cycles[M]. MARK T, BROWN M T. (eds). Emergy Sythesis: Theory and Applications of the Emergy Methodology. Center of Environmental Policy, University of Florida. Gainesville. 2000
[18]BROWN M T, ULGIATI S. Updated evaluation of exergy and emergy driving the geobiosphere:A review and refinement of the emergy baseline[J]. Ecological Modelling, 2010, 221(20):2501-2508 doi: 10.1016/j.ecolmodel.2010.06.027
[19]CAMPBELL, D E. A revised solar transformity for tidal energy by the erath and dissipated globally: Implications for Energy Analysis, in: BROWN, M T.(Ed), Emegy sythesis, Proceedings of the First Biennial Emergy Analysis Research Conference, The Center for Environmental Policy, Department of Environmental Engineering Sciences, Gainesville, FL, USA: 255-263
[20]BROWN M T, ULGIATI S. Assessing the global environmental sources driving the geobiosphere:A revised emergy baseline[J]. Ecological Modelling, 2016, 339:126-132 doi: 10.1016/j.ecolmodel.2016.03.017
[21]BROWN M T, ULGIATI S. Emergy assessment of global renewable sources[J]. Ecological Modelling, 2016, 339:148-156 doi: 10.1016/j.ecolmodel.2016.03.010
[22]YANG Z F, JIANG M M, CHEN B, et al. Solar emergy evaluation for Chinese economy[J]. Energy Policy, 2010, 38(2):875-886 doi: 10.1016/j.enpol.2009.10.038
[23]蓝盛芳, 钦佩, 陆宏芳.生态经济系统能值分析[M].北京:化学工业出版社, 2002
LAN S F, QIN P, LU H F. Energy Value Analysis of Eco-economic System[M]. Beijing:Chemical Industry Press, 2002
[24]庞明月, 张力小, 王长波.基于生态能量视角的我国小水电可持续性分析[J].生态学报, 2014, 34(3):537-545 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201403002
PANG M Y, ZHANG L X, WANG C B. The sustainability analysis of small hydropower plants in China based on ecological energetic accounting[J]. Acta Ecologica Sinica, 2014, 34(3):537-545 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201403002
[25]李会科.渭北旱地苹果园生草的生态环境效应及综合技术体系构建[D].杨凌: 西北农林科技大学, 2008
LI H K. Eco-environmental effect and integrated technical system of green cover in apple orchard in Weibei dryland farming areas[D]. Yangling: Northwest A&F University, 2008
[26]牟子平, 雷红梅, 骆世明, 等.梅县小庄园模式能流分析及综合效益评价[J].山地学报, 1999, 17(2):157-162 doi: 10.3969/j.issn.1008-2786.1999.02.013
MU Z P, LEI H M, LUO S M, et al. Energy flow analysis and comprehensive benefit evaluation of integrated farm models in Meixian County[J]. Journal of Mountain Science, 1999, 17(2):157-162 doi: 10.3969/j.issn.1008-2786.1999.02.013
[27]辛良杰, 李秀彬, 谈明洪, 等.近年来我国普通劳动者工资变化及其对农地利用的影响[J].地理研究, 2011, 30(8):1391-1400 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201108005
XIN L J, LI X B, TAN M H, et al. The rise of ordinary labor wage and its effect on agricultural land use in present China[J]. Geographical Research, 2011, 30(8):1391-1400 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201108005
[28]周江, 向平安.湖南不同季别稻作系统的生态能值分析[J].中国农业科学, 2018, 51(23):4496-4513 doi: 10.3864/j.issn.0578-1752.2018.23.009
ZHOU J, XIANG P A. Ecological emergy analysis of different paddy ecosystems in Hunan Province[J]. Scientia Agricultura Sinica, 2018, 51(23):4496-4513 doi: 10.3864/j.issn.0578-1752.2018.23.009
[29]蒲玉琳, 谢德体, 林超文, 等.植物篱-农作模式坡耕地土壤综合抗蚀性特征[J].农业工程学报, 2013, 29(18):125-135 doi: 10.3969/j.issn.1002-6819.2013.18.016
PU Y L, XIE D T, LIN C W, et al. Characteristics of soil comprehensive anti-erodibility under sloped cropland with hedgerows[J]. Transactions of the CSAE, 2013, 29(18):125-135 doi: 10.3969/j.issn.1002-6819.2013.18.016
[30]孙卫民, 欧一智, 黄国勤.江西省主要作物(稻、棉、油)生态经济系统综合分析评价[J].生态学报, 2013, 33(18):5467-5476 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201318004
SUN W M, OU Y Z, HUANG G Q. Analysis and evaluation of the eco-economic systems of the main crops (rice, cotton and rapeseed) in Jiangxi Province, China[J]. Acta Ecologica Sinica, 2013, 33(18):5467-5476 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201318004
[31]税伟, 陈毅萍, 苏正安, 等.基于能值的专业化茶叶种植农业生态系统分析——以福建省安溪县为例[J].中国生态农业学报, 2016, 24(12):1703-1713 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20161213&flag=1
SHUI W, CHEN Y P, SU Z A, et al. Emergy-based agricultural ecosystem analysis for specialized tea planting:A case study of Anxi County, Fujian Province[J]. Chinese Journal of Eco-Agriculture, 2016, 24(12):1703-1713 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20161213&flag=1
[32]周萍, 刘国彬, 侯喜禄.黄土丘陵区退耕前后典型流域农业生态经济系统能值分析[J].农业工程学报, 2009, 25(6):266-273 doi: 10.3969/j.issn.1002-6819.2009.06.050
ZHOU P, LIU G B, HOU X L. Energy analysis of agricultural eco-economic system before and after grain for green in typical watershed in loess hilly region of China[J]. Transactions of the CSAE, 2009, 25(6):266-273 doi: 10.3969/j.issn.1002-6819.2009.06.050
[33]高承芳, 黄颖, 张晓佩, 等.基于能值分析的马尾松低效林林下种草养鸡耦合模式评价[J].中国生态农业学报, 2018, 26(12):1919-1928 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1217&flag=1
GAO C F, HUANG Y, ZHANG X P, et al. Emergy analysis of chicken breeding modes under low-efficient Pinus massoniana forests[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12):1919-1928 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1217&flag=1
[34]王小龙, 韩玉, 陈源泉, 等.基于能值分析的无公害设施蔬菜生产系统效率和可持续性评价[J].生态学报, 2015, 35(7):2136-2145 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201507012
WANG X L, HAN Y, CHEN Y Q, et al. Efficiency and sustainability evaluation of a pollution-free vegetable production system based on emergy analysis[J]. Acta Ecologica Sinica, 2015, 35(7):2136-2145 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201507012

相关话题/系统 生态 资源 农业 土壤