删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

重庆市农田生态服务价值时空变化特征及其驱动因素分析

本站小编 Free考研考试/2022-01-01

孔凡靖1, 2,,
陈玉成1, 2,,,
陈庆华1, 2,
牟秦杰1,
阎建忠1
1.西南大学资源环境学院 重庆 400716
2.农村清洁工程重庆市工程研究中心 重庆 400716
基金项目: 国家自然科学基金项目41761144081
国家自然科学基金项目41571093

详细信息
作者简介:孔凡靖, 研究方向为农田重金属风险评估。E-mail:503845560@qq.com
通讯作者:陈玉成, 研究方向为环境规划与管理。E-mail:chenyucheng@swu.edu.cn
中图分类号:S181

计量

文章访问数:519
HTML全文浏览量:9
PDF下载量:310
被引次数:0
出版历程

收稿日期:2019-03-15
录用日期:2019-07-22
刊出日期:2019-11-01

Temporal and spatial variation and driving factors of farmland ecological service value in Chongqing

KONG Fanjing1, 2,,
CHEN Yucheng1, 2,,,
CHEN Qinghua1, 2,
MOU Qinjie1,
YAN Jianzhong1
1. College of Resources and Environmental Sciences, Southwest University, Chongqing 400716, China
2. Chongqing Engineering Research Center of Rural Cleaning, Chongqing 400716, China
Funds: National Natural Science Foundation of China41761144081
National Natural Science Foundation of China41571093

More Information
Corresponding author:Corresponding author. E-mail:chenyucheng@swu.edu.cn


摘要
HTML全文
(4)(7)
参考文献(41)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:农田对保障区域物质供给、生态系统服务供给有着不可替代的作用,为探究区域农田生态服务价值的时空变化和驱动因素,本文基于重庆市2007-2016年统计年鉴及相关年份区县年鉴数据信息,构建农田生态服务价值指标体系,引入物价指数,通过列表清单法对重庆市农田生态服务价值进行评估,利用STIRPAT模型分析各区县间人均农田生态服务价值差异的社会驱动因素。研究表明:①2007年、2012年和2016年重庆市农田生态服务价值分别为898.06亿元、938.97亿元和1 038.45亿元,呈明显上升趋势,增幅为15.63%;年均农田正向服务价值(1 024.49亿元)远高于其负向价值(59.02亿元)。②就农田生态服务价值空间变化而言,渝西片区的总量和人均变化幅度最大,为30.32%和16.80%,其中农业较为发达的永川区、江津区农田负向价值相对突出;人均年农田生态服务价值排序为:渝东南片区(5 855元·人-1)>渝东北片区(4 027元·人-1)>渝西片区(3 846元·人-1)>主城片区(840元·人-1)。③农业人口、城市化率、万元GDP能耗是重庆市各区县人均农田生态服务价值空间差异的社会驱动因素,主城片区的发展对其农田生态系统造成较大的压力,该区域应合理调整产业结构,以提升农田生态服务价值。研究结果为重庆市农田生态环境保护、恢复以及耕地补偿等提供科学依据。
关键词:农田/
生态服务价值/
列表清单法/
正向服务价值/
负向价值/
重庆市
Abstract:Farmland plays an irreplaceable role in ensuring the supply of materials and of ecosystem services. In this study, we aimed to explore the regional farmland ecological service value in terms of spatial and temporal changes as well as driving factors, based on the statistical yearbook of Chongqing from 2007 to 2016 and the counterpart annual data of the districts and counties in Chongqing in the relevant years. We constructed a farmland ecological service value index system, evaluated the farmland ecological service value in Chongqing based on the price index and tabulation and list method, and analyzed the social driving factors contributing to the difference in per capita farmland ecological service value among districts and counties in Chongqing using the STIRPAT model. The results showed that the values of farmland ecological services in Chongqing in 2007, 2012 and 2016 were ¥89.80 billion, ¥93.89 billion and ¥103.84 billion, respectively. The farmland ecological service value showed an evident upward trend with an increase rate of 15.63%. The 10-year mean farmland positive service value (¥102.45 billion) was considerably higher than its negative value (¥5.90 billion). In terms of the temporal change of farmland ecological services value, the total amount and per capita difference in the west of Chongqing were the most significant (30.32% and 16.80%, respectively). In the west of Chongqing, the farmland negative value of the Yongchuan and Jiangjin Districts, where agriculture is more developed, was relatively prominent. The farmland ecological service value ranked as follows:southeast of Chongqing (¥5 855 per person) > northeast of Chongqing (¥4 027 per person) > west of Chongqing (¥3 846 per person) > center of Chongqing (¥40 per person). The agricultural population, urbanization rate and energy consumption per ¥10 000 of GDP were the social driving factors attributable for the spatial difference of the per capita farmland ecological service value in all districts and counties of Chongqing. Development of the main city area had exerted a substantial pressure on its farmland ecosystem. The industry structure in this area should be rationally adjusted to improve the farmland ecological service value. The research results provide a scientific basis for the ecological environment protection, restoration, and compensation of farmland in Chongqing.
Key words:Farmland/
Ecological service value/
Tabulation and list method/
Positive service value/
Negative value/
Chongqing City

HTML全文


图12007-2016年重庆市农田生态服务价值量
Figure1.Values of farmland ecological services in Chongqing from 2007 to 2016


下载: 全尺寸图片幻灯片


图22007年、2012年和2016年重庆市区县农田生态服务价值分布
Figure2.Value distribution of farmland ecological services in Chongqing in 2007, 2012 and 2016


下载: 全尺寸图片幻灯片


图32016年重庆市区县农田负向价值分布
Figure3.Distribution of negative value of farmland in Chongqing in 2016


下载: 全尺寸图片幻灯片


图42016年重庆市各区县人均农田生态服务价值与城市化率
Figure4.Per capita farmland ecological service value and urbanization rate in Chongqing in 2016


下载: 全尺寸图片幻灯片

表1重庆市农田生态服务价值指标
Table1.Farmland ecological service value indexes of Chongqing
一级指标
First-level index
二级指标
Second-level index
三级指标
Third-level index
评估方法
Assessment method
生态正向价值
Positive ecological value
大气生态价值
Atmosphere ecological value
固碳价值(V1)
Value of carbon sequestration (V1)
碳税法
Carbon tax method
释氧价值(V2)
Releasing oxygen value (V2)
工程替代法
Alternative engineering method
水生态价值
Water ecological value
涵蓄降水价值(V3)
Value of storing precipitation (V3)
影子工程法
Shadow engineering method
土壤生态价值
Soil ecological value
土壤保持价值(V4)
Soil conservation value (V4)
机会成本法
Opportunity cost method
养分循环价值(V5)
Nutrient cycling value (V5)
机会成本法
Opportunity cost method
生物生态价值
Biological ecological value
授粉价值(V6)
Pollination value (V6)
机会成本法
Opportunity cost method
生物多样性价值(V7)
Biodiversity value (V7)
系数修正法
Coefficient correction method
防灾减灾价值
Value of disaster prevention and reduction
洪水调蓄价值(V8)
Flood control value (V8)
影子工程法
Shadow engineering method
防风固沙减淤价值(V9)
Value of reducing silt (V9)
影子工程法
Shadow engineering method
环境正向价值
Positive environmental value
环境净化价值
Environmental purification value
秸秆还田价值(V10)
Value of straw returning to field (V10)
机会成本法
Opportunity cost method
消纳畜禽粪便价值(V11)
Value of handling livestock manure (V11)
机会成本法
Opportunity cost method
生态环境负向价值
Negative value of
ecological environment
农田负向价值
Negative value of farmland
地膜负面价值(V12)
Negative value of plastic film mulching (V12)
市场价值法
Market valuation method
化肥负面价值(V13)
Negative value of fertilizers (V13)
市场价值法
Market valuation method
农药负面价值(V14)
Negative value of pesticides (V14)
市场价值法
Market valuation method
温室气体排放价值(V15)
Value of greenhouse gas emissions (V15)
碳税法
Carbon tax method


下载: 导出CSV
表2重庆市农田生态服务价值评估方法
Table2.Farmland ecological service value assessment methods in Chongqing
生态服务价值类型
Type of ecological service value
测算方法
Calculating method
参数含义
Meaning of parameter
固碳价值(V1)
Value of carbon sequestration (V1)
$\begin{array}{*{20}{l}}{{V_1} = {\rm{NP}}{{\rm{P}}_i} \times {S_i} \times {E_{\rm{c}}} \times {P_\mathit{c}}}\\{{\rm{NP}}{{\rm{P}}_i} = [B \times \left( {1 - D} \right)]/\left( {F \times {S_i}} \right)}\end{array}$ Si为播种面积(hm2)[15], Pc为固碳成本( ?kg-1)[16], NPPi为净生物量(kg?hm-2?a-1), Ec为固碳系数[17], B为作物产量(t)[15], D为作物含水量(%)[18], F为经济系数[18]。(表中相同的符号表示一个含义, 故不重复解释)
Si is the planting area (hm2)[15], Pc is the cost of carbon fixation ( ?kg-1)[16], NPPi is net biomass (kg?hm-2?a-1), Ec is the carbon sequestration coefficient[17], B is the crop yield (t)[15], D is the crop water content (%)[18], F is the economic coefficient[18]. (The same symbols in the table indicate the same meaning, so the explanation is not repeated).
释氧价值(V2)
Releasing oxygen value (V2)
$\begin{array}{l}{V_2} = {\rm{NP}}{{\rm{P}}_i} \times {S_i} \times {E_{\rm{o}}} \times {P_{\rm{o}}}\\{\rm{NP}}{{\rm{P}}_i} = [\mathit{B} \times \left( {1 - D} \right)]/\left( {F \times {S_i}} \right)\end{array}$ Eo为释氧系数[17], Po为释氧成本[16]
Eo is the oxygen release coefficient[17], Po is the cost of industrial oxygen production[16].
涵蓄降水价值(V3)
Value of storing precipitation (V3)
${V_3} = {P_i} \times A \times S \times E \times {P_k}$ Pi为降水量(mm?a-1)[15], A为多年平均产流降雨占降雨总量比例[19], E为产流降雨条件下农田与裸地降雨径流率之差[4], S为农田面积(hm2)[15], Pk为库容造价( ?t-1)[20]
Pj is the amount of precipitation (mm?a-1)[15], A is the ratio of average annual runoff rainfall to total rainfall[19], E is the difference in runoff rates between farmland and bare land under runoff rainfall conditions[4], S is the farmland area (hm2)[15], Pk is the cost of storage capacity ( ?t-1)[20].
土壤保持价值(V4)
Soil conservation value (V4)
${V_4} = \frac{{\left( {{A_i} \times {S_i} \times {B_i}} \right)}}{{\left( {H \times 10\;000 \times \rho } \right)}}$ Ai为土壤保持量(t?hm-2?a-1)[21], B1为农田多年平均收益(104 ?hm-2?a-1)[15], ρ为土壤容重(t?m-3)[22], H为表层土平均厚度(m)[23]
Ai is the amount of soil retained (t?hm-2?a-1)[21], B1 is the average annual income of farmland[15], ρ is the soil bulk density (t?m-3)[22], H is the average thickness of the topsoil (m)[23].
养分循环价值(V5)
Nutrient cycling value (V5)
${V_5} = {S_i} \times \left( {{X_2} - {X_1}} \right) \times \left( {N \times {C_1}/{R_1} + P \times {C_1}/{R_2} + K \times {C_2}/{R_3} + M \times {C_3}} \right)$ X1为农田侵蚀模数(t?hm-2?a-1), X2为裸地侵蚀模数(t?hm-2?a-1)[24], NPKM分别为土壤N、P、K和有机质含量(g?kg-1)[25]C1C2C3分别为磷酸二铵化肥、氯化钾化肥和有机质价格( ?t-1)[26]R1为磷酸二铵化肥含氮量, R2为磷酸二铵化肥含磷量, R3为氯化钾化肥含钾量[26]
X1 is the farmland erosion modulus, X2 is the bare ground erosion modulus (t?hm-2?a-1)[24]; N, P, K, and M are soil nitrogen, phosphorus, potassium, and organic matter contents (g?kg-1)[25]; C1, C2, and C3 are the prices of diammonium phosphate fertilizer, potassium chloride fertilizer, and organic matter ( ?t-1)[26]; R1 is the nitrogen content of the diammonium phosphate fertilizer, R2 is the phosphorus content of the diammonium phosphate fertilizer, and R3 is the potassium content of the potassium chloride fertilizer[26].
授粉价值(V6)
Pollination value (V6)
${V_6} = {S_i} \times {P_{\rm{p}}}$ Pp为传粉功能价值( ?hm-2?a-1)[27]
Pp is the value of pollination function ( ?hm-2?a-1)[27].
生物多样性价值(V7)
Biodiversity value (V7)
${V_7} = \left( {{B_j}/{B_i}} \right) \times W \times S$ Bj为耕地潜在经济产量(t?hm-2)[28]; Bi为全国耕地潜在经济产量(t?hm-2); W为耕地生物多样性价值( ?hm-2)[28]
Bj is the potential economic output of cultivated land (t?hm-2)[28], Bi is the potential economic output of cultivated land in China (t?hm-2), W is the value of cultivated land biodiversity ( ?hm-2)[28].
洪水调蓄价值(V8)
Flood control value (V8)
${V_8} = {H_1} \times {S_{\rm{f}}} \times {P_k}$ H1为田埂平均高度(m); Sf为耕地面积(hm2?a-1)[15]
H1 is the average height of the field (m), Sf is the area of cultivated land (hm2?a-1)[15].
防风固沙减淤价值(V9)
Value of reducing silt (V9)
${V_9} = 24\% \times {A_i} \times {P_k}/\rho $
秸秆还田价值(V10)
Value of straw returning to field (V10)
${V_{10}} = 45 \times {S_i} + {P_{\rm{z}}} \times 3/365$ Pz为大气治理费用(108 ?a-1)[29]
Pz is the cost of managing the atmosphere (108 ?a-1)[29].
消纳畜禽粪便价值(V11)
Value of handling livestock manure (V11)
$\begin{array}{l}{N_1} < {N_2}:\\{V_{11}} = \left( {2{N_1} - {N_2}} \right) \times {E_{\rm{f}}} \times {P_{\rm{f}}}\\{N_1} > {N_2}:\\{V_{11}} = {N_2} \times {E_{\rm{f}}} \times {P_{\rm{f}}}\\{N_1} = L \times S\end{array}$ N2为实际猪当总量[15], N1为最大承载猪当总量, L为单位面积最大承载猪当量(头?hm-2)[30], Ef为单位猪当量粪便排泄量(kg?头-1), Pf为粪便处理成本( ?kg-1)
N2 is the actual pig equivalent[15], N1 is the maximum load of pig equivalent, L is the maximum load of pig equivalent per unit area (pigs?hm-2)[30], Ef is the fecal excretion per unit pig equivalent (kg?pig-1), Pf is the cost of manure treatment ( ?kg-1).
地膜负面价值(V12)
Negative value of plastic film mulching (V12)
${V_{12}} = J \times C \times B \times r \times p$ J为地膜覆盖面积(hm2)[15], C为地膜残留比例(%)[31], r为粮食损失率(%)[32], p为粮食价格( ?t-1)[33]
J is the mulch cover area (hm2)[15], C is the ratio of mulch residue (%)[31], r is the rate of food loss (%)[32], p is the price of food ( ?t-1)[33].
化肥负面价值(V13)
Negative value of fertilizer (V13)
$\begin{array}{l}流失\\{V_{13}} = {M_1} \times \left( {1 - {r_1}} \right) \times {p_1}\\治理:\\{V_{13}} = {V_{\rm{s}}} \times {F_1} \times {F_2}\end{array}$ M1为化肥用量(t)[15], r1为化肥利用率(%)[34], p1为化肥价格( ?t-1), Vs为水环境污染的经济损失( ?a-1)[15, 35], F1为全国平均农业面源污染负荷占水体污染负荷的比例[35], F2为重庆市农业面源污染中化肥的贡献率[36]
M1 is the amount of fertilizer (t)[15], r1 is the fertilizer utilization rate (%)[34], P1 is the price of fertilizer ( ?t-1), Vs is the economic loss of water pollution ( ?a-1)[15, 35], F1 is the ratio of the national average agricultural non-point source pollution load to the water pollution load[35], F2 is the contribution ratio of chemical fertilizers in agricultural non-point source pollution in Chongqing[36].
农药负面价值(V14)
Negative value of pesticides (V14)
${V_{14}} = {M_2} \times \left( {1 - {r_2}} \right) \times {p_2}$ M2为农药用量(t)[15], r2为农药利用率(%)[34], p2为农药价格( ?t-1)
M2 is the amount of pesticide (t)[15], r2 is the pesticide utilization rate (%)[34], P2 is the price of pesticides ( ?t-1).
温室气体排放价值(V15)
Value of greenhouse gas emissions (V15)
${V_{15}} = {\rm{EF}} \times {\rm{AD}} \times {\rm{25}} \times {P_{\rm{c}}}$ EF为稻田甲烷排放因子(kg?hm-2)[18], AD为水稻播种面积(hm2)[15]
EF is rice field methane emission factor (kg?hm-2)[18], AD is rice planting area (hm2)[15].


下载: 导出CSV
表32007-2016年重庆市农田生态服务价值量变化
Table3.Changes in the values of farmland ecological services in Chongqing from 2007 to 2016
生态服务价值类型Type of ecological services value 价值量Value (108 ) 两年间的变化量Change from 2007 to 2016
2007 2016 数量
Quantity (108 )
幅度
Rate (%)
固碳价值(V1) Value of carbon sequestration (V1) 253.92 293.81 39.89 15.71
释氧价值(V2) Releasing oxygen value (V2) 172.39 199.47 27.08 15.71
涵蓄降水价值(V3) Value of storing precipitation (V3) 210.36 283.12 72.76 34.59
土壤保持价值(V4) Soil conservation value (V4) 20.84 28.08 7.24 34.74
养分循环价值(V5) Nutrient cycling value (V5) 53.17 58.20 5.03 9.46
授粉(V6) Pollination value (V6) 2.46 2.69 0.23 9.35
生物多样性价值(V7) Biodiversity value (V7) 21.28 23.30 2.02 9.49
洪水调蓄价值(V8) Flood control value (V8) 162.12 156.31 -5.81 -3.58
防风固沙减淤价值(V9) Value of reducing silt (V9) 10.59 11.59 1.00 9.44
秸秆还田价值(V10) Value of straw returning to field (V10) 19.86 21.53 1.67 8.41
消纳畜禽粪便价值(V11) Value of handling livestock manure (V11) 24.14 26.75 2.61 10.81
地膜负面价值(V12) Negative value of mulch (V12) 0.62 0.48 -0.14 -22.58
化肥负面价值(V13) Negative value of fertilizer (V13) 15.45 31.24 15.79 102.20
农药负面价值(V14) Negative value of pesticides (V14) 10.31 8.95 -1.36 -13.19
温室气体排放价值(V15) Value of greenhouse gas emissions (V15) 26.69 25.73 -0.96 -3.60
总计Total 898.06 1 038.45 140.39 15.63


下载: 导出CSV
表42007年、2012年、2016年重庆市农田生态服务价值变化
Table4.Farmland ecological service value in Chongqing in 2007, 2012 and 2016
地区
Area
2007 2012 2016 总量变化率Total change rate (%) 人均变化率Per capita change rate (%)
总量
Total amount (108 )
人均
Per capita ( )
总量
Total amount (108 )
人均
Per capita ( )
总量
Total amount (108 )
人均
Per capita ( )
主城片区
Main city area
64.66 994.71 57.48 784.84 55.03 740.84 -13.35 -25.52
渝西片区
Western Chongqing
358.64 3 653.29 381.93 3 617.29 466.37 4 267.38 30.32 16.80
渝东北片区
Northeastern Chongqing
317.23 3 755.11 343.73 4 071.90 342.38 4 254.85 7.93 13.30
渝东南片区
Southeastern Chongqing
157.53 5 661.83 155.83 5 445.59 174.67 6 456.32 10.20 14.03


下载: 导出CSV
表52007年、2012年和2016年重庆市农田负向价值及其占比
Table5.Negative value of farmland and its' proportion of total ecological services values in Chongqing in 2007, 2012 and 2016
地区Area 2007 2012 2016
负向价值
Negative value (108 )
占比
Proportion (%)
负向价值
Negative value (108 )
占比
Proportion (%)
负向价值
Negative value (108 )
占比
Proportion (%)
主城片区Main city area 5.54 8.57 7.60 13.23 9.78 17.77
渝西片区Western Chongqing 24.62 6.86 27.24 7.13 29.21 6.14
渝东北片区Northeastern Chongqing 16.01 4.81 17.55 5.11 20.09 5.37
渝东南片区Southeastern Chongqing 6.90 4.38 7.07 4.54 7.32 4.15


下载: 导出CSV
表6重庆市各区县人均农田生态服务价值空间差异的STIRPAT模型分析
Table6.STIRPAT model analysis of spatial difference in ecological services value of each county (district) of Chongqing
模型
Model
常数
constant
lnP lnA1 lnA2 lnT1 lnT2 lnT3 R2 样本量
Sample size
D-W
模型1
Model 1
3.877 1.099** 0.646 37
模型2
Model 2
4.000 0.746** -1.886** 0.796 37
模型3
Model 3
4.166 0.813** -1.791** 0.584* 0.834 37 1.329
??????P:农业总人口; A1:人均GDP; A2:农村居民人均可支配收入; T1:第二产业比重; T2:城市化率; T3:万元GDP能耗。**和*分别表示在1%、5%水平显著。P: agricultural population; A1: GDP per capita; A2: disposable income per farmer; T1: proportion of the secondary industry; T2: urbanization rate; T3: energy consumption for ten thousand CNY. ** and * mean significant effects of the variables at 1% and 5% levels, respectively.


下载: 导出CSV
表7重庆市农田生态服务价值当量与其生态服务价值
Table7.Farmland ecological value equivalent and its ecological service value of Chongqing
生态功能
Ecosystem service function
当量
Equivalent
服务价值
Service value (108 )
气体调节Air regulation 0.52 70.14
气候调节Climate regulation 0.92 124.10
水源涵养Water conservation 0.62 83.63
土壤形成与保护Soil formation and protection 1.51 203.69
废物处理Waste treatment 1.70 229.32
生物多样性保护Biodiversity conservation 0.74 99.82
生态娱乐Ecological recreation 0.01 1.34
合计Total 6.02 812.04


下载: 导出CSV

参考文献(41)
[1]刘胜涛, 高鹏, 刘潘伟, 等.泰山森林生态系统服务功能及其价值评估[J].生态学报, 2017, 37(10):3302-3310 http://d.old.wanfangdata.com.cn/Periodical/stxb201710009
LIU S T, GAO P, LIU P W, et al. An ecosystem services assessment of Tai Mountain[J]. Acta Ecologica Sinica, 2017, 37(10):3302-3310 http://d.old.wanfangdata.com.cn/Periodical/stxb201710009
[2]谢高地, 张彩霞, 张昌顺, 等.中国生态系统服务的价值[J].资源科学, 2015, 37(9):1740-1746 http://d.old.wanfangdata.com.cn/Periodical/zykx200701022
XIE G D, ZHANG C X, ZHANG C S, et al. The value of ecosystem services in China[J]. Resources Science, 2015, 37(9):1740-1746 http://d.old.wanfangdata.com.cn/Periodical/zykx200701022
[3]肖强, 肖洋, 欧阳志云, 等.重庆市森林生态系统服务功能价值评估[J].生态学报, 2014, 34(1):216-223 http://d.old.wanfangdata.com.cn/Periodical/stxb201401027
XIAO Q, XIAO Y, OUYANG Z Y, et al. Value assessment of the function of the forest ecosystem services in Chongqing[J]. Acta Ecologica Sinica, 2014, 34(1):216-223 http://d.old.wanfangdata.com.cn/Periodical/stxb201401027
[4]刘小丹, 赵忠宝, 李克国.河北北戴河区农田生态系统服务功能价值测算研究[J].农业资源与环境学报, 2017, 34(4):390-396 http://d.old.wanfangdata.com.cn/Periodical/nyhjyfz201704012
LIU X D, ZHAO Z B, LI K G. Measurement of farmland ecosystem services evaluation in Beidaihe District, Hebei Province, China[J]. Journal of Agricultural Resources and Environment, 2017, 34(4):390-396 http://d.old.wanfangdata.com.cn/Periodical/nyhjyfz201704012
[5]张宏锋, 欧阳志云, 郑华, 等.玛纳斯河流域农田生态系统服务功能价值评估[J].中国生态农业学报, 2009, 17(6):1259-1264 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200906038
ZHANG H F, OUYANG Z Y, ZHENG H, et al. Evaluation of agricultural ecosystem services value in Manas River Watershed of China[J]. Chinese Journal of Eco-Agriculture, 2009, 17(6):1259-1264 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200906038
[6]COSTANZA R, D'ARGE R, De GROOT R, et al. The value of the world's ecosystem services and natural capital[J]. Nature Volume, 1997, 387(6630):253-260 doi: 10.1038/387253a0
[7]Millennium Ecosystem Assessment. Ecosystems and Human Well-Being:A Framework for Assessment[M]. Washington DC:Island Press, 2003
[8]张艳军, 官冬杰, 翟俊, 等.重庆市生态系统服务功能价值时空变化研究[J].环境科学学报, 2017, 37(3):1169-1177 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201703044
ZHANG Y J, GUAN D J, ZHAI J, et al. Spatial and temporal variations of ecosystem services value in Chongqing City[J]. Acta Scientiae Circumstantiae, 2017, 37(3):1169-1177 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201703044
[9]杜加强, 王金生, 滕彦国, 等.重庆市生态系统服务价值动态评估[J].生态学杂志, 2008, 27(7):1187-1192 http://d.old.wanfangdata.com.cn/Periodical/stxzz200807021
DU J Q, WANG J S, TENG Y G, et al. Dynamic evaluation on ecosystem service value of Chongqing City[J]. Chinese Journal of Ecology, 2008, 27(7):1187-1192 http://d.old.wanfangdata.com.cn/Periodical/stxzz200807021
[10]唐秀美, 潘瑜春, 刘玉.北京市耕地生态价值评估与时空变化分析[J].中国农业资源与区划, 2018, 39(3):132-140 http://d.old.wanfangdata.com.cn/Periodical/zgnyzyyqh201803019
TANG X M, PAN Y C, LIU Y. Evaluation and spatio-temporal analysis of ecological value of cultivated land in Beijing[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(3):132-140 http://d.old.wanfangdata.com.cn/Periodical/zgnyzyyqh201803019
[11]段颖琳, 刘峰, 赵帅, 等.三峡库区蓄水前后农田生态系统服务与环境压力分析[J].生态学报, 2016, 36(9):2750-2763 http://d.old.wanfangdata.com.cn/Periodical/stxb201609035
DUAN Y L, LIU F, ZHAO S, et al. Analysis of farmland ecosystem services and environmental pressures in the Three Gorges Reservoir Area, before and after impoundment[J]. Acta Ecologica Sinica, 2016, 36(9):2750-2763 http://d.old.wanfangdata.com.cn/Periodical/stxb201609035
[12]马依拉?热合曼, 买买提?沙吾提, 尼格拉?塔什甫拉提, 等.基于遥感与GIS的渭库绿洲生态系统服务价值时空变化研究[J].生态学报, 2018, 38(16):5938-5951 http://d.old.wanfangdata.com.cn/Periodical/stxb201816032
MAYILA R H M, MAMAT S W T, NIGELA T X P L T, et al. The ecosystem service value spatial-temporal changes in the Ugan-kuqa River Delta Oasis based on RS and GIS[J]. Acta Ecologica Sinica, 2018, 38(16):5938-5951 http://d.old.wanfangdata.com.cn/Periodical/stxb201816032
[13]谢高地, 甄霖, 鲁春霞, 等.一个基于专家知识的生态系统服务价值化方法[J].自然资源学报, 2008, 23(5):911-919 doi: 10.3321/j.issn:1000-3037.2008.05.019
XIE G D, ZHEN L, LU C X, et al. Expert knowledge based valuation method of ecosystem services in China[J]. Journal of Natural Resources, 2008, 23(5):911-919 doi: 10.3321/j.issn:1000-3037.2008.05.019
[14]邓伟, 刘红, 李世龙, 等.重庆市重要生态功能区生态系统服务动态变化[J].环境科学研究, 2015, 28(2):250-258 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=663743377
DENG W, LIU H, LI S L, et al. Dynamic changes of ecosystem services of Key Ecological Function Areas in Chongqing, China[J]. Research of Environmental Sciences, 2015, 28(2):250-258 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=663743377
[15]重庆市统计局.重庆统计年鉴2007、2012、2016[M].北京:中国统计出版社, 2017
Chongqing Bureau of Statistics. Chongqing Statistical Yearbook 2007, 2012, 2016[M]. Beijing:China Statistical Press, 2017
[16]王娇.南疆农林复合系统生态价值及环境成本研究——以典型区域为例[D].阿拉尔: 塔里木大学, 2016: 30-40
WANG J. The ecological value and environmental cost research of agroforestry system in southern Xinjiang-Take the typical area as an example[D]. Alar: Tarim University, 2016: 30-40
[17]北京市统计局. 2016年北京都市型现代农业生态服务价值监测公报[R/OL]. 2017-04-27. http://tjj.beijing.gov.cn/tjsj/tjgb/stgb/201704/t20170427_372648.html
Beijing Municipal Bureau of Statistics. Ecosystem service value of urban modern agriculture in Beijing in 2016[R/OL]. 2017-04-27. http://tjj.beijing.gov.cn/tjsj/tjgb/stgb/201704/t20170427_372648.html
[18]中国环境科学研究院气候中心.省级温室气体清单编制指南(试行)[S]. 2011-05-01.https://wenku.baidu.com/view/7ae95325f111f18583d05a67.html?pn=50
Climate Center of China Academy of Environmental Sciences. Guidelines for the Preparation of Provincial Greenhouse Gas Inventories (Trial)[S]. 2011-05-01. https://wenku.baidu.com/view/7ae95325f111f18583d05a67.html?pn=50
[19]重庆市水利局.重庆市水资源公报2007, 2016[R]. 2018-11-29.http://www.cqwater.gov.cn/slsj/szygb/Pages/Default.aspx
Chongqing Water Resources Bureau. Chongqing Water Resources Bulletin 2007, 2016[R]. 2018-11-29. http://www.cqwater.gov.cn/slsj/szygb/Pages/Default.aspx
[20]国家林业局. LY/T1721-2008森林生态系统服务功能评估规范[S].北京: 中国标准出版社, 2008
State Forestry Administration. LY/T1721-2008 Specifications for Assessment of Forest Ecosystem Services in China[S]. Beijing: China Standard Press, 2008
[21]倪九派, 袁道先, 谢德体, 等.基于GIS的岩溶槽谷区小流域土壤侵蚀量估算[J].应用基础与工程科学学报, 2010, 18(2):217-225 doi: 10.3969/j.issn.1005-0930.2010.02.0004
NI J P, YUAN D X, XIE D T, et al. Estimating soil erosion in small watershed of Karst Valley area using GIS[J]. Journal of Basic Science and Engineering, 2010, 18(2):217-225 doi: 10.3969/j.issn.1005-0930.2010.02.0004
[22]李汝莘.土壤容重和含水量对耕作阻力的影响[J].农业工程学报, 1998, 14(1):81-85 doi: 10.3321/j.issn:1002-6819.1998.01.016
LI R Z. Effect of soil bulk density and moisture content on the draft resistance[J]. Transactions of the CSAE, 1998, 14(1):81-85 doi: 10.3321/j.issn:1002-6819.1998.01.016
[23]赵荣钦, 黄爱民, 秦明周, 等.农田生态系统服务功能及其评价方法研究[J].农业系统科学与综合研究, 2003, 19(4):267-270 doi: 10.3969/j.issn.1001-0068.2003.04.008
ZHAO R Q, HUANG A M, QIN M Z, et al. Study on farmland ecosystem service and it's valuation method[J]. System Sciences and Comprehensive Studies in Agriculture, 2003, 19(4):267-270 doi: 10.3969/j.issn.1001-0068.2003.04.008
[24]徐金英.基于137Cs示踪技术的土壤侵蚀特征研究[D].重庆: 西南大学, 2009: 25-35
XU J Y. The study of the characteristics of soil erosion based on 137Cs tracing technique[D]. Chongqing: Southwest University, 2009: 25-35
[25]全国农技推广服务中心.测土配方施肥土壤基础养分数据集[M].北京:中国农业出版社, 2015
National Agricultural Technology Extension Service Center. Soil-Based Nutrient Data Set for Soil Testing and Fertilization[M]. Beijing:China Agriculture Press, 2015
[26]沈纶宇, 胡耀俊, 王刚.北川小寨子沟自然保护区森林生态效益评价[J].山西林业科技, 2017, 46(4):15-18 doi: 10.3969/j.issn.1007-726X.2017.04.005
SHEN L Y, HU Y J, WANG G. Forest ecological benefits evaluation of Xiaozhaizigou Nature Reserve in Beichuan[J]. Shanxi Forestry Science and Technology, 2017, 46(4):15-18 doi: 10.3969/j.issn.1007-726X.2017.04.005
[27]李国洋.农业生态功能价值及其应用研究[D].贵阳: 贵州大学, 2009: 10-18
LI G Y. Study on the service functions and value of agricultural ecosystem and it's application[D]. Guiyang: Guizhou University, 2009: 10-18
[28]张颖聪.四川省耕地生态服务价值时空变化研究——基于农业产业结构调整视角[D].成都: 四川农业大学, 2012: 57-64
ZHANG Y C. Study on the spatial-temporal change of cultivated land ecological service value in Sichuan Province[D]. Chengdu: Sichuan Agricultural University, 2012: 57-64
[29]重庆市环境保护局.重庆市五大环保行动——蓝天行动实施方案(2018-2022)[R/
OL]. 2017 Chongqing Environmental Protection Bureau. Chongqing Five Major Environmental Protection Actions-Blue Sky Action Implementation Plan (2018-2022)[R]. 2017
[30]周媛媛.基于ArcGIS和种养平衡的重庆市畜禽养殖容量及其外部经济性研究[D].重庆: 西南大学, 2017: 30-35
ZHOU Y Y. Livestock breeding capacity & its external economy based on ArcGIS and crop-animal balance in Chongqing[D]. Chongqing: Southwest University, 2017: 30-35
[31]何为媛, 李玫, 李真熠, 等.重庆市地膜残留系数研究[J].农业资源与环境学报, 2013, (3):76-78 doi: 10.3969/j.issn.1005-4944.2013.03.025
HE W Y, LI M, LI Z Y, et al. Study on residual coefficient of plastic film in Chongqing[J]. Journal of Agricultural Resources and Environment, 2013, (3):76-78 doi: 10.3969/j.issn.1005-4944.2013.03.025
[32]高利伟, 许世卫, 李哲敏, 等.中国主要粮食作物产后损失特征及减损潜力研究[J].农业工程学报, 2016, 32(23):1-11 doi: 10.11975/j.issn.1002-6819.2016.23.001
GAO L W, XU S W, LI Z M, et al. Main grain crop postharvest losses and its reducing potential in China[J]. Transactions of the CSAE, 2016, 32(23):1-11 doi: 10.11975/j.issn.1002-6819.2016.23.001
[33]国家统计局.全国农产品成本收益资料汇编[R].北京: 中国统计出版社, 2017
National Bureau of Statistics. Compilation of Cost and Income Data of Agricultural Products[R]. Beijing: China Statistical Press, 2017
[34]付静尘.丹江口库区农田生态系统服务价值核算及影响因素的情景模拟研究[D].北京: 北京林业大学, 2010: 24-37
FU J C. Evaluation on farmland ecosystem services value and scenario simulation of influence factors in Danjiangkou Reservoir area[D]. Beijing: Beijing Forestry University, 2010: 24-37
[35]李贵春.农田退化价值损失评估研究[D].北京: 中国农业科学院, 2007: 32-50
LI G C. Study on assessment of value losses for farmland degradation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007: 32-36
[36]刘志欣.近十年来重庆三峡库区农业面源污染变化研究[D].重庆: 重庆师范大学, 2016: 35-45
LIU Z X. Changes of agricultural non-point source pollution in Chongqing Three Gorges Reservoir Area in recent ten years[D]. Chongqing: Chongqing Normal University, 2016: 35-45
[37]冉凤维, 罗志军, 曹丽萍, 等.南昌市生态服务价值变化及其驱动因素分析[J].水土保持研究, 2018, 25(3):177-183 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201803029
RAN F W, LUO Z J, CAO L P, et al. Analysis on the change of ecological service value and its driving factors in Nanchang[J]. Research of Soil and Water Conservation, 2018, 25(3):177-183 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201803029
[38]赵志刚, 余德, 韩成云, 等.鄱阳湖生态经济区生态系统服务价值预测与驱动力[J].生态学报, 2017, 37(24):8411-8421 http://d.old.wanfangdata.com.cn/Periodical/stxb201724026
ZHAO Z G, YU D, HAN C Y, et al. Ecosystem services value prediction and driving forces in the Poyang Lake eco-economic zone[J]. Acta Ecologica Sinica, 2017, 37(24):8411-8421 http://d.old.wanfangdata.com.cn/Periodical/stxb201724026
[39]徐煖银, 郭泺, 薛达元, 等.赣南地区土地利用格局及生态系统服务价值的时空演变[J].生态学报, 2019, 39(1):1969-1978 http://d.old.wanfangdata.com.cn/Periodical/stxb201906011
XU N Y, GUO L, XUE D Y, et al. Land use structure and the dynamic evolution of ecosystem service value in Gannan region, China[J]. Acta Ecologica Sinica, 2019, 39(1):1969-1978 http://d.old.wanfangdata.com.cn/Periodical/stxb201906011
[40]罗盛锋, 闫文德.广西北部湾沿岸地区生态系统服务价值变化及其驱动力[J].生态学报, 2018, 38(9):3248-3259 http://d.old.wanfangdata.com.cn/Periodical/stxb201809025
LUO S F, YAN W D. Evolution and driving force analysis of ecosystem service values in Guangxi Beibu Gulf coastal areas, China[J]. Acta Ecologica Sinica, 2018, 38(9):3248-3259 http://d.old.wanfangdata.com.cn/Periodical/stxb201809025
[41]杨志新, 郑大玮, 文化.北京郊区农田生态系统服务功能价值的评估研究[J].自然资源学报, 2005, 20(4):564-571 doi: 10.3321/j.issn:1000-3037.2005.04.012
YANG Z X, ZHENG D W, WEN H. Studies on service value evaluation of agricultural ecosystem in Beijing region[J]. Journal of Natural Resources, 2005, 20(4):564-571 doi: 10.3321/j.issn:1000-3037.2005.04.012

相关话题/生态 农田 土壤 农业 重庆