王睿芳2,
李艺3,
胡雪琼1,
李蒙1,
张茂松1,
段长春4,,
1.云南省气候中心 昆明 650034
2.普洱学院农林学院 普洱 665000
3.云南国际咖啡交易中心 普洱 665000
4.云南省气象科学研究所 昆明 650034
基金项目: 云南省科技厅重点研发项目2018BC007
中国气象局气候变化专项CCSF201508
中国气象局气候变化专项CCSF201426
详细信息
作者简介:张明达, 主要研究方向为农业气象、气候与气候变化。E-mail:rockerdada@163.com
通讯作者:段长春, 主要研究方向为气候与气候变化。E-mail:duancckm@126.com
中图分类号:F323.2;P467计量
文章访问数:553
HTML全文浏览量:3
PDF下载量:335
被引次数:0
出版历程
收稿日期:2019-07-09
录用日期:2019-10-29
刊出日期:2020-02-01
Ecological suitability zoning of Coffea arabica L. in Yunnan Province
ZHANG Mingda1,,WANG Ruifang2,
LI Yi3,
HU Xueqiong1,
LI Meng1,
ZHANG Maosong1,
DUAN Changchun4,,
1. Yunnan Climate Center, Kunming 650034, China
2. College of Agriculture and Forestry, Pu'er University, Pu'er 665000, China
3. Yunnan International Coffee Exchange Centre, Pu'er 665000, China
4. Yunnan Institute of Meteorological Sciences, Kunming 650034, China
Funds: the Science and Technology Program of Yunnan2018BC007
the Climate Change Specific Fund of China Meteorological AdministrationCCSF201508
the Climate Change Specific Fund of China Meteorological AdministrationCCSF201426
More Information
Corresponding author:DUAN Changchun, E-mail:duancckm@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:小粒咖啡产业是云南省发展高原特色农业和精准扶贫的重点内容,开展生态适宜性研究有助于优化布局和扩大规模。基于ArcGIS建立了云南省气候、土壤理化、地形地貌因子精细化空间分布模型,利用层次分析法确定3个层次、11个生态适宜性指标权重,在重点区域进行小粒咖啡种植区生态适宜性分析及区划研究。结果表明:1)气候因子是小粒咖啡种植生态适宜性的关键性因子,地形地貌因子影响其次,土壤理化性质因子的影响最小;最冷月平均气温、2—3月降水量和海拔3项因子对小粒咖啡生态适宜性影响较大,各地在开展种植规划时要重点关注。2)小粒咖啡最适宜、适宜种植区主要分布在云南西南部和东南部,分别占国土面积的18.8%和15.0%,次适宜区占国土面积的21.0%。3)普洱市小粒咖啡适宜性最好,在中部和南部可开展大规模种植;临沧、德宏和保山等地应结合横断山脉的影响,在适宜性高的区域加强规划;西双版纳、文山、红河适宜性条件好,需加强规划和提高投入,充分发挥生态资源优势潜力;大理、怒江以及河谷热区也可以开展小粒咖啡种植,但需注意防范低温和干旱等灾害的影响。4)经采样点调查验证,生态适宜性分析及区划结果准确。云南省仍有较大范围的小粒咖啡种植适宜区,加强适宜种植区的规划布局有助于提高产量和品质,进而提升云南省小粒咖啡产业的国际竞争力。研究方法可以推广至其他高原特色农业品种,为优化选址规划和科学生态布局提供科学依据。
关键词:小粒咖啡/
生态适宜/
云南/
种植区划/
层次分析法
Abstract:Arabica coffee (Coffea arabica L.) is the most important commodity of plateau characteristic agriculture and for targeted poverty alleviation in Yunnan. Research on the ecological suitability of planting is conducive for optimizing the layout and expanding the scale. There are no reports on the suitability of C. arabica using GIS in China. Using ArcGIS, in this study, we established a refined spatial distribution model of climate, soil, and terrain factors and screened out three levels and 11 ecological suitability evaluation indexes using the analytic hierarchy process (AHP) to optimize the layout and expand the scale for planting C. arabica. The results showed the following:1) Climate is a key factor affecting ecological suitability, followed by terrain factor; soil factor was the least influential factor. 2) The minimum temperature of the coldest month, rainfall during February-March, and elevation had a significant effect on ecological suitability, which should be focused on while planning planting. 3) The most suitable and suitable areas for C. arabica cultivation were mainly distributed southwest and southeast of Yunnan, accounting for 18.8% and 15.0% of the land area in Yunnan; sub-suitable areas accounted for 21.0% of the land area. 4) Pu'er City comprised a high proportion of suitable areas, and large-scale planting can be carried out in central and southern regions of Pu'er City. 5) The key counties in Lincang, Dehong, and Baoshan should make rational use of ecological advantages of the Hengduan Mountains to strengthen appropriate regional planning and layout of coffee cultivation. 6) Xishuangbanna, Wenshan, and Honghe had a high proportion of highly suitable areas, and therefore, it is necessary to strengthen the planning layout and planting scale, and make full use of the ecological advantages and potential. 7) Dali and Nujiang, as well as other valley hotspots in Yunnan, are also suitable for C. arabica cultivation, but attention should be paid to prevent the effects of disasters such as low temperature and drought. There is still a large proportion of developmental potential areas for C. arabica cultivation, which offers a foundation for improving yield and quality and enhancing the international competitiveness of C. arabica in Yunnan. By combining field investigation findings, our results indicate that ecological suitability and zoning analyses are accurate, which can be extended to the development of characteristic agriculture industry in the plateau, and provide a scientific basis for the optimization of site selection planning and scientific ecological layout.
Key words:Coffea arabica L./
Ecological suitability/
Yunnan/
Planting zoning/
Analytic hierarchy process (AHP)
HTML全文
图1云南省小粒咖啡种植生态适宜性因子的适宜性分布特征
Figure1.Spatial distribution of ecological suitability factors for Coffea arabica L. in Yunnan Province
下载: 全尺寸图片幻灯片
图2云南省小粒咖啡气候(a)、地形(b)、土壤(c)和生态(d)适宜性区划
Figure2.Suitability regionalization of climate (a), terrain (b), soil (c) and ecological suitability (d) of Coffea arabica L. in Yunnan Province
下载: 全尺寸图片幻灯片
图3云南省小粒咖啡主产区产量、面积和生态适宜性比例
Figure3.Ratio of yield, area and ecological suitability of Coffea arabica L. in Yunnan Province
下载: 全尺寸图片幻灯片
表1云南省小粒咖啡生态适宜性评价指标[11]
Table1.Ecological suitability evaluation indexes for Coffea arabica L. in Yunnan Province
生态因子 Ecological factor | 分级标准Suitability class | |||
最适宜Most suitable | 适宜Suitable | 次适宜Sub-suitable | 不适宜Unsuitable | |
年平均气温Annual mean temperature (℃) | [19~21] | [17~19); (21~23] | [15~17); (23~26] | < 15; > 26 |
最冷月平均气温 Mean temperature of the coldest month (℃) | ≥13 | [11.5~13) | [9~11.5] | < 9 |
年降水量 Annual precipitation (mm) | [1 200~1 900] | [1 000~1 200); (1 900~2 200] | [700~1 000); (2 200~2 500] | < 700; > 2 500 |
2—3月降水量 Rainfall during February-March (mm) | [45~60] | [30~45) | [15~30) | < 15; > 60 |
海拔高度Elevation (m) | [800~1 500] | [700~800); (1 500~1 800] | [300~700); (1 800~2 000] | < 300; > 2 000 |
坡度Slope (°) | ≤15 | (15~20] | (20~35] | > 35 |
坡向Aspect (°) | [135~225] | (225~315] | [45~135) | [0~45]; (315~359) |
土壤侵蚀强度Soil erosion intensity | 微度Very low | 轻度-中度Low-medium | 强度Heavy | 极强度Very heavy |
土壤质地Soil texture | 砂黏壤土及以上 Sandy clay loam and others | 砂壤土 Sandy loam | 壤砂土 Loamy sandy | 砂土 Sandy |
有机质含量Soil organic matter (%) | ≥3 | [2~3) | [1~2) | < 1 |
pH | [5.5~6.5] | [5~5.5); (6.5~7] | [4.5~5); (7~7.5] | < 4.5; > 7.5 |
下载: 导出CSV
表2云南省小粒咖啡气候适宜性因子空间分析模型
Table2.Simulation models of climate suitability factors for Coffea arabica L. in Yunnan Province
气候因子Climatic factor | 多元线性回归方程Multiple regression model | R | F |
年平均气温Annual mean temperature (℃) | Tyear=53.196-0.548φ-0.157λ-0.004h | 0.945 | 327.105 |
年平均降水量Annual precipitation (mm) | Ryear=8 245.763-85.745φ-47.568λ-0.122h | 0.684 | 65.335 |
12月平均气温Mean temperature of December (℃) | T12=69.689-0.947φ-0.279λ-0.004h | 0.942 | 352.642 |
1月平均气温Mean temperature of January (℃) | T1=79.349-1.137φ-0.327λ-0.004h | 0.932 | 246.342 |
2月平均气温Mean temperature of February (℃) | T2=78.567-1.358φ-0.326λ-0.004h | 0.883 | 184.468 |
2—3月降水量Rainfall during February-March (mm) | R2-3=484.464-4.547φ-5.284λ-0.011h | 0.715 | 84.372 |
φ:纬度; λ:经度; h:海拔。φ: latitude; λ: longtitude; h: altitude. |
下载: 导出CSV
表3云南省小粒咖啡生态适宜性层次分析指标及权重
Table3.Indexes weights of analytic hierarchy process (AHP) of ecological suitability of Coffea arabica L. in Yunnan Province
层次分析指标AHP index | 气候Climatic | 地形Terrain | 土壤Soil | 组合权重Total weight |
年平均气温Annual mean temperature | 0.149 | 0 | 0 | 0.081 |
最冷月平均气温Mean temperature of the coldest month | 0.448 | 0 | 0 | 0.242 |
年降水量Annual precipitation | 0.117 | 0 | 0 | 0.063 |
2—3月降水量Rainfall during Feb.-Mar. | 0.286 | 0 | 0 | 0.154 |
海拔高度Elevation | 0 | 0.6 | 0 | 0.178 |
坡度Slope | 0 | 0.2 | 0 | 0.059 |
坡向Aspect | 0 | 0.2 | 0 | 0.059 |
土壤侵蚀强度Erosion intensity | 0 | 0 | 0.139 | 0.023 |
土壤质地Soil texture | 0 | 0 | 0.393 | 0.064 |
有机质含量Soil organic matter | 0 | 0 | 0.234 | 0.038 |
pH | 0 | 0 | 0.234 | 0.038 |
组合权重Total weight | 0.540 | 0.297 | 0.163 | 1.000 |
下载: 导出CSV
表4云南省小粒咖啡主产区各生态适宜性的面积
Table4.Acreage of ecological suitability for Coffea arabica production in Yunnan Province?
州市 State/City | 国土面积 Acreage | 最适宜区 Most suitable area | 适宜区 Suitable area | 次适宜区 Sub-suitable area | 不适宜区 Unsuitable area |
普洱Pu’er | 45 385 | 23 079 | 13 818 | 6 305 | 2 183 |
文山Wenshan | 32 239 | 14 622 | 9 908 | 7 213 | 496 |
西双版纳Xishuangbanna | 19 582 | 15 010 | 3 778 | 776 | 18 |
红河Honghe | 32 931 | 5 272 | 11 057 | 12 276 | 4 327 |
临沧Lincang | 24 000 | 6 586 | 6 793 | 6 092 | 4 529 |
德宏Dehong | 11 500 | 4 971 | 2 519 | 1 955 | 2 055 |
保山Baoshan | 19 637 | 2 003 | 3 603 | 6 242 | 7 789 |
大理Dali | 29 459 | 130 | 708 | 6 276 | 22 345 |
怒江Nujiang | 14 703 | 36 | 157 | 990 | 13 520 |
下载: 导出CSV
表5云南省小粒咖啡重点县各生态适宜性的面积比例
Table5.Acreage ratio of ecological suitability for Coffea arabica L. production in key counties in Yunnan Province?
州市 State/city | 县 County | 最适宜 Most suitable | 适宜 Suitable | 次适宜 Sub-suitable | 不适宜 Unsuitable |
临沧 Lincang | 镇康Zhenkang | 38.5 | 33.6 | 18.2 | 9.7 |
耿马Gengma | 45.7 | 30.1 | 15.8 | 8.4 | |
云县Yunxian | 16.2 | 24.8 | 34.9 | 24.0 | |
临翔Linxiang | 16.1 | 22.8 | 34.7 | 26.3 | |
双江Shuangjiang | 31.2 | 30.5 | 25.0 | 13.3 | |
永德Yongde | 29.1 | 27.9 | 18.6 | 24.4 | |
沧源Cangyuan | 42.3 | 36.7 | 17.8 | 3.3 | |
凤庆Fengqing | 6.3 | 23.9 | 35.3 | 34.6 | |
保山 Baoshan | 龙陵Longling | 12.6 | 21.4 | 24.1 | 42.0 |
隆阳Longyang | 10.5 | 14.3 | 31.0 | 44.2 | |
文山 Wenshan | 麻栗坡Malipo | 42.9 | 41.2 | 15.2 | 0.7 |
红河 Honghe | 河口Hekou | 21.6 | 24.4 | 53.1 | 0.9 |
大理 Dali | 宾川Binchuan | 0 | 1.1 | 23.4 | 75.5 |
怒江 Nujiang | 泸水Lushui | 1.1 | 4.7 | 15.0 | 79.1 |
普洱 Pu’er | 思茅Simao | 84.1 | 14.8 | 1.0 | 0 |
宁洱Ning’er | 59.7 | 29.0 | 9.4 | 1.9 | |
墨江Mojiang | 51.4 | 37.7 | 10.3 | 0.7 | |
孟连Menglian | 71.4 | 17.3 | 9.4 | 1.9 | |
澜沧Lancang | 52.2 | 28.1 | 16.3 | 3.5 | |
景谷Jinggu | 55.8 | 32.3 | 9.2 | 2.7 | |
江城Jiangcheng | 49.4 | 39.1 | 11.3 | 0.2 | |
德宏 Dehong | 芒市Mangshi | 56.3 | 22.5 | 13.1 | 8.1 |
盈江Yingjiang | 19.4 | 18.9 | 24.7 | 37.0 | |
陇川Longchuan | 57.6 | 25.7 | 12.8 | 3.9 | |
瑞丽Ruili | 94.2 | 5.6 | 0.2 | 0 | |
西双版纳 Xishuangbanna | 景洪Jinghong | 86.5 | 12.9 | 0.5 | 0 |
勐海Menghai | 86.2 | 10.6 | 2.9 | 0.3 |
下载: 导出CSV
参考文献
[1] | 黄家雄, 李贵平.中国咖啡遗传育种研究进展[J].西南农业学报, 2008, 21(4):1178-1181 doi: 10.3969/j.issn.1001-4829.2008.04.066 HUANG J X, LI G P. Research progress of coffee breeding in China[J]. Southwest China Journal of Agricultural Sciences, 2008, 21(4):1178-1181 doi: 10.3969/j.issn.1001-4829.2008.04.066 |
[2] | 陈德新.宾川朱苦拉咖啡早期引种史考——中国咖啡早期引种扩种历史考证系列文章(Ⅱ)[J].热带农业科学, 2010, 30(4):58-61 doi: 10.3969/j.issn.1009-2196.2010.04.016 CHEN D X. A textual research on the history of early introduction and afforestation of coffee for Zhugula, Binchuan County, Yunnan Province:A series of articles on the textual research on the history of early introduction and afforestation of coffee in Chinese (Ⅱ)[J]. Chinese Journal of Tropical Agriculture, 2010, 30(4):58-61 doi: 10.3969/j.issn.1009-2196.2010.04.016 |
[3] | 陆洲, 秦向阳, 李奇峰, 等.作物生态适宜性定量化评价方法及通用工具[J].农业工程学报, 2012, 28(20):195-201 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201220028 LU Z, QIN X Y, LI Q F, et al. Quantitative evaluation method and universal tool for crop ecological suitability[J]. Transactions of the CSAE, 2012, 28(20):195-201 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201220028 |
[4] | FAIN S J, MAYA Q, NORA L, et al. Climate change and coffee:assessing vulnerability by modeling future climate suitability in the Caribbean island of Puerto Rico[J]. Climatic Change, 2018, 146(1/2):175-186 http://cn.bing.com/academic/profile?id=8fa88a747051a567b463afa45e460cf6&encoded=0&v=paper_preview&mkt=zh-cn |
[5] | DAMATTA F M. Ecophysiological constraints on the production of shaded and unshaded coffee:a review[J]. Field Crops Research, 2004, 86(2/3):99-114 http://cn.bing.com/academic/profile?id=4c132f88218e82dabba19f59a86224bc&encoded=0&v=paper_preview&mkt=zh-cn |
[6] | JAYAKUMAR M, RAJAVEL M, SURENDRAN U. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India[J]. International Journal of Biometeorology, 2016, 60(12):1943-1952 doi: 10.1007/s00484-016-1181-4 |
[7] | CHRISTIAN B, PERER L, ORIANA O R, et al. A bitter cup:climate change profile of global production of Arabica and Robusta coffee[J]. Climatic Change, 2015, 129(1/2):89-101 http://cn.bing.com/academic/profile?id=a0403783d382eb274ae6623463ef1624&encoded=0&v=paper_preview&mkt=zh-cn |
[8] | PETER L, JULIAN R V, NAVARRO R C, et al. Climate change adaptation of coffee production in space and time[J]. Climatic Change, 2016, 141(1):1-16 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=03e1241ca3e9a126e803d990aea5011d |
[9] | SCHROTH G, PETER L, DIANA S B C, et al. Winner or loser of climate change? A modeling study of current and future climatic suitability of Arabica coffee in Indonesia[J]. Reg Environ Change, 2015, 15:1473-1482 doi: 10.1007/s10113-014-0713-x |
[10] | SAILESH R, SUIAKHU N M, JUERG M, et al. Suitability analysis and projected climate change impact on banana and coffee production zones in Nepal[J]. PLoS One, 2016, 11(9):e0163916 doi: 10.1371/journal.pone.0163916 |
[11] | CHAIRANI E, SUPRIATNA J, KOESTOER R, et al. Physical land suitability for civet Arabica coffee:Case study of Bandung and West Bandung Regencies, Indonesia[J]. IOP Conference Series:Earth and Environmental Science, 2017, 98:012029 doi: 10.1088/1755-1315/98/1/012029 |
[12] | ORIANA O R, PERER L, CHRISTIAN B, et al. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change[J]. PLoS One, 2015, 10(4):e0124155 doi: 10.1371/journal.pone.0124155 |
[13] | ZULLO J, PINTO H S, ASSAD E D, et al. Potential for growing Arabica coffee in the extreme South of Brazil in a warmer world[J]. Climatic Change, 2011, 109(3/4):535-548 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=38cdee0ca3c3ee0432dbae840bb942ae |
[14] | CHEMURA A, KUTYWAYO D, CHIDOKO P, et al. Bioclimatic modelling of current and projected climatic suitability of coffee (Coffea arabica) production in Zimbabwe[J]. Regional Environmental Change, 2016, 16(2):473-485 doi: 10.1007/s10113-015-0762-9 |
[15] | CAI C T, CAI Z Q, YAO T Q, et al. Vegetative growth and photosynthesis in coffee plants under different watering and fertilization managements in Yunnan, SW China[J]. Photosynthetica, 2007, 45(3):455-461 doi: 10.1007/s11099-007-0075-4 |
[16] | 张珍贤, 王华, 蔡传涛, 等.施肥对干旱胁迫下幼龄期小粒咖啡光合特性及生长的影响[J].中国生态农业学报, 2015, 23(7):832-840 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015705&flag=1 ZHANG Z X, WANG H, CAI C T, et al. Effects of fertilization on photosynthetic characteristics and growth of Coffea arabica L. at juvenile stage under drought stress[J]. Chinese Journal of Eco-Agriculture, 2015, 23(7):832-840 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015705&flag=1 |
[17] | HAGGAR J, BARRIOS M, BOLA?OS M, et al. Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America[J]. Agroforestry Systems, 2011, 82(3):285-301 doi: 10.1007/s10457-011-9392-5 |
[18] | RAHN E, VAAST P, PETER L, et al. Exploring adaptation strategies of coffee production to climate change using a process-based model[J]. Ecological Modelling, 2018, 371:76-89 doi: 10.1016/j.ecolmodel.2018.01.009 |
[19] | BARBOSA J N, BOREM F M, CIRILLO M A, et al. Coffee quality and its interactions with environmental factors in Minas Gerais, Brazil[J]. Journal of Agricultural Science, 2012, 4(5):181-190 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b920805102f34a997972aa72f9f1e39d |
[20] | 李晓霞, 张吉光, 杨天武, 等.云南不同海拔小粒种咖啡生长发育情况调查[J].云南热作科技, 2002, 25(4):8-16 doi: 10.3969/j.issn.1672-450X.2002.04.002 LI X X, ZHANG J G, YANG T W, et al. Investigation of coffee growth at different altitude in Yunnan[J]. Journal of Yunnan Tropical Crops Science & Technology, 2002, 25(4):8-16 doi: 10.3969/j.issn.1672-450X.2002.04.002 |
[21] | DEVI G M S, KUMAR K S A. Remote sensing and GIS application for land quality assessment for coffee growing areas of Karnataka[J]. Journal of the Indian Society of Remote Sensing, 2008, 36(1):89-97 http://cn.bing.com/academic/profile?id=c080c8601708b6122f6ff62c2857b707&encoded=0&v=paper_preview&mkt=zh-cn |
[22] | ZHANG Z X, CAI Z Q, LIU G Z, et al. Effects of fertilization on the growth, photosynthesis, and biomass accumulation in juvenile plants of three coffee (Coffea arabica L.) cultivars[J]. Photosynthetica, 2017, 55(1):134-143 doi: 10.1007/s11099-016-0237-3 |
[23] | 蔡传涛, 蔡志全, 解继武, 等.田间不同水肥管理下小粒咖啡的生长和光合特性[J].应用生态学报, 2004, 15(7):1207-1212 doi: 10.3321/j.issn:1001-9332.2004.07.021 CAI C T, CAI Z Q, XIE J W, et al. Growth and photosynthetic characteristics of field-grown Coffea arabica under different watering and fertilization managements[J]. Chinese Journal of Applied Ecology, 2004, 15(7):1207-1212 doi: 10.3321/j.issn:1001-9332.2004.07.021 |
[24] | 胡雪琼, 徐梦莹, 何雨芩, 等.未来气候变化对云南烤烟种植气候适宜性的影响[J].应用生态学报, 2016, 27(4):1241-1247 http://d.old.wanfangdata.com.cn/Periodical/yystxb201604029 HU X Q, XU M Y, HE Y Q, et al. Effects of future climate change on climatic suitability of flue-cured tobacco plantation in Yunnan, China[J]. Chinese Journal of Applied Ecology, 2016, 27(4):1241-1247 http://d.old.wanfangdata.com.cn/Periodical/yystxb201604029 |
[25] | 吴克宁, 赵瑞.土壤质地分类及其在我国应用探讨[J].土壤学报, 2019, 56(1):227-241 http://d.old.wanfangdata.com.cn/Periodical/trxb201901022 WU K N, ZHAO R. Soil texture classification and its application in China[J]. Acta Pedologica Sinica, 2019, 56(1):227-241 http://d.old.wanfangdata.com.cn/Periodical/trxb201901022 |
[26] | 王飞, 秦方锦, 吴丹亚, 等.土壤有机质和有机碳含量计算方法比较研究[J].农学学报, 2015, 5(3):54-58 http://d.old.wanfangdata.com.cn/Periodical/zgncxkkj201503012 WANG F, QIN F J, WU D Y, et al. Comparative study on the calculation method of soil organic matter and organic carbon[J]. Journal of Agriculture, 2015, 5(3):54-58 http://d.old.wanfangdata.com.cn/Periodical/zgncxkkj201503012 |
[27] | 张科利, 彭文英, 杨红丽.中国土壤可蚀性值及其估算[J].土壤学报, 2007, 44(1):7-13 doi: 10.3321/j.issn:0564-3929.2007.01.002 ZHANG K L, PENG W Y, YANG H L. Soil erodibility and its estimation for agricultural soil in China[J]. Acta Pedologica Sinica, 2007, 44(1):7-13 doi: 10.3321/j.issn:0564-3929.2007.01.002 |
[28] | WISCHMEIER W H, MANNERING J V. Relation of soil properties to its erodibility1[J]. Soil Science Society of America Journal, 1969, 33(1):131-137 doi: 10.2136/sssaj1969.03615995003300010035x |
[29] | WILLIAMS J R. The erosion-productivity impact calculator (EPIC) model:a case history[J]. Philosophical Transactions of the Royal Society of London Series B:Biological Sciences, 1990, 329(1255):421-428 doi: 10.1098/rstb.1990.0184 |
[30] | 李丽纯, 陈福梓, 王加义, 等.基于GIS的台湾青枣在福建引扩种的气候适宜性区划[J].中国生态农业学报, 2017, 25(1):47-54 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170107&flag=1 LI L C, CHEN F Z, WANG J Y, et al. Climate suitability regionalization for Taiwan green jujube introduction and expansion in Fujian Province using GIS[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1):47-54 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170107&flag=1 |
[31] | 韩慧杰, 夏学齐, 吴海东, 等.基于GIS和土地质量地球化学数据的水稻种植适宜性评价——以安徽省青阳县为例[J].中国生态农业学报(中英文), 2019, 27(4):591-600 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201904010 HAN H J, XIA X Q, WU H D, et al. Evaluation of rice planting suitability using GIS and geochemical land quality data-A case study of Qingyang County, Anhui Province[J]. Chinese Journal of Eco-Agriculture, 2019, 27(4):591-600 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201904010 |
[32] | 符娜, 刘小刚, 李闯, 等.不同时间尺度元谋灌区小粒咖啡需水变异特征[J].排灌机械工程学报, 2015, 33(2):163-171 http://d.old.wanfangdata.com.cn/Periodical/pgjx201502013 FU N, LIU X G, LI C, et al. Variation research of Coffea arabica water requirement at different temporal scale in Yuanmou Irrigation District[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(2):163-171 http://d.old.wanfangdata.com.cn/Periodical/pgjx201502013 |
[33] | 程金焕, 何红艳, 李亚男, 等.宾川县朱苦拉咖啡庄园发展探析[J].安徽农业科学, 2017, 45(33):246-247 doi: 10.3969/j.issn.0517-6611.2017.33.078 CHENG J H, HE H Y, LI Y N, et al. Construction of Zhukula coffee farm in Binchuan County[J]. Journal of Anhui Agricultural Sciences, 2017, 45(33):246-247 doi: 10.3969/j.issn.0517-6611.2017.33.078 |
[34] | TAVARES P D S, GIAROLLA A, CHOU S C, et al. Climate change impact on the potential yield of Arabica coffee in southeast Brazil[J]. Regional Environmental Change, 2018, 18(3):873-883 doi: 10.1007/s10113-017-1236-z |