陈奇乐2,
张俊梅2,
康营2,
吴超玉2,
刘琦1,
王洋1,,
1.河北农业大学国土资源学院 保定 071000
2.河北农业大学资源与环境科学学院 保定 071000
基金项目: "十三五"国家重点研发计划"粮食丰产增效科技创新"项目2018YFD0300504
详细信息
作者简介:谢梦姣, 主要从事土地资源利用与环境效应研究。E-mail:xiemengjiao94@163.com
通讯作者:王洋, 主要从事土地利用变化与资源环境效应研究。E-mail:xiaoyiranwy85@163.com
中图分类号:S159.3计量
文章访问数:365
HTML全文浏览量:0
PDF下载量:438
被引次数:0
出版历程
收稿日期:2019-09-27
录用日期:2019-11-07
刊出日期:2020-03-01
Effects of short distance sampling on the prediction accuracy of the spatial variability of soil respiration
XIE Mengjiao1,,CHEN Qile2,
ZHANG Junmei2,
KANG Ying2,
WU Chaoyu2,
LIU Qi1,
WANG Yang1,,
1. College of Land and Resources, Hebei Agricultural University, Baoding 071000, China
2. College of Resources and Environment, Hebei Agricultural University, Baoding 071000, China
Funds: the National Key Research and Development Project of China2018YFD0300504
More Information
Corresponding author:WANG Yang, E-mail: xiaoyiranwy85@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:不同采样设计会对土壤呼吸空间变异特征的预测精度产生重要影响。本研究选取黄淮海平原北部潮土区1 km×1 km夏玉米样地,在7×7单元规则格网(样点间距167 m)、完全随机(样点平均间距433 m)以及3×3单元规则格网+完全随机(样点平均间距405 m)3种布点方式的基础上,保持样本总量(49)不变,以占总样点2%~14%的短距离样点(样点间距4 m)随机替换原方案相应样点个数的方法优化布点方式,应用普通克里金法插值,以均方根误差(RMSE)和确定系数(R2)作为验证指标,检验基于3种布点方式设置的短距离样点对土壤呼吸空间变异预测精度的影响。结果表明:研究区土壤呼吸平均速率为2.65 μmol·m-2·s-1,空间分布均呈西高东低,表现出中等程度变异。采样设计对土壤呼吸空间分布的预测精度影响显著,基于3种布点方式设置短距离样点可提高预测精度7%~13%。无短距离样点替换时,规则格网+完全随机的布点方式最优,比完全随机布点和规则格网布点的空间插值预测精度分别提高10%和22%;设置短距离样点替换后,在最优布点方式(规则格网+完全随机)中,对土壤呼吸空间变异的预测精度可再提高4%~7%,其中短距离样点个数占样本总量10%对土壤呼吸空间变异预测精度的提高最为明显。研究发现,基于相同的样本数量设置短距离样点可增加区域范围内样点密度,提高土壤呼吸空间变异预测精度及试验结果的可靠性。因此,在黄淮海平原北部潮土区100 hm2尺度的夏玉米样地中,规则格网+完全随机+10%短距离样点的布点方式是预测土壤呼吸空间变异最适宜的采样布点方式。
关键词:土壤呼吸/
空间变异/
采样设计/
预测精度/
短距离样点/
普通克里金
Abstract:Sampling design is important for the prediction accuracy of the spatial variability of soil respiration. In this study, a plot of 1 km×1 km was selected in a summer maize field from the northern part of the Huang-Huai-Hai Plain. Each of the forty-nine sampling sites were set on the basis of three different sampling designs, including a regular grid of 7×7 unit rule (with a spacing of 167 m), completely random (with an average spacing of 433 m), and a regular grid of 3×3 unit rule combined with completely random (with an average spacing of 405 m). To optimize the layout, based on the 3 designs, we maintained the total number of samples (49) and replaced the original sampling with short-distance sampling points for 2% to 14% of the total number of samples (with a spacing of 4 m). The spatial interpolation was finished with the ordinary Kriging interpolation method. The root mean square error (RMSE) and determination coefficient (R2) were chosen as indicators to investigate the effects of short distance sampling on the prediction accuracy of the spatial variability of soil respiration. The results showed that the spatial distribution of soil respiration under the three sampling designs was high in the west and low in the east, with moderate variation. Different sampling designs had significant impacts on the prediction accuracy of the spatial variability of soil respiration. The short distance sampling under the three sampling designs increased the prediction accuracy of the spatial variability of soil respiration by 7%-13%. Without short distance samples, the sampling design of the regular grid combined with completely random had the highest prediction accuracy, which was 10% and 22% higher than the regular grid and completely random sampling designs, respectively. Upon the replacement with short distance sampling, the prediction accuracy of the optimal sampling design (regular grid combined with completely random) was increased by 4%-7%. The prediction accuracy of the spatial variability of soil respiration was most obviously improved when the proportion of short distance samples was 10% of the whole size. This study found that setting short distance samples based on the same sample size could increase the sample density within a region and improve the prediction accuracy of soil respiration spatial variation and the reliability of experimental results. Therefore, a completely random sampling design combined with a regular grid and 10% short distance samples is a better choice for the soil respiration spatial variation estimation of a 1 km×1 km plot in a summer maize field from the northern part of the Huang-Huai-Hai Plain. The results of this study provide guidance for relevant research and field sampling designs.
Key words:Soil respiration/
Spatial variation/
Sampling design/
Prediction accuracy/
Short distance sample/
Ordinary Kriging
HTML全文
图1研究区域不同样点布设方案的样点分布图
Figure1.Samples distribution of different sampling methods in the study area
下载: 全尺寸图片幻灯片
图2不同样点布设方案下基于普通克里金插值的土壤呼吸空间分布特征(上:无短距离样点; 下: 10%短距离样点)
Figure2.Spatial distribution of soil respiration rate based on Ordinary Kriging interpolation under different sampling methods (top: no short distance samples; bottom: with 10% short distance samples)
下载: 全尺寸图片幻灯片
图3不同样点布设方案下土壤呼吸速率预测相关系数和均方根预测误差(RMSE)随短距离样点占比增加的变化
Figure3.Variation of estimation correlation coefficient and root mean square prediction error (RMSE) of soil respiration rate with the proportion of short distance samples under different sampling methods
下载: 全尺寸图片幻灯片
表1不同样点设计方案的样点布设方法
Table1.Sample layout of different sampling methods
布点方案 Sampling method | 基础布点方法 Basic sampling method | 短距离样点数 Short distance samples number1) |
a | 规则格网点(49个样点) Regular grid (7×7 unit with plots spacing of 167 m) | 样点总数的0~14%, 0~7个逐个增加 0-7 (0-14% of total samples) short distance samples |
b | 完全随机点(49个样点) Completely random (49 samples, average samples spacing 433 m) | 样点总数的0~14%, 0~7个逐个增加 0-7 (0-14% of total samples) short distance samples |
c | 规则格网点(9个样点)+完全随机点(40个) Regular grid (9 samples) and completely random (40 samples) | 样点总数的0~14%, 0~7个逐个增加 0-7 (0-14% of total samples) short distance samples |
1)在增加短距离样点数的同时, 相应随机减少常规布设的样点数。1) The total number of every sampling method is kept the same at 49 samples, including basic samples and short distance samples, i.e. with the increase of short distance samples number, the basic samples number decreased. |
下载: 导出CSV
表2不同样点布设方案下土壤呼吸速率的描述性统计结果
Table2.Descriptive statistical results of soil respiration rate of different sampling methods
布点设计Sampling method | 最小值 Min (μmol?m-2?s-1) | 最大值 Max (μmol?m-2?s-1) | 平均值 Average (μmol?m-2?s-1) | 标准差 Standard deviation (μmol?m-2?s-1) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 Coefficient of variation (%) | K-S检验(P值) K-S test (P value) | ||
基础布点方法 Basic method | 短距离样点比 Ratio of short distance samples (%) | |||||||||
全部采样点All sampling | 1.16 | 4.88 | 2.65 | 0.72 | 0.58 | 0.41 | 27 | 0.84 | ||
规则格网 Regular grid | 0 | 1.58 | 4.88 | 2.89 | 0.76 | 0.72 | –0.21 | 26 | 0.92 | |
10 | 1.58 | 4.88 | 2.86 | 0.74 | 0.71 | –0.18 | 26 | 0.91 | ||
完全随机 Completely random | 0 | 1.16 | 4.88 | 2.49 | 0.65 | 0.38 | 0.50 | 26 | 0.91 | |
10 | 1.16 | 4.88 | 2.51 | 0.64 | 0.35 | 0.55 | 26 | 0.91 | ||
规则格网+完全随机 Regular grid + completely random | 0 | 1.16 | 4.28 | 2.55 | 0.67 | 0.26 | 0.18 | 26 | 0.86 | |
10 | 1.16 | 4.28 | 2.61 | 0.67 | 0.28 | 0.15 | 26 | 0.86 |
下载: 导出CSV
表3不同样点布设方案下土壤呼吸空间半变差函数模型及参数
Table3.Semi-variation function models and parameters of soil respiration under different sampling methods
基础布点方法 Basic sampling method | 模型 Model | 模型参数 Model parameter | 短距离样本点占比Ratio of short distance samples (%) | |||||||
0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | |||
规则格网 Regular grid | 球状 Spherical | C0/(C0+C) (%) | 48 | 50 | 54 | 60 | 63 | 70 | 69 | 71 |
R2 | 0.58 | 0.6 | 0.6 | 0.6 | 0.63 | 0.68 | 0.67 | 0.68 | ||
C0 | 0.11 | 0.08 | 0.07 | 0.07 | 0.08 | 0.06 | 0.06 | 0.06 | ||
变程Range (m) | 296 | 325 | 312 | 350 | 314 | 307 | 307 | 301 | ||
完全随机 Completely random | 球状 Spherical | C0/(C0+C) (%) | 42 | 49 | 55 | 57 | 62 | 68 | 70 | 70 |
R2 | 0.47 | 0.56 | 0.57 | 0.59 | 0.61 | 0.62 | 0.65 | 0.65 | ||
C0 | 0.16 | 0.12 | 0.1 | 0.1 | 0.1 | 0.09 | 0.08 | 0.08 | ||
变程Range (m) | 325 | 306 | 249 | 247 | 296 | 315 | 317 | 306 | ||
规则格网+完全随机 Regular grid + completely random | 球状 Spherical | C0/(C0+C) (%) | 55 | 53 | 52 | 56 | 65 | 70 | 71 | 72 |
R2 | 0.68 | 0.65 | 0.64 | 0.69 | 0.74 | 0.78 | 0.8 | 0.8 | ||
C0 | 0.05 | 0.03 | 0.03 | 0.05 | 0.05 | 0.05 | 0.04 | 0.03 | ||
变程Range (m) | 305 | 289 | 270 | 287 | 295 | 295 | 312 | 308 |
下载: 导出CSV
表4研究区土壤呼吸与土壤温度、土壤水分的 Pearson相关性分析
Table4.Correlation among soil respiration, soil temperature and soil moisture
土壤呼吸 Soil respiration | 土壤水分 Soil moisture | 土壤温度Soil temperature | ||
5 cm | 10 cm | |||
土壤呼吸 Soil respiration | 1.000 | 0.179 | 0.020 | 0.023 |
土壤水分 Soil moisture | 1.000 | 0.044 | –0.005 |
下载: 导出CSV
参考文献
[1] | 李玉宁, 王关玉, 李伟.土壤呼吸作用和全球碳循环[J].地学前缘, 2002, 9(2):351-357 doi: 10.3321/j.issn:1005-2321.2002.02.013 LI Y N, WANG G Y, LI W, et al. Soil respiration and carbon cycle[J]. Earth Science Frontiers, 2002, 9(2):351-357 doi: 10.3321/j.issn:1005-2321.2002.02.013 |
[2] | LARK R M, MARCHANT B P. How should a spatial-coverage sample design for a geostatistical soil survey be supplemented to support estimation of spatial covariance parameters?[J]. Geoderma, 2018, 319:89-99 doi: 10.1016/j.geoderma.2017.12.022 |
[3] | STEIN M L. Interpolation of Spatial Data[M]. New York:Springer New York, 1999 |
[4] | HASKARD K A, CULLIS B, VERBYLA A P. Anisotropic Matérn correlation and spatial prediction using REML[J]. Journal of Agricultural, Biological, and Environmental Statistics, 2007, 12(2):147-160 doi: 10.1198/108571107X196004 |
[5] | 杨琳, 朱阿兴, 秦承志, 等.一种基于样点代表性等级的土壤采样设计方法[J].土壤学报, 2011, 48(5):938-946 http://d.old.wanfangdata.com.cn/Periodical/trxb201105006 YANG L, ZHU A X, QIN C Z, et al. A soil sampling method based on representativeness grade of sampling points[J]. Acta Pedologica Sinica, 2011, 48(5):938-946 http://d.old.wanfangdata.com.cn/Periodical/trxb201105006 |
[6] | 申祥民, 雷晓云, 陈大春, 等.不同布点方式的膜下滴灌棉田土壤水分的空间变异研究[J].新疆农业大学学报, 2010, 33(4):363-368 doi: 10.3969/j.issn.1007-8614.2010.04.018 SHEN X M, LEI X Y, CHEN D C, et al. Study on spatial variability of cotton soil moisture parameter under mulch drip irrigation at different sampling point[J]. Journal of Xinjiang Agricultural University, 2010, 33(4):363-368 doi: 10.3969/j.issn.1007-8614.2010.04.018 |
[7] | WANG X J, QI F. The effects of sampling design on spatial structure analysis of contaminated soil[J]. Science of the Total Environment, 1998, 224(1/2/3):29-41 doi: 10.1016-S0048-9697(98)00278-2/ |
[8] | BHATTACHARJEE S, MITRA P, GHOSH S K. Spatial interpolation to predict missing attributes in GIS using semantic kriging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8):4771-4780 doi: 10.1109/TGRS.2013.2284489 |
[9] | 杨顺华, 张海涛, 郭龙, 等.基于回归和地理加权回归Kriging的土壤有机质空间插值[J].应用生态学报, 2015, 26(6):1649-1656 http://d.old.wanfangdata.com.cn/Periodical/yystxb201506007 YANG S H, ZHANG H T, GUO L, et al. Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging[J]. Chinese Journal of Applied Ecology, 2015, 26(6):1649-1656 http://d.old.wanfangdata.com.cn/Periodical/yystxb201506007 |
[10] | 郭龙, 张海涛, 陈家赢, 等.基于协同克里格插值和地理加权回归模型的土壤属性空间预测比较[J].土壤学报, 2012, 49(5):1037-1042 http://d.old.wanfangdata.com.cn/Periodical/trxb201205023 GUO L, ZHANG H T, CHEN J Y, et al. Comparison between co-Kriging model and geographically weighted regression model in spatial prediction of soil attributes[J]. Acta Pedologica Sinica, 2012, 49(5):1037-1042 http://d.old.wanfangdata.com.cn/Periodical/trxb201205023 |
[11] | 李艳, 史舟, 徐建明, 等.地统计学在土壤科学中的应用及展望[J].水土保持学报, 2003, 17(1):178-182 doi: 10.3321/j.issn:1009-2242.2003.01.046 LI Y, SHI Z, XU J M, et al. Utilization and perspective of geostatistics in soil sciences[J]. Journal of Soil and Water Conservation, 2003, 17(1):178-182 doi: 10.3321/j.issn:1009-2242.2003.01.046 |
[12] | 贾振宇, 张俊华, 丁圣彦, 等.基于GIS和地统计学的黄泛区土壤磷空间变异——以周口为例[J].应用生态学报, 2016, 27(4):1211-1220 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201604026 JIA Z Y, ZHANG J H, DING S Y, et al. Spatial variation of soil phosphorus in flooded area of the Yellow River based on GIS and geo-statistical methods:A case study in Zhoukou City, Henan, China[J]. Chinese Journal of Applied Ecology, 2016, 27(4):1211-1220 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201604026 |
[13] | 于伟宣, 赵明松, 王萌, 等.采样数量与空间插值方法对土壤属性预测精度的影响[J].科学技术与工程, 2017, 17(25):186-191 doi: 10.3969/j.issn.1671-1815.2017.25.030 YU W X, ZHAO M S, WANG M, et al. Effects of sampling sizes and spatial interpolation methods on prediction accuracy of soil properties[J]. Science Technology and Engineering, 2017, 17(25):186-191 doi: 10.3969/j.issn.1671-1815.2017.25.030 |
[14] | 张贝尔, 黄标, 赵永存, 等.采样数量与空间插值方法对华北平原典型区土壤质量评价空间预测精度的影响[J].土壤, 2013, 45(3):540-547 doi: 10.3969/j.issn.0253-9829.2013.03.026 ZHANG B E, HUANG B, ZHAO Y C, et al. Effects of sampling sizes and spatial interpolation method on spatial prediction accuracy of soil fertility quality index in the major grain-producing region of the North China Plain[J]. Soils, 2013, 45(3):540-547 doi: 10.3969/j.issn.0253-9829.2013.03.026 |
[15] | 张恒, 董川成, 牛屾, 等.不同采样方法对细小可燃物含水率预测模型精度的影响[J].中南林业科技大学学报, 2018, 38(5):33-39 http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201805006 ZHANG H, DONG C C, NIU S, et al. Effects of different sampling methods on forecast model accuracy of predicting fuels in forests in Pangu forest farm[J]. Journal of Central South University of Forestry & Technology, 2018, 38(5):33-39 http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201805006 |
[16] | 张忠启, 史学正, 于东升, 等.红壤区土壤有机质和全氮含量的空间预测方法[J].生态学报, 2010, 30(19):5338-5345 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201019025 ZHANG Z Q, SHI X Z, YU D S, et al. Spatial prediction of soil organic matter and total nitrogen in the hilly red soil region, China[J]. Acta Ecologica Sinica, 2010, 30(19):5338-5345 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201019025 |
[17] | OLIVER M A. Geostatistics and its application to soil science[J]. Soil Use & Management, 20103, 3(1):8-20 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1475-2743.1987.tb00703.x |
[18] | 巫振富, 赵彦锋, 程道全, 等.样点数量与空间分布对县域尺度土壤属性空间预测效果的影响[J].土壤学报, 2019, 27(2):1-17 WU Z F, ZHAO Y F, CHEN D Q, et al. Influences of sample size and spatial distribution on accuracy of predictive soil mapping on a county scale[J]. Acta Pedologica Sinica, 2019, 27(2):1-17 |
[19] | 赵明松, 张甘霖, 王德彩, 等.徐淮黄泛平原土壤有机质空间变异特征及主控因素分析[J].土壤学报, 2013, 50(1):1-11 http://d.old.wanfangdata.com.cn/Periodical/trxb201301001 ZHAO M S, ZHANG G L, WANG D C, et al. Spatial variability of soil organic matter and its dominating factors in Xu-Huai alluvial plain[J]. Acta Pedologica Sinica, 2013, 50(1):1-11 http://d.old.wanfangdata.com.cn/Periodical/trxb201301001 |
[20] | 邵娜, 张认连, 张维理, 等.大尺度采样下不同模型方法预测土壤全氮空间分布研究——以海南岛为例[J].中国土壤与肥料, 2015(6):9-17 http://d.old.wanfangdata.com.cn/Periodical/trfl201506003 SHAO N, ZHANG R L, ZHANG W L, et al. Spatial prediction of soil total nitrogen by different methods in large scale-A case study of Hainan Island[J]. Soil and Fertilizer Sciences in China, 2015(6):9-17 http://d.old.wanfangdata.com.cn/Periodical/trfl201506003 |
[21] | 海南, 赵永存, 田康, 等.不同样点数量对土壤有机质空间变异表达的影响[J].土壤学报, 2015, 52(4):783-791 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201504008 HAI N, ZHAO Y C, TIAN K, et al. Effect of number of sampling sites on characterization of spatial variability of soil organic matter[J]. Acta Pedologica Sinica, 2015, 52(4):783-791 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201504008 |
[22] | 王志刚, 赵永存, 黄标, 等.采样点数量对长三角典型地区土壤肥力指标空间变异解析的影响[J].土壤, 2010, 42(3):421-428 http://d.old.wanfangdata.com.cn/Periodical/tr201003015 WANG Z G, ZHAO Y C, HUANG B, et al. Effects of sample size on spatial characterization of soil fertility properties in an agricultural area of the Yangtze River Delta Region, China[J]. Soils, 2010, 42(3):421-428 http://d.old.wanfangdata.com.cn/Periodical/tr201003015 |
[23] | 苏晓燕, 赵永存, 杨浩, 等.不同采样点数量下土壤有机质含量空间预测方法对比[J].地学前缘, 2011, 18(6):34-40 http://d.old.wanfangdata.com.cn/Periodical/dxqy201106007 SU X Y, ZHAO Y C, YANG H, et al. A comparison of predictive methods for mapping the spatial distribution of soil organic matter content with different sampling densities[J]. Earth Science Frontiers, 2011, 18(6):34-40 http://d.old.wanfangdata.com.cn/Periodical/dxqy201106007 |
[24] | 杨启红, 陈丽华, 王宇.不同采样密度的土壤水分特征参数预测[J].灌溉排水学报, 2009, 28(3):24-26 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ggps200903007 YANG Q H, CHEN L H, WANG Y. Predicting parameters of soil moisture at different sampling intensities[J]. Journal of Irrigation and Drainage, 2009, 28(3):24-26 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ggps200903007 |
[25] | WANG Y Q, ZHANG X C, ZHANG J L, et al. Spatial variability of soil organic carbon in a watershed on the Loess Plateau[J]. Pedosphere, 2009, 19(4):486-495 doi: 10.1016/S1002-0160(09)60141-7 |
[26] | 刘昊, 曹国军, 耿玉辉, 等.不同农业废弃物还田对土壤碳排放及碳固定的影响[J].水土保持学报, 2016, 30(3):239-243 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201603041 LIU H, CAO G J, GENG Y H, et al. Effects of different agricultural residues on soil carbon emission and carbon fixation[J]. Journal of Soil and Water Conservation, 2016, 30(3):239-243 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201603041 |
[27] | 王珂, 沈掌泉, John S. Bailey, 等.精确农业田间土壤空间变异与采样方式研究[J].农业工程学报, 2001, 17(2):33-36 doi: 10.3321/j.issn:1002-6819.2001.02.009 WANG K, SHEN Z Q, BAILEY J S, et al. Spatial variants and sampling strategies of soil properties for precision agriculture[J]. Transactions of the CSAE, 2001, 17(2):33-36 doi: 10.3321/j.issn:1002-6819.2001.02.009 |
[28] | 范曼曼, 吴鹏豹, 张欢, 等.采样密度对土壤有机质空间变异解析的影响[J].农业现代化研究, 2016, 37(3):594-600 http://d.old.wanfangdata.com.cn/Periodical/nyxdhyj201603026 FAN M M, WU P B, ZHANG H, et al. Effect of sampling density on spatial variability analysis of soil organic matter[J]. Research of Agricultural Modernization, 2016, 37(3):594-600 http://d.old.wanfangdata.com.cn/Periodical/nyxdhyj201603026 |
[29] | 江叶枫, 郭熙, 叶英聪, 等.基于辅助变量和神经网络模型的土壤有机质空间分布模拟[J].长江流域资源与环境, 2017, 26(8):1150-1158 http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201708005 JIANG Y F, GUO X, YE Y C, et al. Simulation of distribution of soil organic matter based on auxiliary variables and neural network model[J]. Resources and Environment in the Yangtze Basin, 2017, 26(8):1150-1158 http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201708005 |