删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

有机培肥与耕作方式对稻麦轮作土壤团聚体和有机碳组分的影响

本站小编 Free考研考试/2022-01-01

张志毅1,,
熊桂云1,,,
吴茂前1,
范先鹏1,
冯婷婷1,
巴瑞先1,
段申荣2
1.湖北省农业科学院植保土肥研究所/湖北省农业面源污染防治工程技术研究中心/农业农村部潜江农业环境与耕地保育科学观测实验站/农业农村部废弃物肥料化利用重点实验室/农业环境治理湖北省工程研究中心 武汉 430064
2.湖北省宜昌市兴山县古夫镇农业技术服务中心 宜昌 443799
基金项目: 国家重点研发计划项目2016YFD0300902
湖北省农业科学院重大专项项目2017CGPY03

详细信息
作者简介:张志毅, 研究方向为土壤培肥及重金属修复。E-mail:zzyouxin@163.com
通讯作者:熊桂云, 研究方向为农业面源污染防控及作物平衡施肥技术研究与推广。E-mail:xionggy@sina.com
中图分类号:S154.1

计量

文章访问数:440
HTML全文浏览量:9
PDF下载量:452
被引次数:0
出版历程

收稿日期:2019-08-21
录用日期:2019-11-28
刊出日期:2020-03-01

Effects of organic fertilization and tillage method on soil aggregates and organic carbon fractions in a wheat-rice system

ZHANG Zhiyi1,,
XIONG Guiyun1,,,
WU Maoqian1,
FAN Xianpeng1,
FENG Tingting1,
BA Ruixian1,
DUAN Shenrong2
1. Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences/Hubei Engineering Research Center for Agricultural Non-point Source Pollution Control/Qianjiang Scientific Observing and Experimental Station of Agro-Environment and Arable Land Conservation, Ministry of Agriculture and Rural Affairs, P. R. China/Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, P. R. China/Hubei Engineering Research Center for Agricultural Environmental Control, Wuhan 430064, China
2. Agricultural Technology Service Center of Gufu Town, Xingshan County, Yichang City, Hubei Province, Yichang 443799, China
Funds: the National Key Research and Development Project of China2016YFD0300902
the Major Special Projects of Hubei Academy of Agricultural Sciences2017CGPY03

More Information
Corresponding author:XIONG Guiyun, E-mail: xionggy@sina.com


摘要
HTML全文
(2)(5)
参考文献(35)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为了明确不同外源有机物和耕作方式对土壤地力培育的影响,以水稻-小麦轮作系统为对象,通过2个年度(2016-2018年)大田试验研究了外源有机物(秸秆和有机肥)和耕作方式及其交互作用[稻麦秸秆还田配合旋耕(SR),稻麦秸秆还田配合翻耕(SP),秸秆不还田、增施有机肥配合旋耕(MR),秸秆不还田、增施有机肥配合翻耕(MP),秸秆不还田、不施用有机肥、旋耕深度15 cm(CKR)]对土壤团聚体和有机碳组成的短期影响。结果表明:SR处理能够降低水稻季土壤容重并增加总孔隙度。相比CKR,小麦季SR处理显著增加>0.05 mm水稳性团聚体含量,增加量为7.2%。此外,外源有机物和耕作对土壤有机碳活性组分具有显著影响。其中,易氧化有机碳(EOC)主要受耕作与有机物交互作用影响,酸水解有机碳(LPIc和LPIIc)主要受耕作措施的影响,SR处理的土壤EOC和LPIc含量比CKR提高0.3~2.6 g·kg-1。颗粒有机碳(POC)主要受外源有机物的影响,并且秸秆还田处理POC平均含量高于增施有机肥处理,增加量为0.75 g·kg-1。短期内,外源有机物和耕作及其交互作用对稳定性有机碳(黑碳和矿物结合态有机碳)的影响较小。综上,秸秆还田配合旋耕有助于提高土壤水稳性团聚体和活性有机碳的含量(EOC、LPIc和POC)。
关键词:水稻-小麦轮作/
秸秆还田/
耕作措施/
土壤团聚体/
活性有机碳/
稳定性有机碳
Abstract:In order to clarify the effect of different exogenous organic materials and tillage methods on soil fertility, with the rice and wheat rotation system as the study object, a two-year field experiment was conducted to study the short-term effects of different exogenous organic materials, tillage methods, and their interactions on soil aggregate and organic carbon composition. The results revealed that straw returning with rotary tillage method could decrease soil bulk density and increase total porosity. Compared with non-straw-returning treatment (CKR), the >0.05-mm water-stable aggregate content with straw-returning treatment under rotary tillage (SR) significantly increased (7.2%) in the wheat growing season. In addition, exogenous organic matter and tillage methods had significant effects on soil active organic carbon. Among them, easily oxidized organic carbon (EOC) was significantly affected by the interaction of exogenous organic materials and tillage method, and the acid-hydrolyzed organic carbon (LPIc and LPIIc) was significantly affected by the tillage method. Compared with CKR treatment, the concentration of EOC and LPIc with straw-returning treatment under rotary tillage increased by 0.3-2.6 g·kg-1. The content of particulate organic carbon (POC) was significantly affected by exogenous organic materials, and the average POC content with straw-returning treatments was higher than that with organic fertilizer application treatments (increased by 0.75 g·kg-1). In the short term, exogenous organic materials, tillage methods, and their interactions had negligible effect on the stability of organic carbon (black carbon and mineral-bonded organic carbon). In conclusion, straw returning combined with rotary tillage could improve the content of soil water-stable aggregates and active organic carbon (EOC, LPIc, and POC).
Key words:Wheat-rice system/
Straw returning/
Tillage method/
Soil aggregates/
Active organic carbon/
Stable organic carbon

HTML全文


图1外源有机物和耕作方式对稻麦轮作系统作物收获后土壤团聚体分布特征的影响
CKR:秸秆不还田、不施有机肥, 旋耕; SR:秸秆旋耕还田; SP:秸秆翻耕还田; MR:增施有机肥, 旋耕; MP:增施有机肥, 翻耕。不同小写字母表示各处理间差异显著(P < 0.05)。
Figure1.Effects of exogenous organic materials and tillage methods on distribution characteristic of soil aggregates after crop harvest of rice-wheat rotation system
CKR: rotary tillage without straw returning and organic fertilizer application; SR: rotary tillage with straw returning; SP: ploughing with straw returning; MR: rotary tillage with organic fertilizer application; MP: ploughing with organic fertilizer application. Different lowercase letters mean significant differences among different treatments at 0.05 level.


下载: 全尺寸图片幻灯片


图22017年和2018年外源有机物和耕作方式对稻麦轮作系统作物产量的影响
CKR:秸秆不还田、不施有机肥, 旋耕; SR:秸秆旋耕还田; SP:秸秆翻耕还田; MR:增施有机肥, 旋耕; MP:增施有机肥, 翻耕。不同小写字母表示各处理间差异显著(P < 0.05)。
Figure2.Effects of exogenous organic materials and tillage methods on grain yield of rice-wheat rotation system in 2017 and 2018
CKR: rotary tillage without straw returning and organic fertilizer application; SR: rotary tillage with straw returning; SP: ploughing with straw returning; MR: rotary tillage with organic fertilizer application; MP: ploughing with organic fertilizer application. Different lowercase letters mean significant differences among treatments at 0.05 level.


下载: 全尺寸图片幻灯片

表1外源有机物和耕作方式对稻麦轮作系统作物收获后土壤容重和孔隙度的影响
Table1.Effects of exogenous organic materials and tillage methods on soil bulk density and porosity after crop harvest of rice-wheat rotation system
作物季
Corp season
处理
Treatment
容重
Bulk density (g·cm?3)
总孔隙度
Total porosity (%)
毛管孔隙度
Capillary porosity (%)
小麦季
Wheat season
CKR 1.15±0.02a 56.73±0.91a 53.77±1.08ab
SR 1.11±0.02a 57.93±0.68a 59.50±2.48a
SP 1.07±0.04a 59.53±1.50a 54.85±0.07ab
MR 1.10±0.10a 58.40±3.63a 54.46±2.42ab
MP 1.10±0.10a 58.56±3.81a 51.98±0.46b
水稻季
Rice season
CKR 1.23±0.01a 53.67±0.39b 46.66±1.18a
SR 1.14±0.03b 57.13±1.24a 49.31±0.06a
SP 1.24±0.01a 53.04±0.34b 46.84±2.35a
MR 1.23±0.01a 53.48±0.54b 47.74±0.51a
MP 1.30±0.02a 50.95±0.70b 45.79±0.91a
CKR:秸秆不还田、不施有机肥, 旋耕; SR:秸秆旋耕还田; SP:秸秆翻耕还田; MR:增施有机肥, 旋耕; MP:增施有机肥, 翻耕。同列同作物季不同小写字母表示各处理间差异显著(P < 0.05)。CKR: rotary tillage without straw returning and organic fertilizer application; SR: rotary tillage with straw returning; SP: ploughing with straw returning; MR: rotary tillage with organic fertilizer application; MP: ploughing with organic fertilizer application. Different lowercase letters in the same column for the same crop season mean significant differences among treatments at 0.05 level.


下载: 导出CSV
表2外源有机物和耕作方式对稻麦轮作系统土壤有机碳活性组分的影响
Table2.Effects of exogenous organic materials and tillage methods on active components of soil organic carbon of rice-wheat rotation system
处理
Treatment
DOC (mg·kg?1) EOC (g·kg?1) LPⅠc (g·kg?1) LPⅡc (g·kg?1) HClc (g·kg?1) POC (g·kg?1)
CKR 89.1±4.3b 1.4±0.1b 7.9±0.4b 1.7±0.0b 5.1±0.9a 4.4±0.4b
SR 107.7±7.3ab 1.7±0.1a 10.5±1.8a 2.9±0.0a 5.6±0.0a 5.4±0.5a
SP 93.9±8.8ab 1.5±0.1a 8.0±0.2b 3.4±0.2a 5.5±0.3a 4.9±0.1ab
MR 97.4±1.6ab 1.3±0.0b 8.7±0.6ab 3.0±0.1a 5.5±0.5a 4.3±0.2b
MP 112.1±8.6a 1.6±0.0a 8.5±0.3b 3.1±0.0a 6.2±0.4a 4.5±1.7b
CKR:秸秆不还田、不施有机肥, 旋耕; SR:秸秆旋耕还田; SP:秸秆翻耕还田; MR:增施有机肥, 旋耕; MP:增施有机肥, 翻耕。DOC:水溶性有机碳; EOC: 333 mmol·L-1 KMnO4提取的有机碳; LPⅠc: 2.5 mol·L-1 H2SO4提取的有机碳; LPⅡc: 1 mol·L-1 H2SO4提取的有机碳; HClc: 6 mol·L-1 HCl提取的有机碳; POC:颗粒有机碳。同列不同小写字母表示各处理间差异显著(P < 0.05)。CKR: rotary tillage without straw returning and organic fertilizer application; SR: rotary tillage with straw returning; SP: ploughing with straw returning; MR: rotary tillage with organic fertilizer application; MP: ploughing with organic fertilizer application. DOC: dissolve organic carbon; EOC: organic carbon extracted by 333 mmol·L-1 KMnO4; LPⅠc: organic carbon extracted by 2.5 mol·L-1 H2SO4; LPⅡc: organic carbon extracted by 1 mol·L-1 H2SO4; HClc: organic carbon extracted by 6 mol·L-1 HCl; POC: particulate organic carbon. Different lowercase letters in the same column mean significant differences among treatments at 0.05 level.


下载: 导出CSV
表3外源有机物和耕作方式对稻麦轮作系统土壤有机碳组分及其稳定性的影响
Table3.Effects of exogenous organic materials and tillage methods on components and stability of soil organic carbon of rice-wheat rotation system
处理Treatment SOC (g·kg?1) BC (g·kg?1) MOC (g·kg?1) BC/SOC MOC/SOC
CKR 12.6±1.0b 5.0±0.0b 4.4±0.2b 0.38 0.31
SR 14.2±0.1ab 5.4±0.1ab 4.6±0.0ab 0.38 0.32
SP 13.4±1.5ab 5.4±0.1ab 4.8±0.1ab 0.40 0.36
MR 13.3±1.1ab 5.5±0.1ab 5.1±0.1a 0.41 0.38
MP 13.5±1.1ab 5.8±0.1a 5.0±0.1ab 0.43 0.37
CKR:秸秆不还田、不施有机肥, 旋耕; SR:秸秆旋耕还田; SP:秸秆翻耕还田; MR:增施有机肥, 旋耕; MP:增施有机肥, 翻耕。SOC:总有机碳; BC:黑碳; MOC:矿物结合态有机碳。同列不同小写字母表示各处理间差异显著(P < 0.05)。CKR: rotary tillage without straw returning and organic fertilizer application; SR: rotary tillage with straw returning; SP: ploughing with straw returning; MR: rotary tillage with organic fertilizer application; MP: ploughing with organic fertilizer application. SOC: total organic carbon; BC: black carbon; MOC: mineral-bonded organic carbon. Different lowercase letters in the same column mean significant differences among treatments at 0.05 level.


下载: 导出CSV
表4耕作因素、有机物及其交互效应对稻麦轮作系统土壤团聚体的作用力
Table4.Affecting forces of tillage methods, organic materials and their interaction on soil aggregates of rice-wheat rotation system ?%
差异来源
Difference source
土壤团聚体粒径Soil aggregates size (mm)
> 2 0.25~2 0.05~0.25 < 0.05
区组Block 6.3 19.8 8.0 7.4
耕作Tillage 0.2 9.3 2.1 16.3
有机物Organic materials 36.4 5.0 9.6 4.1
耕作×有机物Tillage × organic materials 1.4 33.1* 64.5* 0.2
误差Error 55.6 33.0 15.8 72.0
*表示影响显著(P < 0.05)。* means significant effect at P < 0.05 level.


下载: 导出CSV
表5耕作因素、有机物及其交互效应对稻麦轮作系统土壤有机碳组分的作用力
Table5.Affecting forces of tillage methods and organic materials and their interaction on soil organic carbon fractions of rice-wheat rotation system ?%
差异来源
Difference source
有机碳组分Fraction of soil organic carbon
DOC EOC LPⅠc LPⅡc HClc POC SOC BC MOC
区组Block 18.4 1.2 4.4 21.5 20.4 25.3 9.1 7.4 21.1
耕作Tillage 0.0 23.4 27.7 26.6* 6.5 1.8 6.1 5.5 3.5
有机物Organic materials 2.7 0.1 6.3 3.6 10.2 40.5* 14.5 15.0 32.1
耕作×有机物Tillage × organic materials 36.4 53.0 20.6 22.8* 12.6 9.6 25.0 4.5 6.4
误差Error 42.4 24.0 41.0 25.6 50.2 22.9 45.3 67.7 36.9
DOC:水溶性有机碳; EOC: 333 mmol·L-1 KMnO4提取的有机碳; LPⅠc: 2.5 mol·L-1 H2SO4提取的有机碳; LPⅡc: 1 mol·L-1 H2SO4提取的有机碳; HClc: 6 mol·L-1 HCl提取的有机碳; POC:颗粒有机碳; SOC:总有机碳; BC:黑碳; MOC:矿物结合态有机碳。*表示影响显著(P < 0.05)。DOC: dissolve organic carbon; EOC: organic carbon extracted by 333 mmol·L-1 KMnO4; LPⅠc: organic carbon extracted by 2.5 mol·L-1 H2SO4; LPⅡc: organic carbon extracted by 1 mol·L-1 H2SO4; HClc: organic carbon extracted by 6 mol·L-1 HCl; POC: particulate organic carbon; SOC: total organic carbon; BC: black carbon; MOC: mineral-bonded organic carbon. * means significant effect at P < 0.05 level.


下载: 导出CSV

参考文献(35)
[1]王淑兰, 王浩, 李娟, 等.不同耕作方式下长期秸秆还田对旱作春玉米田土壤碳、氮、水含量及产量的影响[J].应用生态学报, 2016, 27(5):1530-1540 http://d.old.wanfangdata.com.cn/Periodical/yystxb201605023
WANG S L, WANG H, LI J, et al. Effects of long-term straw mulching on soil organic carbon, nitrogen and moisture and spring maize yield on rain-fed croplands under different patterns of soil tillage practice[J]. Chinese Journal of Applied Ecology, 2016, 27(5):1530-1540 http://d.old.wanfangdata.com.cn/Periodical/yystxb201605023
[2]赵其国, 滕应, 黄国勤.中国探索实行耕地轮作休耕制度试点问题的战略思考[J].生态环境学报, 2017, 26(1):1-5 http://d.old.wanfangdata.com.cn/Periodical/tryhj201701001
ZHAO Q G, TENG Y, HUANG G Q. Consideration about exploring pilot program of farmland rotation and fallow system in China[J]. Ecology and Environmental Sciences, 2017, 26(1):1-5 http://d.old.wanfangdata.com.cn/Periodical/tryhj201701001
[3]王丽, 李军, 李娟, 等.轮耕与施肥对渭北旱作玉米田土壤团聚体和有机碳含量的影响[J].应用生态学报, 2014, 25(3):759-768 http://d.old.wanfangdata.com.cn/Periodical/yystxb201403019
WANG L, LI J, LI J, et al. Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei Highland[J]. Chinese Journal of Applied Ecology, 2014, 25(3):759-768 http://d.old.wanfangdata.com.cn/Periodical/yystxb201403019
[4]陈小云, 郭菊花, 刘满强, 等.施肥对红壤性水稻土有机碳活性和难降解性组分的影响[J].土壤学报, 2011, 48(1):125-131 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201101016
CHEN X Y, GUO J H, LIU M Q, et al. Effects of fertilization on lability and recalcitrancy of organic carbon of red paddy soils[J]. Acta Pedologica Sinica, 2011, 48(1):125-131 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201101016
[5]胡乃娟, 韩新忠, 杨敏芳, 等.秸秆还田对稻麦轮作农田活性有机碳组分含量、酶活性及产量的短期效应[J].植物营养与肥料学报, 2015, 21(2):371-377 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201502011
HU N J, HAN X Z, YANG M F, et al. Short-term influence of straw return on the contents of soil organic carbon fractions, enzyme activities and crop yields in rice-wheat rotation farmland[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2):371-377 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201502011
[6]CAI A D, FENG W T, ZHANG W J, et al. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China[J]. Journal of Environmental Management, 2016, 172:2-9 doi: 10.1016/j.jenvman.2016.02.009
[7]张翰林, 郑宪清, 何七勇, 等.不同秸秆还田年限对稻麦轮作土壤团聚体和有机碳的影响[J].水土保持学报, 2016, 30(4):216-220 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201604037
ZHANG H L, ZHENG X Q, HE Q Y, et al. Effect of years of straw returning on soil aggregates and organic carbon in rice-wheat rotation systems[J]. Journal of Soil and Water Conservation, 2016, 30(4):216-220 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201604037
[8]武均, 蔡立群, 张仁陟, 等.不同耕作措施对旱作农田土壤水稳性团聚体稳定性的影响[J].中国生态农业学报, 2018, 26(3):329-337 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0302&flag=1
WU J, CAI L Q, ZHANG R Z, et al. Effect of tillage practices on soil water-stable aggregate stability in dry farmlands in the Loess Plateau, Central Gansu Province[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3):329-337 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0302&flag=1
[9]杨敏芳, 朱利群, 韩新忠, 等.不同土壤耕作措施与秸秆还田对稻麦两熟制农田土壤活性有机碳组分的短期影响[J].应用生态学报, 2013, 24(5):1387-1393 http://d.old.wanfangdata.com.cn/Periodical/yystxb201305029
YANG M F, ZHU L Q, HAN X Z, et al. Short-term effects of different tillage modes combined with straw-returning on the soil labile organic carbon components in a farmland with rice-wheat double cropping[J]. Chinese Journal of Applied Ecology, 2013, 24(5):1387-1393 http://d.old.wanfangdata.com.cn/Periodical/yystxb201305029
[10]关强, 蒲瑶瑶, 张欣, 等.长期施肥对水稻根系有机酸分泌和土壤有机碳组分的影响[J].土壤, 2018, 50(1):115-121 http://d.old.wanfangdata.com.cn/Periodical/tr201801016
GUAN Q, PU Y Y, ZHANG X, et al. Effects of long-term fertilization on organic acids in root exudates and SOC components of Red paddy soils[J]. Soils, 2018, 50(1):115-121 http://d.old.wanfangdata.com.cn/Periodical/tr201801016
[11]吴萍萍, 李录久, 耿言安, 等.耕作与施肥措施对江淮地区白土理化性质及水稻产量的影响[J].水土保持学报, 2018, 32(6):243-248 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201806035
WU P P, LI L J, GENG Y A, et al. Effects of tillage and fertilization on physicochemical properties of Albic soil and rice yields in Jianghuai region[J]. Journal of Soil and Water Conservation, 2018, 32(6):243-248 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201806035
[12]郭振, 王小利, 段建军, 等.长期施肥对黄壤性水稻土有机碳矿化的影响[J].土壤学报, 2018, 55(1):225-235 http://d.old.wanfangdata.com.cn/Periodical/trxb201801021
GUO Z, WANG X L, DUAN J J, et al. Long-term fertilization and mineralization of soil organic carbon in paddy soil from yellow earth[J]. Acta Pedologica Sinica, 2018, 55(1):225-235 http://d.old.wanfangdata.com.cn/Periodical/trxb201801021
[13]孙凯, 刘振, 胡恒宇, 等.有机培肥与轮耕方式对夏玉米田土壤碳氮和产量的影响[J].作物学报, 2019, 45(3):401-410 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201903008
SUN K, LIU Z, HU H Y, et al. Effect of organic fertilizer and rotational tillage practices on soil carbon and nitrogen and maize yield in wheat-maize cropping system[J]. Acta Agronomica Sinica, 2019, 45(3):401-410 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201903008
[14]梁博, 聂晓刚, 杨东升, 等.西藏尼洋河流域下游5种典型土地利用方式土壤物理性质差异分析[J].西北农林科技大学学报:自然科学版, 2018, 46(1):119-128 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201801016
LIANG B, NIE X G, YANG D S, et al. Differences in soil physical properties of 5 typical land use types in downstream of the Niyang River in Tibet[J]. Journal of Northwest A & F University:Natural Science Edition, 2018, 46(1):119-128 http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201801016
[15]MURPHY D V, MACDONALD A J, STOCKDALE E A, et al. Soluble organic nitrogen in agricultural soils[J]. Biology and Fertility of Soils, 2000, 30(5/6):374-387
[16]BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7):1459 doi: 10.1071/AR9951459
[17]邵月红, 潘剑君, 孙波, 等.农田土壤有机碳库大小及周转[J].生态学杂志, 2006, 25(1):19-23 http://d.old.wanfangdata.com.cn/Periodical/stxzz200601004
SHAO Y H, PAN J J, SUN B, et al. Pool sizes and turnover rates of farmland soil organic carbon[J]. Chinese Journal of Ecology, 2006, 25(1):19-23 http://d.old.wanfangdata.com.cn/Periodical/stxzz200601004
[18]GARTEN C T Jr, POST W M Ⅲ, HANSON P J, et al. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J]. Biogeochemistry, 1999, 45(2):115-145 doi: 10.1007-BF01106778/
[19]EUSTERHUES K, RUMPEL C, KLEBER M, et al. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation[J]. Organic Geochemistry, 2003, 34(12):1591-1600 doi: 10.1016/j.orggeochem.2003.08.007
[20]尹云锋, 杨玉盛, 高人, 等.皆伐火烧对杉木人工林土壤有机碳和黑碳的影响[J].土壤学报, 2009, 46(2):352-355 doi: 10.3321/j.issn:0564-3929.2009.02.023
YIN Y F, YANG Y S, GAO R, et al. Effects of slash burning on soil organic carbon and black carbon in Chinese fir plantation[J]. Acta Pedologica Sinica, 2009, 46(2):352-355 doi: 10.3321/j.issn:0564-3929.2009.02.023
[21]田慎重, 宁堂原, 王瑜, 等.不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响[J].应用生态学报, 2010, 21(2):373-378 http://d.old.wanfangdata.com.cn/Periodical/yystxb201002017
Tian S Z, Ning T Y, Wang Y, et al. Effects of different tillage methods and straw-returning on soil organic carbon content in a winter wheat field[J]. Chinese Journal of Applied Ecology, 2010, 21(2):373-378 http://d.old.wanfangdata.com.cn/Periodical/yystxb201002017
[22]徐嘉晖, 高雷, 孙颖, 等.大兴安岭森林土壤矿物结合态有机碳与黑碳的分布及土壤固碳潜力[J].土壤学报, 2018, 55(1):236-246 http://d.old.wanfangdata.com.cn/Periodical/trxb201801022
XU J H, GAO L, SUN Y, et al. Distribution of mineral-bonded organic carbon and black carbon in forest soils of Great Xing'an Mountains, China and carbon sequestration potential of the soils[J]. Acta Pedologica Sinica, 2018, 55(1):236-246 http://d.old.wanfangdata.com.cn/Periodical/trxb201801022
[23]顾克军, 张传辉, 顾东祥, 等.短期不同秸秆还田与耕作方式对土壤养分与稻麦周年产量的影响[J].西南农业学报, 2017, 30(6):1408-1413 http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201706029
GU K J, ZHANG C H, GU D X, et al. Effects of different straw returning and tillage methods on annual yield and soil nutrients under rice-wheat rotation system in short-term[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(6):1408-1413 http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201706029
[24]朱利群, 张大伟, 卞新民.连续秸秆还田与耕作方式轮换对稻麦轮作田土壤理化性状变化及水稻产量构成的影响[J].土壤通报, 2011, 42(1):81-85 http://d.old.wanfangdata.com.cn/Periodical/trtb201101017
ZHU L Q, ZHANG D W, BIAN X M. Effects of continuous returning straws to field and shifting different tillage methods on changes of physical-chemical properties of soil and yield components of rice[J]. Chinese Journal of Soil Science, 2011, 42(1):81-85 http://d.old.wanfangdata.com.cn/Periodical/trtb201101017
[25]赵军, 李勇, 冉炜, 等.有机肥替代部分化肥对稻麦轮作系统产量及土壤微生物区系的影响[J].南京农业大学学报, 2016, 39(4):594-602 http://d.old.wanfangdata.com.cn/Periodical/njnydxxb201604010
ZHAO J, LI Y, RAN W, et al. Effects of organic manure partial substitution for chemical fertilizer on crop yield and soil microbiome in a rice-wheat cropping system[J]. Journal of Nanjing Agricultural University, 2016, 39(4):594-602 http://d.old.wanfangdata.com.cn/Periodical/njnydxxb201604010
[26]史奕, 陈欣, 沈善敏.有机胶结形成土壤团聚体的机理及理论模型[J].应用生态学报, 2002, 13(11):1495-1498 doi: 10.3321/j.issn:1001-9332.2002.11.033
Shi Y, Chen X, Shen S M. Mechanisms of organic cementing soil aggregate formation and its theoretical models[J]. Chinese Journal of Applied Ecology, 2002, 13(11):1495-1498 doi: 10.3321/j.issn:1001-9332.2002.11.033
[27]苏思慧, 王美佳, 张文可, 等.耕作方式与玉米秸秆条带还田对土壤水稳性团聚体和有机碳分布的影响[J].土壤通报, 2018, 49(4):841-847 http://d.old.wanfangdata.com.cn/Periodical/trtb201804012
SU S H, WANG M J, ZHANG W K, et al. Effects of tillage practices and maize straw incorporation on water-stable aggregates and organic carbon in soils[J]. Chinese Journal of Soil Science, 2018, 49(4):841-847 http://d.old.wanfangdata.com.cn/Periodical/trtb201804012
[28]刘世平, 陈文林, 聂新涛, 等.麦稻两熟地区不同埋深对还田秸秆腐解进程的影响[J].植物营养与肥料学报, 2007, 13(6):1049-1053 doi: 10.3321/j.issn:1008-505x.2007.06.010
LIU S P, CHEN W L, NIE X T, et al. Effect of embedding depth on decomposition course of crop residues in rice-wheat system[J]. Plant Nutrition and Fertilizer Science, 2007, 13(6):1049-1053 doi: 10.3321/j.issn:1008-505x.2007.06.010
[29]张丽敏, 徐明岗, 娄翼来, 等.土壤有机碳分组方法概述[J].中国土壤与肥料, 2014(4):1-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trfl201404001
ZHANG L M, XU M G, LOU Y L, et al. Soil organic carbon fractionation methods[J]. Soil and Fertilizer Sciences in China, 2014(4):1-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trfl201404001
[30]柳敏, 宇万太, 姜子绍, 等.土壤活性有机碳[J].生态学杂志, 2006, 25(11):1412-1417 doi: 10.3321/j.issn:1000-4890.2006.11.022
LIU M, YU W T, JIANG Z S, et al. A research review on soil active organic carbon[J]. Chinese Journal of Ecology, 2006, 25(11):1412-1417 doi: 10.3321/j.issn:1000-4890.2006.11.022
[31]叶雪松.耕作方式对土壤物理性状、酶活性以及燕麦产量的影响[D].呼和浩特: 内蒙古大学, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10126-1015364772.htm
Ye X S. Influence of cultivation methods on soil physical characteristics, enzymatic activity and yield of oats[D]. Hohhot: Inner Mongolia University, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10126-1015364772.htm
[32]CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3):777-783 doi: 10.2136/sssaj1992.03615995005600030017x
[33]王朔林, 王改兰, 赵旭, 等.长期施肥对栗褐土有机碳含量及其组分的影响[J].植物营养与肥料学报, 2015, 21(1):104-111 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201501011
WANG S L, WANG G L, ZHAO X, et al. Effect of long-term fertilization on organic carbon fractions and contents of cinnamon soil[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1):104-111 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201501011
[34]LI J, WEN Y C, LI X H, et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Soil and Tillage Research, 2018, 175:281-290 doi: 10.1016/j.still.2017.08.008
[35]武均, 蔡立群, 张仁陟, 等.耕作措施对旱作农田土壤颗粒态有机碳的影响[J].中国生态农业学报, 2018, 26(5):728-736 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0511&flag=1
WU J, CAI L Q, ZHANG R Z, et al. Distribution of soil particulate organic carbon fractions as affected by tillage practices in dry farmland of the Loess Plateau of central Gansu Province[J]. Chinese Journal of Eco-Agriculture, 2018, 26(5):728-736 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0511&flag=1

相关话题/土壤 系统 作物 农业 农田