删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

间作系统氮调控对小麦氮钾营养及条锈病发生的影响

本站小编 Free考研考试/2022-01-01

朱锦惠1, 2, ?,,
郭增鹏1, ?,,
董坤3,
董艳1,,
1.云南农业大学资源与环境学院 昆明 650201
2.滇西应用技术大学普洱茶学院 普洱 665000
3.云南农业大学动物科学技术学院 昆明 650201
基金项目: 国家自然科学基金项目31560586
国家自然科学基金项目31860596

详细信息
作者简介:朱锦惠, 主要研究方向为植物营养与病害控制, E-mail:jinhuizhu321@163.com
郭增鹏, 主要研究方向为植物营养与病害控制, E-mail:guozp1993@163.com
通讯作者:董艳, 主要从事植物营养与病害控制的研究。E-mail:dongyanyx@163.com
???共同第一作者
中图分类号:S432.4

计量

文章访问数:439
HTML全文浏览量:10
PDF下载量:221
被引次数:0
出版历程

收稿日期:2019-06-28
录用日期:2019-11-17
刊出日期:2020-02-01

Effects of N application on nitrogen and potassium nutrition and stripe rust of wheat in an intercropping system

ZHU Jinhui1, 2, ?,,
GUO Zengpeng1, ?,,
DONG Kun3,
DONG Yan1,,
1. College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
2. College of Tea(Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
3. College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
Funds: the National Natural Science Foundation of China31560586
the National Natural Science Foundation of China31860596

More Information
Corresponding author:DONG Yan, E-mail:dongyanyx@163.com
???Equal contributors


摘要
HTML全文
(5)(3)
参考文献(33)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:通过探讨间作和施氮对小麦植株氮钾养分吸收、分配及条锈病发生的影响,明确氮钾养分吸收和分配与小麦条锈病发生的关系,以期为合理施肥实现控病增产提供理论依据。在云南安宁和峨山两地布置田间小区试验,研究3种施氮水平(0 kg·hm-2、90 kg·hm-2和180 kg·hm-2)和2种种植模式(小麦单作、小麦||蚕豆间作)对小麦植株氮钾含量与分配以及小麦条锈病发病率及病情指数的影响。结果表明,施氮增加了小麦产量,且间作增产效应显著;与单作相比,间作小麦平均显著增产31.9%(安宁)和18.0%(峨山);小麦||蚕豆间作产量优势明显,土地当量比为1.20~1.37(安宁)和1.16~1.27(峨山),但间作增产优势随施氮量增加而降低。施氮在提高产量的同时也加重了小麦条锈病危害,随施氮量增加,单、间作小麦条锈病的发病率和病情指数均呈增加趋势。间作有较好的控病效果,与单作相比,间作小麦发病率、病情指数分别显著降低9.6%~22.0%、23.7%~33.7%(安宁)和29.5%~36.5%、29.3%~39.6%(峨山)。施氮增加了小麦植株氮含量,且主要累积在叶片,叶片氮含量占氮吸收总量的41.3%~47.4%(安宁)和35.9%~44.1%(峨山);但间作显著降低小麦植株氮含量,并显著提高钾含量,因而显著降低了叶片氮/钾比。相关性分析表明,小麦条锈病发病率和病情指数与植株氮含量、叶片氮/钾比呈显著正相关,与钾含量呈极显著负相关。施氮增加了小麦植株氮含量,提高了叶片氮/钾比,进而加剧小麦条锈病发生;而间作则通过增加钾含量,降低小麦植株氮含量及叶片氮/钾比,平衡小麦植株内氮钾养分而增强小麦对条锈病的抗性。
关键词:小麦‖蚕豆间作/
小麦条锈病/
施氮量/
/

Abstract:In order to provide a theoretical basis for rational fertilization to achieve disease control and yield increase of wheat, the effects of nitrogen (N) application levels and intercropping on the absorption and distribution of N and potassium (K) and the occurrence of stripe rust of wheat were studied. A field experiment with three N application rates-0 kg(N)·hm-2 (N0), 90 kg(N)·hm-2 (N1), 180 kg(N)·hm-2 (N2)-and two planting patterns (wheat monocropping, and wheat and faba bean intercropping) were set up in Anning and Eshan, Yunnan Province to study the effect of N application rate and intercropping with faba bean on the content and distribution of N and K, and the incidence and disease index of wheat stripe rust. The results showed that wheat yeld was considerably increased by N application, especially in intercropping. Compared with monocropping, intercropping significantly increased wheat yield averagely by 31.9% (Anning) and 18.0% (Eshan). The yield advantage of wheat-faba bean intercropping was obvious and the land equivalent ratio (LER) was 1.20-1.37 (Anning) and 1.16-1.27 (Eshan) at the N0-N2 levels. However, the yield-increasing effect of intercropping was decreased with increase in the N application rate. N application not only increased the yield, but also aggravated the damage of wheat stripe rust, and therefore, the incidence and disease index were increased by 2.4%-30.0% and 5.6%-38.5% in Anning, and 6.4%-22.4% and 5.3%-43.2% in Eshan, respectively. Intercropping with faba bean presented a better control effect on wheat stripe rust than monocropping. The incidence and disease index of wheat stripe rust were reduced by 9.6%-22.0% and 23.7%-33.7% (Anning) and 29.5%-36.5% and 29.3%-39.6% (Eshan), respectively. The N content was increased by N application, which mainly accumulated in the leaves, accounting for 41.3%-47.4% (Anning) and 35.9%-44.1% (Eshan) of total N absorption. However, the N content was considerably reduced by 17.8%-21.8% (Anning) and 16.2%-16.9% (Eshan), whereas the K content was significantly increased by 22.6%-23.0% (Anning) and 16.2%-18.3% (Eshan), and thus the N/K ratio in the leaves was significantly reduced under intercropping system, compared with that under monocropping system. The correlation analysis showed that the incidence and disease index of wheat stripe rust were positively correlated with the plant N content and leaf N/K ratio, and negatively correlated with the K content. The N content in wheat plants and the N/K ratio in the leaves were increased by N application and thus, the occurrence of wheat stripe rust was aggravated. On the contrary, intercropping enhanced wheat resistance to stripe rust by increasing K content and reducing plant N content and N/K ratio in the leaves, and balancing N and K nutrients in wheat plants.
Key words:Wheat-faba bean intercropping/
Wheat stripe rust/
Nitrogen application rate/
Nitrogen/
Potassium
???Equal contributors

注释:
1) ???共同第一作者

HTML全文


图1小麦单作(左)、小麦‖蚕豆间作(右)小区小麦锈病病害调查示意图
Figure1.Sketch maps of wheat stripe rust investigation samples in fields of wheat monocropping (left) and wheat-faba bean intercropping (right)


下载: 全尺寸图片幻灯片


图2施氮量和与蚕豆间作对小麦条锈病发病率(a)和病情指数(b)的影响
图中不同大写和小写字母分别表示单作、间作下不同施氮水平间差异显著(P < 0.05);*表示同一施氮水平下单、间作间差异显著(P < 0.05)。N0、N1和N2分别表示施氮量为0 kg·hm-2、90 kg·hm-2和180 kg·hm-2
Figure2.Effects of different N application levels and intercropping with faba bean on disease incidence (a) and disease index (b) of wheat trip rust
Different capital letters and lowercase letters represent significant differences among nitrogen application levels of monocropping and intercropping at 0.05 level, respectively. * represents difference between monocropping and intercropping at the same N application level, respectively. N0, N1 and N2 represent 0 kg(N)·hm-2, 90 kg(N)·hm-2 and 180 kg·hm-2 of nitrogen application levels, respectively.


下载: 全尺寸图片幻灯片


图3施氮量和与蚕豆间作对小麦植株氮(a)和钾(b)含量的影响
图中不同大写和小写字母分别表示单作、间作下不同施氮水平间差异显著(P < 0.05);*表示同一施氮水平下单、间作间差异显著(P < 0.05)。N0、N1和N2分别表示施氮量为0 kg·hm-2、90 kg·hm-2和180 kg·hm-2
Figure3.Effect of N application levels and intercropping with faba bean on nitrogen (a) and potassium (b) contents of wheat
Different capital letters and lowercase letters represent significant differences among nitrogen application levels of monocropping and intercropping at 0.05 level, respectively. * represents difference between monocropping and intercropping at the same N application level, respectively. N0, N1 and N2 represent 0 kg(N)·hm-2, 90 kg(N)·hm-2 and 180 kg·hm-2 of nitrogen application levels, respectively.


下载: 全尺寸图片幻灯片


图4不同施氮量和与蚕豆间作对小麦植株氮(a)和钾(b)分配的影响
N0、N1和N2分别表示施氮量为0 kg·hm-2、90 kg·hm-2和180 kg·hm-2
Figure4.Effects of N application levels and intercropping with faba bean on nitrogen (a) and potassium (b) allocation of wheat
N0, N1 and N2 represent 0 kg(N)·hm-2, 90 kg(N)·hm-2 and 180 kg·hm-2 of nitrogen application levels, respectively.


下载: 全尺寸图片幻灯片


图5施氮和与蚕豆间作对小麦叶片氮钾比的影响
图中不同大写和小写字母分别表示单作和间作下不同施氮水平间差异显著(P < 0.05);*表示同一施氮水平下单、间作间差异显著(P < 0.05)。N0、N1和N2分别表示施氮量为0 kg·hm-2、90 kg·hm-2和180 kg·hm-2
Figure5.Effects of N application levels and intercropping with faba bean on N/K of wheat leaf
Different capital letters and lowercase letters represent significant differences among nitrogen application levels of monocropping and intercropping at 0.05, respectively. * represents difference between monocropping and intercropping at the same N application level, respectively. N0, N1 and N2 represent 0 kg(N)·hm-2, 90 kg(N)·hm-2 and 180 kg·hm-2 of nitrogen application levels, respectively.


下载: 全尺寸图片幻灯片

表1不同试验地供试土壤的基本理化性状
Table1.The basic physical and chemical properties of soil in the two experimental sites
试验地
Experimental site
有机质
Organic matter (g·kg-1)
全氮
Total N (g·kg-1)
碱解氮
Alkali-hydrolyzable N (mg·kg-1)
速效钾
Available K (mg·kg-1)
有效磷
Available P (mg·kg-1)
pH
安宁Anning 14.9 1.3 60.5 55.2 29.8 7.2
峨山Eshan 28.9 2.1 102.0 100.5 36.9 6.7


下载: 导出CSV
表2施氮量和与蚕豆间作对小麦产量的影响
Table2.Effects of N application levels and intercropping with faba bean on wheat yield
试验地
Experimental site
施氮量
Nitrogen level
小麦产量Wheat yield [kg(N)·hm-2] 土地当量比
Land equivalent ratio
单作Monocropping 间作Intercropping 平均Mean
安宁Anning N0 2 526±233b 3 717±163b* 3 122b 1.37±0.12
N1 3 383±392a 4 531±128a* 3 957a 1.31±0.17
N2 3 846±191a 4 613±340a* 4 230a 1.20±0.21
平均Mean 3 251 4 287* 1.29
峨山Eshan N0 3 940±103b 4 851±258b* 4 396b 1.26±0.10
N1 4 432±311ab 5 546±312a* 4 989a 1.27±0.08
N2 5 177±414a 5 597±343a 5 387a 1.16±0.09
平均Mean 4 516 5 331* 1.23
同一试验地同列不同字母表示不同施氮水平间差异显著(P < 0.05), *表示在相同施氮水平下单作和间作间差异显著(P < 0.05)。N0、N1和N2分别表示施氮量为0 kg(N)·hm-2、90 kg(N)·hm-2和180 kg(N)·hm-2。Different letters in the same column for the same experimental site indicate significant differences among nitrogen application levels at 0.05 level. * means significant difference between monocropping and intercropping systems at the same nitrogen level at 0.05 level. N0, N1 and N2 represent 0 kg(N)·hm-2, 90 kg(N)·hm-2 and 180 kg·hm-2 of nitrogen application rates, respectively.


下载: 导出CSV
表3植株氮、钾含量及N/K与小麦条锈病发病率、病情指数的相关性分析
Table3.Correlation of disease incidence, index of wheat trip rust with N and K contents, N/K of wheat
氮含量
Nitrogen content
钾含量
Potassium content
叶片N/K
N/K in leaf
发病率Disease incidence 0.613* -0.744** 0.751**
病情指数Disease index 0.639* -0.902** 0.726**
n=12; *P < 0.05; **P < 0.01.


下载: 导出CSV

参考文献(33)
[1]SINGH R P, SINGH P K, RUTKOSKI J, et al. Disease impact on wheat yield potential and prospects of genetic control[J]. Annual Review of Phytopathology, 2016, 54(1):303-322 doi: 10.1146/annurev-phyto-080615-095835
[2]陈远学, 李隆, 汤利, 等.小麦/蚕豆间作系统中施氮对小麦氮营养及条锈病发生的影响[J].核农学报, 2013, 27(7):1020-1028 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb201307018
CHEN Y X, LI L, TANG L, et al. Effect of nitrogen addition on nitrogen nutrition and strip rust occurrence of wheat in wheat/faba bean intercropping system[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(7):1020-1028 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb201307018
[3]陈万权, 康振生, 马占鸿, 等.中国小麦条锈病综合治理理论与实践[J].中国农业科学, 2013, 46(20):4254-4262 doi: 10.3864/j.issn.0578-1752.2013.20.008
CHEN W Q, KANG Z S, MA Z H, et al. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China[J]. Scientia Agricultura Sinica, 2013, 46(20):4254-4262 doi: 10.3864/j.issn.0578-1752.2013.20.008
[4]马占鸿.中国小麦条锈病研究与防控[J].植物保护学报, 2018, 45(1):1-6 http://d.old.wanfangdata.com.cn/Periodical/zwbhxb201801001
MA Z H. Researches and control of wheat stripe rust in China[J]. Journal of Plant Protection, 2018, 45(1):1-6 http://d.old.wanfangdata.com.cn/Periodical/zwbhxb201801001
[5]COSTANZO A, BàRBERI P. Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review[J]. Agronomy for Sustainable Development, 2014, 34(2):327-348 doi: 10.1007/s13593-013-0178-1
[6]HE X H, ZHU S S, WANG H N, et al. Crop diversity for ecological disease control in potato and maize[J]. Journal of Resources and Ecology, 2010, 1(1):45-50 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyystxb-e201001007
[7]HAO W Y, REN L X, RAN W, et al. Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f. sp. niveum[J]. Plant and Soil, 2010, 336(1/2):485-497 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=21d136389305c3e9cc64f4bc4c89e8f6
[8]郭世保, 黄丽丽, 康振生, 等.小麦品种混播条件下条锈病发生、扩展研究[J].中国生态农业学报, 2010, 18(1):106-110 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2010121&flag=1
GUO S B, HUANG L L, KANG Z S, et al. Occurrence and expansion of wheat stripe rust under mixed-cultivar planting[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1):106-110 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2010121&flag=1
[9]陈企村, 朱有勇, 李振岐, 等.不同品种混种对小麦产量及条锈病的影响[J].中国生态农业学报, 2009, 17(1):29-33 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009106&flag=1
CHEN Q C, ZHU Y Y, LI Z Q, et al. Effect of wheat cultivar mixtures on wheat yield and stripe rust[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1):29-33 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009106&flag=1
[10]肖靖秀, 郑毅, 汤利, 等.小麦蚕豆间作系统中的氮钾营养对小麦锈病发生的影响[J].云南农业大学学报, 2005, 20(5):640-645 doi: 10.3969/j.issn.1004-390X.2005.05.009
XIAO J X, ZHENG Y, TANG L, et al. Effects of potassium and nitrogen supply on the occurrence of wheat rust in wheat and faba bean intercropping system[J]. Journal of Yunnan Agricultural University, 2005, 20(5):640-645 doi: 10.3969/j.issn.1004-390X.2005.05.009
[11]肖靖秀, 周桂夙, 汤利, 等.小麦/蚕豆间作条件下小麦的氮、钾营养对小麦白粉病的影响[J].植物营养与肥料学报, 2006, 12(4):517-522 doi: 10.3321/j.issn:1008-505X.2006.04.010
XIAO J X, ZHOU G S, TANG L, et al. Effects of nitrogen and potassium nutrition on the occurrence of Blumeria graminis(DC). Speer of wheat in wheat and faba bean intercropping system[J]. Plant Nutrition and Fertilizer Science, 2006, 12(4):517-522 doi: 10.3321/j.issn:1008-505X.2006.04.010
[12]朱锦惠, 董艳, 肖靖秀, 等.小麦与蚕豆间作系统氮肥调控对小麦白粉病发生及氮素累积分配的影响[J].应用生态学报, 2017, 28(12):3985-3993 http://d.old.wanfangdata.com.cn/Periodical/yystxb201712020
ZHU J H, DONG Y, XIAO J X, et al. Effects of N application on wheat powdery mildew occurrence, nitrogen accumulation and allocation in intercropping system[J]. Chinese Journal of Applied Ecology, 2017, 28(12):3985-3993 http://d.old.wanfangdata.com.cn/Periodical/yystxb201712020
[13]董艳, 董坤, 郑毅, 等.不同品种小麦与蚕豆间作对蚕豆枯萎病的防治及其机理[J].应用生态学报, 2014, 25(7):1979-1987 http://d.old.wanfangdata.com.cn/Periodical/yystxb201407019
DONG Y, DONG K, ZHENG Y, et al. Faba bean Fusarium wilt (Fusarium oxysporum) control and its mechanism in different wheat varieties and faba bean intercropping system[J]. Chinese Journal of Applied Ecology, 2014, 25(7):1979-1987 http://d.old.wanfangdata.com.cn/Periodical/yystxb201407019
[14]马连坤, 董坤, 朱锦惠, 等.小麦与蚕豆间作系统施氮对蚕豆赤斑病发生和冠层微气候的影响[J].应用生态学报, 2019, 30(3):951-960 http://d.old.wanfangdata.com.cn/Periodical/yystxb201903028
MA L K, DONG K, ZHU J H, et al. Effects of N application on faba bean chocolate spot and canopy microclimate in wheat and faba bean intercropping system[J]. Chinese Journal of Applied Ecology, 2019, 30(3):951-960 http://d.old.wanfangdata.com.cn/Periodical/yystxb201903028
[15]ZHANG C C, DONG Y, TANG L, et al. Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; a meta-analysis[J]. European Journal of Plant Pathology, 2019, 154(4):931-942 doi: 10.1007/s10658-019-01711-4
[16]SHAHEEN A, ALI S, STEWART B A, et al. Mulching and synergistic use of organic and chemical fertilizers enhances the yield, nutrient uptake and water use efficiency of Sorghum[J]. African Journal of Agricultural Research, 2010, 5(16):2178-2183 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001554263
[17]王晓维, 杨文亭, 缪建群, 等.玉米-大豆间作和施氮对玉米产量及农艺性状的影响[J].生态学报, 2014, 34(18):5275-5282 http://d.old.wanfangdata.com.cn/Periodical/stxb201418017
WANG X W, YANG W T, MIAO J Q, et al. Effects of maize-soybean intercropping and nitrogen fertilizer on yield and agronomic traits of maize[J]. Acta Ecologica Sinica, 2014, 34(18):5275-5282 http://d.old.wanfangdata.com.cn/Periodical/stxb201418017
[18]宫香伟, 李境, 马洪驰, 等.黄土高原旱作区糜子-绿豆带状种植农田小气候特征与产量效应[J].应用生态学报, 2018, 29(10):3256-3266 http://d.old.wanfangdata.com.cn/Periodical/yystxb201810013
GONG X W, LI J, MA H C, et al. Field microclimate and yield for proso millet intercropping with mung bean in the dryland of loess plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 2018, 29(10):3256-3266 http://d.old.wanfangdata.com.cn/Periodical/yystxb201810013
[19]XIAO J X, YIN X H, REN J B, et al. Complementation drives higher growth rate and yield of wheat and saves nitrogen fertilizer in wheat and faba bean intercropping[J]. Field Crops Research, 2018, 221:119-129 doi: 10.1016/j.fcr.2017.12.009
[20]NASIR M, MUGHAL S M, MUKHTAR T, et al. Powdery mildew of mango:A review of ecology, biology, epidemiology and management[J]. Crop Protection, 2014, 64:19-26 doi: 10.1016/j.cropro.2014.06.003
[21]KEATING B A, CARBERRY P S. Resource capture and use in intercropping:solar radiation[J]. Field Crops Research, 1993, 34(3/4):273-301 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d83031e96cafaecae13a96eeebfa7817
[22]李隆.间套作强化农田生态系统服务功能的研究进展与应用展望[J].中国生态农业学报, 2016, 24(4):403-415 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016401&flag=1
LI L. Intercropping enhances agroecosystem services and functioning:Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4):403-415 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016401&flag=1
[23]SNOEIJERS S, PéREZ-GARCíA A, JOOSTEN M H A J, et al. The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens[J]. European Journal of Plant Pathology, 2000, 106(6):493-506 doi: 10.1023/A:1008720704105
[24]李勇杰, 陈远学, 汤利, 等.不同分根条件下氮对间作小麦生长和白粉病发生的影响[J].云南农业大学学报, 2006, 21(5):581-585 doi: 10.3969/j.issn.1004-390X.2006.05.007
LI Y J, CHEN Y X, TANG L, et al. Effect of nitrogen on wheat growth and occurrence of powdery mildew under different root separation in wheat-fababean intercropping[J]. Journal of Yunnan Agricultural University, 2006, 21(5):581-585 doi: 10.3969/j.issn.1004-390X.2006.05.007
[25]卢国理, 汤利, 楚轶欧, 等.单/间作条件下氮肥水平对水稻总酚和类黄酮的影响[J].植物营养与肥料学报, 2008, 14(6):1064-1069 doi: 10.3321/j.issn:1008-505X.2008.06.006
LU G L, TANG L, CHU Y O, et al. Effect of nitrogen levels on the changes of phenol and flavonoid contents under rice monocropping and intercropping system[J]. Plant Nutrition and Fertilizer Science, 2008, 14(6):1064-1069 doi: 10.3321/j.issn:1008-505X.2008.06.006
[26]郭明亮.中国水稻氮过量对农药用量的影响[D].北京: 中国农业大学, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10019-1016085267.htm
GUO M L. The impact of excessive nitrogen fertilizer on pesticide usage on rice in China[D]. Beijing: China Agricultural University, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10019-1016085267.htm
[27]朱锦惠, 董坤, 杨智仙, 等.间套作控制作物病害的机理研究进展[J].生态学杂志, 2017, 36(4):1117-1126 http://d.old.wanfangdata.com.cn/Periodical/stxzz201704030
ZHU J H, DONG K, YANG Z X, et al. Advances in the mechanism of crop disease control by intercropping[J]. Chinese Journal of Ecology, 2017, 36(4):1117-1126 http://d.old.wanfangdata.com.cn/Periodical/stxzz201704030
[28]郭增鹏, 董坤, 朱锦惠, 等.施氮和间作对蚕豆锈病发生及田间微气候的影响[J].核农学报, 2019, 33(11):2294-2302 doi: 10.11869/j.issn.100-8551.2019.11.2294
GUO Z P, DONG K, ZHU J H, et al. Effects of nitrogen fertilizer and intercropping on faba bean rust occurrence and field microclimate[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(11):2294-2302 doi: 10.11869/j.issn.100-8551.2019.11.2294
[29]肖靖秀, 郑毅.间套作系统中作物的养分吸收利用与病虫害控制[J].中国农学通报, 2005, 21(3):150-154 doi: 10.3969/j.issn.1000-6850.2005.03.041
XIAO J X, ZHENG Y. Nutrients uptake and pests and diseases control of crops in intercropping system[J]. Chinese Agricultural Science Bulletin, 2005, 21(3):150-154 doi: 10.3969/j.issn.1000-6850.2005.03.041
[30]CAO S Q, LUO H S, JIN M A, et al. Intercropping influenced the occurrence of stripe rust and powdery mildew in wheat[J]. Crop Protection, 2015, 70:40-46 doi: 10.1016/j.cropro.2014.12.008
[31]张福锁.环境胁迫与植物营养[M].北京:中国农业出版社, 1993
ZHANG F S. Environmental Stress and Plant Nutrition[M]. Beijing:China Agricultural Press, 1993
[32]董艳, 董坤, 范茂攀, 等.氮钾营养与氮钾平衡对几种烤烟病害的影响[J].中国农学通报, 2007, 23(1):302-304 doi: 10.3969/j.issn.1000-6850.2007.01.072
DONG Y, DONG K, FAN M P, et al. Effect of nitrogen and potassium concentrations and nitrogen and potassium balance on several tobacco diseases[J]. Chinese Agricultural Science Bulletin, 2007, 23(1):302-304 doi: 10.3969/j.issn.1000-6850.2007.01.072
[33]吴瑕, 吴凤芝, 周新刚.分蘖洋葱伴生对番茄矿质养分吸收及灰霉病发生的影响[J].植物营养与肥料学报, 2015, 21(3):734-742 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201503021
WU X, WU F Z, ZHOU X G. Effect of intercropping with tillered onion on mineral nutrient uptake and gray mold disease occurrence of tomato[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3):734-742 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201503021

相关话题/营养 植物 系统 生态 控制