删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

土著AMF与氮形态对辣椒||菜豆间作系统植株氮利用及其影响因素研究

本站小编 Free考研考试/2022-01-01

刘圆圆1, 2,,
赵乾旭1,
邓曦3,
王豹1, 2,
张乃明1, 2,
宗庆富1,
夏运生1, 2,,
1.云南农业大学资源与环境学院 昆明 650201
2.云南省土壤培肥与污染修复工程实验室 昆明 650201
3.厦门安防科技职业学院 厦门 361000
基金项目: 国家自然科学基金项目41561057
云南省重大科技专项·绿色食品国际合作研究中心专项课题2019ZG00907-01
云南省土壤资源利用与保护创新团队项目2015HC018

详细信息
作者简介:刘圆圆, 主要研究方向为设施土壤改良。E-mail:Liuyuandz@163.com
通讯作者:夏运生, 主要研究方向为菌根生理及污染控制研究。E-mail:yshengxia@163.com
中图分类号:S344.2;S641.3;S643.1

计量

文章访问数:535
HTML全文浏览量:10
PDF下载量:290
被引次数:0
出版历程

收稿日期:2019-08-02
录用日期:2019-10-17
刊出日期:2020-02-01

Effects of indigenous arbuscular mycorrhizal fungi and nitrogen forms on plant nitrogen utilization and the influencing factors in a pepper-common bean intercropping system

LIU Yuanyuan1, 2,,
ZHAO Qianxu1,
DENG Xi3,
WANG Bao1, 2,
ZHANG Naiming1, 2,
ZONG Qingfu1,
XIA Yunsheng1, 2,,
1. College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
2. Yunnan Engineering Laboratory of Soil Fertility and Pollution Remediation, Kunming 650201, China
3. Xiamen Security Science and Technology College, Xiamen 361000, China
Funds: the National Natural Science Foundation of China41561057
the Special Project of International Cooperation and Research Center for Green Food in Yunnan Province2019ZG00907-01
the Innovation Team Project of Utilization and Protection of Soil Resources in Yunnan Province2015HC018

More Information
Corresponding author:XIA Yunsheng, E-mail:yshengxia@163.com


摘要
HTML全文
(4)(3)
参考文献(27)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:近年来设施辣椒连作障碍日益突出,其中氮肥的大量不合理施用和高残留是限制辣椒高产、优质栽培的主要因素之一。研究土著丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)与间作体系强化蔬菜对不同形态氮(N)的利用并结合土壤菌丝密度、N形态及酶活性的反馈作用,可为设施土壤N素的高效利用和降低土壤N残留提供依据。本研究采用盆栽试验,设置辣椒||菜豆间作和各自单作种植模式,不同AMF处理[不接种(NM)、接种土著AMF]和不同形态N处理[不施N(N0)、无机氮(碳酸氢铵120 mg·kg-1,ION)和有机氮(谷氨酰胺120 mg·kg-1,ON)],探讨了设施条件下接种土著AMF、施用不同形态N与间作对辣椒、菜豆根围土壤菌根建成、酶活性及N利用的影响。结果表明,与NM相比,接种土著AMF使设施辣椒、菜豆植株生物量及N吸收量显著增加(除菜豆单作-ON处理),显著降低土壤NH4+-N、NO3--N含量。无论施用何种形态N,均显著增加辣椒、菜豆植株生物量(除菜豆单作-AMF处理)及N吸收量,表现为ON>ION。与单作-ON-AMF处理相比,间作-ON-AMF处理下的辣椒N吸收量显著增加39.9%、菜豆N吸收量显著增加93.0%。对N利用影响因子的分析结果表明,间作协同接种土著AMF较大程度上增加了土壤有机质含量及蛋白酶、脲酶、硝酸还原酶活性。相关性分析显示,辣椒、菜豆植株N吸收量与AMF侵染率呈极显著正相关关系,而土壤NH4+-N和NO3--N含量则与AMF侵染率呈现一定的负相关关系。此外,土壤蛋白酶、脲酶和硝酸还原酶活性与辣椒、菜豆植株N吸收量呈正相关关系。可见,所有复合处理中,以间作体系接种土著AMF与施用适量有机氮的组合明显促进了设施辣椒、菜豆生长和N素利用。
Abstract:In recent years, continuous cropping of peppers and unreasonable application of high-residue nitrogen (N) fertilizer have been the main factors preventing high yields and high-quality cultivation of peppers. A study of indigenous arbuscular mycorrhizal fungi (AMF) and intercropping to enhance the utilization of different forms of N by vegetables, combined with the feedback effect of soil hypha density, available N nutrients, and enzymes may provide a basis for efficient utilization of N in protected culturing soil and reduced soil N residues. A pot experiment with different planting options (pepper-common bean intercropping, pepper monocropping, and common bean monocropping), different AMF treatments[no AMF (NM), and indigenous AMF inoculation] and different forms of N treatments[no N, inorganic N (ammonium bicarbonate, 120 mg·kg-1, ION), and organic N (glutamine, 120 mg·kg-1, ON)] was conducted to reveal the effects of indigenous AMF, N form, and pepper-common bean intercropping on mycorrhizal colonization, soil enzyme activity, and N utilization by plants under greenhouse conditions. The results showed that, compared with NM treatment, inoculation of indigenous AMF significantly increased plant biomass and N uptake of peppers and common beans, except in the case of common bean monocropping-ON treatment, and decreased the contents of NH4+-N and NO3--N in rhizosphere soil. Whether inoculated with AMF or not, N application increased plant biomass and N uptake of peppers and common beans, with the order of ON > ION, except common bean monocropping-AMF treatment. In comparison with monocropping-ON-AMF treatment, intercropping-ON-AMF treatment increased the N uptake of peppers and common beans significantly by 39.9% and 93.0%, respectively. Intercropping and inoculating with indigenous AMF increased protease, urease, and nitrate reductase activities and organic matter content in rhizosphere soils to different extents. Correlation analysis showed that N uptake in peppers and common beans was significantly positively correlated with mycorrhizal colonization percentage, while soil NH4+-N and NO3--N contents were significantly negatively correlated with mycorrhizal colonization percentage. In addition, the activities of soil protease, urease, and nitrate reductase were positively correlated with N uptake of peppers and common beans. Our results indicated that pepper-common bean intercropping combined with inoculation by indigenous AMF and application of an appropriate quantity of organic N significantly promoted pepper and common bean growth and N utilization in protected cultures.

HTML全文


图1N形态对接种土著AMF的辣椒||菜豆间作系统植株根系菌根侵染率的影响
N0、ION和ON分别指不添加N、添加无机氮120 mg·kg-1和添加有机氮120 mg·kg-1处理。不同小写字母表示不同处理间在P < 0.05水平差异显著。
Figure1.Effect of application of different forms of N on mycorrhizal colonization rate of pepper-common bean intercropping system inoculated with indigenous AMF
N0, ION and ON are treatments of no N, addition of inorganic N 120 mg·kg-1 and addition of organic N 120 mg·kg-1, respectively. Different lowercase letters indicate significant differences at P < 0.05 level among different N treatments.


下载: 全尺寸图片幻灯片


图2土著AMF与N形态对辣椒||菜豆间作系统植株生物量的影响
N0、ION和ON分别指不添加N、添加无机氮120 mg·kg-1和添加有机氮120 mg·kg-1处理。NM、AMF指不接种土著AMF、接种土著AMF。不同小写字母表示不同处理间在P < 0.05水平差异显著。
Figure2.Effects of AMF inoculation and application of different forms of N on plant dry biomass of pepper-common bean intercropping system
N0, ION and ON are treatments of no N, addition of inorganic N 120 mg·kg-1 and addition of organic N 120 mg·kg-1, respectively. NM and AMF are treatments of no inoculation and inoculation with indigenous AMF. Different lowercase letters indicate significant differences at P < 0.05 level among different treatments.


下载: 全尺寸图片幻灯片


图3土著AMF与N形态对辣椒||菜豆间作系统植株N吸收量的影响
N0、ION和ON分别指不添加N、添加无机氮120 mg·kg-1和添加有机氮120 mg·kg-1处理。NM、AMF指不接种土著AMF、接种土著AMF。不同小写字母表示不同处理间在P < 0.05水平差异显著。
Figure3.Effects of AMF inoculation and application of different forms of N on plant nitrogen uptake of pepper-common bean intercropping system
N0, ION and ON are treatments of no N, addition of inorganic N 120 mg·kg-1 and addition of organic N 120 mg·kg-1, respectively. NM and AMF are treatments of no inoculation and inoculation with indigenous AMF. Different lowercase letters indicate significant differences at P < 0.05 level among different treatments.


下载: 全尺寸图片幻灯片


图4土著AMF与N形态对辣椒||菜豆间作系统土壤N残留的影响
N0、ION和ON分别指不添加N、添加无机氮120 mg·kg-1和添加有机氮120 mg·kg-1处理。NM、AMF指不接种土著AMF、接种土著AMF。不同小写字母表示不同处理间在P < 0.05水平差异显著。
Figure4.Effects of AMF inoculation and application of different forms of N on soil NH4+-N and NO3--N contents of pepper-common bean intercropping system
N0, ION and ON are treatments of no N, addition of inorganic N 120 mg·kg-1 and addition of organic N 120 mg·kg-1, respectively. NM and AMF are treatments of no inoculation and inoculation with indigenous AMF. Different lowercase letters indicate significant differences at P < 0.05 level among different treatments.


下载: 全尺寸图片幻灯片

表1土著AMF与N形态对辣椒||菜豆间作系统土壤酶活性的影响
Table1.Effects of AMF inoculation and application of different forms of N on soil enzymes activities of pepper-common bean intercropping system
种植方式
Planting way
施氮处理
N treatment
接种处理
AMF treatment
蛋白酶活性
Protease activity (mg·g-1·d-1)
脲酶活性
Urease activity (μg·g-1·h-1)
硝酸还原酶活性
Nitrate reductase activity (μg·g-1·h-1)
辣椒单作
Pepper monocropping
N0 NM 0.25±0.01l 1.29±0.04m 3.37±0.65k
AMF 0.40±0.00j 2.55±0.08j 6.37±0.18h
ION NM 0.49±0.01h 3.17±0.05h 7.96±0.80fg
AMF 0.97±0.02c 5.08±0.12d 9.45±0.18e
ON NM 0.37±0.01k 2.25±0.07k 5.48±0.66i
AMF 0.52±0.01g 3.67±0.23g 7.55±0.11g
菜豆单作
Common bean monocropping
N0 NM 0.39±0.02jk 1.73±0.05l 4.54±0.13j
AMF 0.43±0.02i 3.39±0.16g 6.60±0.10g
ION NM 0.50±0.01h 4.90±0.07e 8.66±0.40f
AMF 0.95±0.02c 4.92±0.04e 15.55±0.19b
ON NM 0.42±0.01i 3.08±0.06h 7.84±0.96fg
AMF 0.54±0.00f 4.01±0.06f 10.58±0.12c
间作
Pepper-common
bean intercropping
N0 NM 0.57±0.01e 2.75±0.04i 5.17±0.13i
AMF 0.84±0.01d 4.21±0.17f 7.77±0.42g
ION NM 1.10±0.03b 10.06±0.06b 10.12±0.04d
AMF 1.57±0.06a 12.00±0.04a 17.10±0.13a
ON NM 0.84±0.01d 8.81±0.12c 8.66±0.19f
AMF 0.98±0.03c 8.95±0.17c 10.42±0.09c
N0、ION和ON分别指不添加N、添加无机氮120 mg·kg-1和添加有机氮120 mg·kg-1处理。NM、AMF指不接种土著AMF、接种土著AMF。同列不同小写字母表示不同处理间在P < 0.05水平差异显著。N0, ION and ON are treatments of no N, addition of inorganic N 120 mg·kg-1 and addition of organic N 120 mg·kg-1, respectively. NM and AMF are treatments of no inoculation and inoculation with indigenous AMF. Different lowercase letters in a column indicate significant differences at P < 0.05 level among different treatments.


下载: 导出CSV
表2土著AMF与N形态对辣椒||菜豆间作系统土壤菌丝密度和有机质的影响
Table2.Effects of AMF inoculation and application of different forms of N on soil hyphal density and organic matter content of pepper-common bean intercropping system
种植方式
Planting way
施氮处理
N treatment
接种处理
AMF treatment
菌丝密度
Hyphal density (m·g-1)
有机质
Organic matter content (g·kg-1)
辣椒单作
Pepper monocropping
N0 NM 0j 15.95±0.10h
AMF 2.87±0.05d 21.35±0.21b
ION NM 0j 20.16±0.49c
AMF 1.17±0.00h 17.72±0.05f
ON NM 0j 18.94±0.02d
AMF 0.76±0.09i 16.47±0.24g
菜豆单作
Common bean monocropping
N0 NM 0j 14.57±0.22j
AMF 3.58±0.06b 18.33±0.40e
ION NM 0j 20.00±0.10c
AMF 3.08±0.07c 15.09±0.10i
ON NM 0j 17.80±0.21ef
AMF 2.50±0.02f 16.63±0.12g
间作
Pepper-common bean intercropping
N0 NM 0j 16.82±0.21g
AMF 1.41±0.01g 18.14±0.20e
ION NM 0j 18.02±0.24e
AMF 2.66±0.03e 20.06±0.07c
ON NM 0j 19.74±0.65c
AMF 4.21±0.09a 22.64±0.09a
N0、ION和ON分别指不添加N、添加无机氮120 mg·kg-1和添加有机氮120 mg·kg-1处理。NM、AMF指不接种土著AMF、接种土著AMF。同列不同小写字母表示不同处理间在P < 0.05水平差异显著。N0, ION and ON are treatments of no N, addition of inorganic N 120 mg·kg-1 and addition of organic N 120 mg·kg-1, respectively. NM and AMF are treatments of no inoculation and inoculation with indigenous AMF. Different lowercase letters in a column indicate significant differences at P < 0.05 level among different treatments.


下载: 导出CSV
表3辣椒和菜豆植株N吸收量、菌根侵染率及土壤各指标的相关性
Table3.Correlation for N uptake of pepper and common bean, mycorrhizal colonization rate and soil indexes
相关系数
Correlative coefficient
菌丝密度
Hyphal density
土壤有机质
Soil organic matter
土壤铵态氮
Soil NH4+-N
土壤硝态氮
Soil NO3--N
土壤蛋白酶
Soil protease activity
土壤脲酶
Soil urease activity
土壤硝酸还原酶
Soil nitrate reductase activity
土壤有机质
Soil organic matter
0.811** 1.000
土壤铵态氮
Soil NH4+-N
-0.337 0.011 1.000
土壤硝态氮
Soil NO3--N
-0.261 0.057 0.948** 1.000
土壤蛋白酶
Soil protease activity
0.451 0.401 0.495* 0.460 1.000
土壤脲酶
Soil urease activity
0.352 0.566* 0.740** 0.731** 0.853** 1.000
土壤硝酸还原酶
Soil nitrate reductase activity
0.525* 0.478* 0.429 0.418 0.977** 0.857** 1.000
辣椒根系菌根侵染率
Mycorrhizal colonization rate of pepper root
0.953** 0.681** -0.418 -0.414 0.481* 0.263 0.537*
菜豆根系菌根侵染率
Mycorrhizal colonization rate of common bean root
0.973** 0.720** -0.399 -0.377 0.482* 0.290 0.541*
辣椒植株N吸收量
N uptake of pepper plant
0.834** 0.970** -0.012 0.047 0.396 0.567* 0.486*
菜豆植株N吸收量
N uptake of common bean
0.939** 0.807** -0.263 -0.231 0.409 0.369 0.457
**和*表示相关性分别在0.01和0.05水平上显著。** and * indicate significant correlations at 0.01 and 0.05 levels, respectively.


下载: 导出CSV

参考文献(27)
[1]巨晓棠, 谷保静.我国农田氮肥施用现状、问题及趋势[J].植物营养与肥料学报, 2014, 20(4):783-795 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201404001
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4):783-795 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201404001
[2]闵炬, 施卫明.不同施氮量对太湖地区大棚蔬菜产量、氮肥利用率及品质的影响[J].植物营养与肥料学报, 2009, 15(1):151-157 doi: 10.3321/j.issn:1008-505X.2009.01.022
MIN J, SHI W M. Effects of different N rates on the yield, N use efficiency and fruit quality of vegetables cultivated in plastic greenhouse in Taihu Lake region[J]. Journal of Plant Nutrition and Fertilizer, 2009, 15(1):151-157 doi: 10.3321/j.issn:1008-505X.2009.01.022
[3]CAMERON K C, DI H J, MOIR J L. Nitrogen losses from the soil/plant system:a review[J]. Annals of Applied Biology, 2013, 162(2):145-173 doi: 10.1111/aab.12014
[4]JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9):3041-3046 doi: 10.1073/pnas.0813417106
[5]冯固, 张福锁, 李晓林, 等.丛枝菌根真菌在农业生产中的作用与调控[J].土壤学报, 2010, 47(5):995-1004 http://d.old.wanfangdata.com.cn/Periodical/trxb201005023
FENG G, ZHANG F S, LI X L, et al. Functions of arbuscular mycorrhizal fungi in agriculture and their manipulation[J]. Acta Pedologica Sinica, 2010, 47(5):995-1004 http://d.old.wanfangdata.com.cn/Periodical/trxb201005023
[6]HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31):13754-13759 doi: 10.1073/pnas.1005874107
[7]AVERILL C, TURNER B L, FINZI A C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage[J]. Nature, 2014, 505(7484):543-545 doi: 10.1038/nature12901
[8]MONTESINOS-NAVARRO A, VERDú M, QUEREJETA J I, et al. Soil fungi promote nitrogen transfer among plants involved in long-lasting facilitative interactions[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 18:45-51 doi: 10.1016/j.ppees.2016.01.004
[9]BENDER S F, CONEN F, VAN DER HEIJDEN M G A. Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland[J]. Soil Biology and Biochemistry, 2015, 80:283-292 doi: 10.1016/j.soilbio.2014.10.016
[10]HODGE A, CAMPBELL C D, FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001, 413(6853):297-299 doi: 10.1038/35095041
[11]PENG S L, GUO T, LIU G C. The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China[J]. Soil Biology and Biochemistry, 2013, 57:411-417 doi: 10.1016/j.soilbio.2012.10.026
[12]LI B, LI Y Y, WU H M, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23):6496-6501 doi: 10.1073/pnas.1523580113
[13]WANG Z G, BAO X G, LI X F, et al. Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade[J]. Plant and Soil, 2015, 391(1/2):265-282 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2044ebda3f65e8470f9187c1f65de93e
[14]李隆.间套作强化农田生态系统服务功能的研究进展与应用展望[J].中国生态农业学报, 2016, 24(4):403-415 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016401&flag=1
LI L. Intercropping enhances agroecosystem services and functioning:Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4):403-415 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016401&flag=1
[15]柴强, 黄鹏, 黄高宝.间作对根际土壤微生物和酶活性的影响研究[J].草业学报, 2005, 14(5):105-110 doi: 10.3321/j.issn:1004-5759.2005.05.019
CHAI Q, HUANG P, HUANG G B. Effect of intercropping on soil microbial and enzyme activity in the rhizosphere[J]. Acta Prataculturae Sinica, 2005, 14(5):105-110 doi: 10.3321/j.issn:1004-5759.2005.05.019
[16]雍太文, 杨文钰, 向达兵, 等.不同种植模式对土壤氮素转化及酶活性的影响[J].应用生态学报, 2011, 22(12):3227-3235 http://d.old.wanfangdata.com.cn/Periodical/yystxb201112020
YONG T W, YANG W Y, XIANG D B, et al. Effects of different planting modes on soil nitrogen transformation and related enzyme activities[J]. Chinese Journal of Applied Ecology, 2011, 22(12):3227-3235 http://d.old.wanfangdata.com.cn/Periodical/yystxb201112020
[17]赵乾旭, 史静, 夏运生, 等. AMF与隔根对紫色土上玉米||大豆种间氮竞争的影响[J].中国农业科学, 2017, 50(14):2696-2705 doi: 10.3864/j.issn.0578-1752.2017.14.006
ZHAO Q X, SHI J, XIA Y S, et al. Effect of AMF inoculation on N uptake of interspecific competition between maize and soybean growing on the purple soil[J]. Scientia Agricultura Sinica, 2017, 50(14):2696-2705 doi: 10.3864/j.issn.0578-1752.2017.14.006
[18]郑舜怡, 郭世荣, 张钰, 等.丛枝菌根真菌对辣椒光合特性及根际微生物多样性和酶活性的影响[J].西北植物学报, 2014, 34(4):800-809 http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201404023
ZHENG S Y, GUO S R, ZHANG Y, et al. Effects of arbuscular mycorrhizal fungi on characteristics of photosynthesis, microbial diversity and enzymes activity in rhizosphere of pepper plants cultivated in organic substrate[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(4):800-809 http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201404023
[19]ANITHA S, GEETHAKUMARI V L, PILLAI G R. Effect of intercrops on nutrient uptake and productivity of chilli-based cropping system[J]. Journal of Tropical Agriculture, 2001, 39(1):60-61 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000793725
[20]PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55(1):158-161 doi: 10.1016/S0007-1536(70)80110-3
[21]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000:30-34, 265-268
BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing:China Agriculture Press, 2000:30-34, 265-268
[22]关松荫.土壤酶及其研究法[M].北京:中国农业出版社, 1986:274-339
GUAN S Y. Soil Enzyme and Its Research Method[M]. Beijing:China Agriculture Press, 1986:274-339
[23]吴金水, 林启美, 黄巧云, 等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社, 2011
WU J S, LIN Q M, HUANG Q Y, et al. Determination Method of Soil Microbial Biomass and Its Application[M]. Beijing:China Meteorological Press, 2011
[24]JAKOBSEN I, ABBOTT L K, ROBSON A D. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots[J]. New Phytologist, 1992, 120(3):371-380 doi: 10.1111/j.1469-8137.1992.tb01077.x
[25]朱红惠, 姚青, 龙良坤, 等.不同氮形态对AM真菌孢子萌发和菌丝生长的影响[J].菌物学报, 2004, 23(4):590-595 http://d.old.wanfangdata.com.cn/Periodical/jwxt200404022
ZHU H H, YAO Q, LONG L K, et al. Influence of different N forms on spore germination and hyphal growth of AM fungus[J]. Mycosystema, 2004, 23(4):590-595 http://d.old.wanfangdata.com.cn/Periodical/jwxt200404022
[26]ASGHARI H R, CAVAGNARO T R. Arbuscular mycorrhizas enhance plant interception of leached nutrients[J]. Functional Plant Biology, 2011, 38(3):219 doi: 10.1071/FP10180
[27]张向前, 黄国勤, 卞新民, 等.施氮肥与隔根对间作大豆农艺性状和根际微生物数量及酶活性的影响[J].土壤学报, 2012, 49(4):731-739 http://d.old.wanfangdata.com.cn/Periodical/trxb201204013
ZHANG X Q, HUANG G Q, BIAN X M, et al. Effects of nitrogen fertilization and root separation on agronomic traits of intercropping soybean, quantity of microorganisms and activity of enzymes in soybean rhizosphere[J]. Acta Pedologica Sinica, 2012, 49(4):731-739 http://d.old.wanfangdata.com.cn/Periodical/trxb201204013

相关话题/土壤 系统 图片 微生物 土著